The Relational Model

Mine eye hath play’d the painter and hath stell’d
Thy beauty’s form in table of my heart.

Shakespeare, Sonnet XXIV

Why Study the Relational Model?

- Most widely used model.
 - Vendors: IBM, Informix, Microsoft, Oracle, Sybase, etc.
- "Legacy systems" in older models
 - e.g., IBM’s IMS
- Object-oriented concepts have recently merged in
 - object-relational model
 - Informix, IBM DB2, Oracle 8i
 - Early work done in POSTGRES research project at Berkeley

Relational Database: Definitions

- Relational database: a set of relations.
- Relation: made up of 2 parts:
 - Schema: specifies name of relation, plus name and type of each column.
 - E.g. Students(sid: string, name: string, login: string, age: integer, gpa: real)
 - Instance: a table, with rows and columns.
 - #rows = cardinality
 - #fields = degree/arity
- Can think of a relation as a set of rows or tuples.
 - i.e., all rows are distinct

Ex: Instance of Students Relation

<table>
<thead>
<tr>
<th>sid</th>
<th>name</th>
<th>login</th>
<th>age</th>
<th>gpa</th>
</tr>
</thead>
<tbody>
<tr>
<td>53666</td>
<td>Jones</td>
<td>jones@cs</td>
<td>18</td>
<td>3.4</td>
</tr>
<tr>
<td>53688</td>
<td>Smith</td>
<td>smith@cs</td>
<td>18</td>
<td>3.2</td>
</tr>
<tr>
<td>53650</td>
<td>Smith</td>
<td>smith@math</td>
<td>19</td>
<td>3.8</td>
</tr>
</tbody>
</table>

- Cardinality = 3, arity = 5, all rows distinct
- Do all values in each column of a relation instance have to be distinct?

SQL - A language for Relational DBs

- SQL* (a.k.a. “Sequel”), standard language
- Data Definition Language (DDL)
 - create, modify, delete relations
 - specify constraints
 - administer users, security, etc.
- Data Manipulation Language (DML)
 - Specify queries to find tuples that satisfy criteria
 - add, modify, remove tuples

SQL Overview

- CREATE TABLE <name> (<field> <domain>, ...)
- INSERT INTO <name> (<field names>) VALUES (<field values>)
- DELETE FROM <name> WHERE <condition>
- UPDATE <name>
 - SET <field name> = <value> WHERE <condition>
- SELECT <fields>
 - FROM <name> WHERE <condition>

*Structured Query Language
Creating Relations in SQL

• Creates the Students relation.
 --Note: the type (domain) of each field is specified, and enforced by the DBMS whenever tuples are added or modified.

```
CREATE TABLE Students
(sid CHAR(20),
name CHAR(20),
login CHAR(10),
age INTEGER,
gpa FLOAT)
```

Table Creation (continued)

• Another example: the Enrolled table holds information about courses students take.

```
CREATE TABLE Enrolled
(sid CHAR(20),
cid CHAR(20),
grade CHAR(2))
```

Adding and Deleting Tuples

• Can insert a single tuple using:

```
INSERT INTO Students (sid, name, login, age, gpa)
VALUES ('53666', 'Smith', 'smith@cs', 18, 3.2)
```

• Can delete all tuples satisfying some condition (e.g., name = Smith):

```
DELETE
FROM Students S
WHERE S.name = 'Smith'
```

Powerful variants of these commands are available; more later!

Keys

• Keys are a way to associate tuples in different relations

• Keys are one form of integrity constraint (IC)

```
Enrolled

<table>
<thead>
<tr>
<th>sid</th>
<th>cid</th>
<th>grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>53650</td>
<td>15-112</td>
<td>A</td>
</tr>
<tr>
<td>53666</td>
<td>15-103</td>
<td>B</td>
</tr>
<tr>
<td>53668</td>
<td>15-101</td>
<td>C</td>
</tr>
</tbody>
</table>

Students

<table>
<thead>
<tr>
<th>sid</th>
<th>name</th>
<th>login</th>
<th>age</th>
<th>gpa</th>
</tr>
</thead>
<tbody>
<tr>
<td>53650</td>
<td>Jones</td>
<td>jones@cs</td>
<td>18</td>
<td>3.4</td>
</tr>
<tr>
<td>53666</td>
<td>Smith</td>
<td>smith@cs</td>
<td>18</td>
<td>3.2</td>
</tr>
<tr>
<td>53668</td>
<td>Smith</td>
<td>smith@math</td>
<td>19</td>
<td>3.8</td>
</tr>
</tbody>
</table>
```

Primary Keys

• A set of fields is a **superkey** if:
 -- No two distinct tuples can have same values in all key fields

• A set of fields is a **key** for a relation if:
 -- It is a superkey
 -- No subset of the fields is a superkey

• what if >1 key for a relation?
 -- one of the keys is chosen (by DBA) to be the **primary key**. Other keys are called **candidate** keys.

• E.g.
 -- sid is a key for Students.
 -- What about name?
 -- The set (sid, gpa) is a superkey.

Primary and Candidate Keys in SQL

• Possibly many **candidate keys** (specified using UNIQUE), one of which is chosen as the **primary key**.
 -- Keys must be used carefully!
 -- “For a given student and course, there is a single grade.”

```
CREATE TABLE Enrolled
(sid CHAR(20),
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid, cid))

CREATE TABLE Enrolled
(sid CHAR(20),
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid),
UNIQUE (cid, grade))
```

"Students can take only one course, and no two students in a course receive the same grade."
Foreign Keys, Referential Integrity

- **Foreign key**: Set of fields in one relation that is used to ‘refer’ to a tuple in another relation.
 - Must correspond to the primary key of the other relation.
 - Like a ‘logical pointer’.
- If all foreign key constraints are enforced, **referential integrity** is achieved (i.e., no dangling references.)

Enforcing Referential Integrity

- Consider Students and Enrolled; sid in Enrolled is a foreign key that references Students.
- What should be done if an Enrolled tuple with a non-existent student id is inserted? (Reject it)
- What should be done if a Students tuple is deleted?
 - Also delete all Enrolled tuples that refer to it?
 - Disallow deletion of a Students tuple that is referred to?
 - Set sid in Enrolled tuples that refer to it to a default sid?
 - (In SQL, also: Set sid in Enrolled tuples that refer to it to a special value null, denoting ‘unknown’or ‘inapplicable’)
- Similar issues arise if primary key of Students tuple is updated.

Foreign Keys in SQL

Example: Only students listed in the Students relation should be allowed to enroll for courses.
- sid is a foreign key referring to Students:

  ```sql
  CREATE TABLE Enrolled
  (sid CHAR(20), cid CHAR(20), grade CHAR(2),
   PRIMARY KEY (sid,cid),
   FOREIGN KEY (sid) REFERENCES Students )
  ```

<table>
<thead>
<tr>
<th>Enrolled</th>
<th>Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>sid</td>
<td>cid</td>
</tr>
<tr>
<td>53666</td>
<td>15-101</td>
</tr>
<tr>
<td>53666</td>
<td>19-203</td>
</tr>
<tr>
<td>53650</td>
<td>15-112</td>
</tr>
</tbody>
</table>

Integrity Constraints (ICs)

- **IC**: condition that must be true for *any* instance of the database; e.g., **domain constraints**.
 - ICs are specified when schema is defined.
 - ICs are checked when relations are modified.
- A legal instance of a relation is one that satisfies all specified ICs.
 - DBMS should not allow illegal instances.
- If the DBMS checks ICs, stored data is more faithful to real-world meaning.
 - Avoids data entry errors, too!

Where do ICs Come From?

- ICs are based upon the semantics of the real-world that is being described in the database relations.
- We can check a database instance to see if an IC is violated, but we can **NEVER** infer that an IC is true by looking at an instance.
 - An IC is a statement about *all possible* instances!
 - From example, we know name is not a key, but the assertion that sid is a key is given to us.
- Key and foreign key ICs are the most common; more general ICs supported too.

Relational Model: Summary

- A tabular representation of data.
- Simple and intuitive, currently the most widely used
 - Object-relational variant gaining ground
- Integrity constraints can be specified by the DBA, based on application semantics. DBMS checks for violations.
 - Two important ICs: primary and foreign keys
 - In addition, we always have domain constraints.
- Mapping from ER to Relational is (fairly) straightforward.

- NEXT: FILES< STORAGE, BUFFERS, DISKS...
- READ CHAPTER 9!
Nobody realizes that some people expend tremendous energy merely to be normal.

Schema Refinement and Normalization

Functional Dependencies (FDs)
- A functional dependency \(X \rightarrow Y \) holds over relation schema \(R \) if, for every allowable instance \(r \) of \(R \):
 \[
 t_1 \in r, \ t_2 \in r, \ \pi_Y(t_1) = \pi_Y(t_2) \quad \text{implies} \quad \pi_Y(t_1) = \pi_Y(t_2)
 \]
 (where \(t_1 \) and \(t_2 \) are tuples; \(X \) and \(Y \) are sets of attributes)
- In other words: \(X \rightarrow Y \) means
 Given any two tuples in \(r \), if the \(X \) values are the same, then the \(Y \) values must also be the same. (but not vice versa)
- Can read “\(\rightarrow \)” as “determines”

FD’s Continued
- An FD is a statement about all allowable relations.
 - Must be identified based on semantics of application.
 - Given some instance \(r \) of \(R \), we can check if \(r \) violates some FD \(f \), but we cannot determine if \(f \) holds over \(R \).
- Question: How related to keys?
- If “\(K \rightarrow \) all attributes of \(R \)” then \(K \) is a superkey for \(R \)
 (does not require \(K \) to be minimal)
- FDs are a generalization of keys.

Normal Forms
- Back to schema refinement...
- Q1: is any refinement needed??!
- If a relation is in a normal form (BCNF, 3NF etc.):
 - we know that certain problems are avoided/minimized.
 - helps decide whether decomposing a relation is useful.
- Role of FDs in detecting redundancy:
 - Consider a relation \(R \) with 3 attributes, ABC.
 - No (non-trivial) FDs hold: There is no redundancy here.
 - Given \(A \rightarrow B \): If \(A \) is not a key, then several tuples could have the same \(A \) value, and if so, they’ll all have the same \(B \) value!
- 1st Normal Form – all attributes are atomic
- 1st \(\supseteq \) 2nd (of historical interest) \(\supset 3rd \) Boyce-Codd \(\supseteq \) ...

Boyce-Codd Normal Form (BCNF)
- Reln \(R \) with FDs \(F \) is in BCNF if, for all \(X \rightarrow Y \) in \(F \):
 - \(A \in X \) (called a trivial FD), or
 - \(X \) is a superkey for \(R \).
- In other words: “\(R \) is in BCNF if the only non-trivial FDs over \(R \) are key constraints.”
- If \(R \) in BCNF, then every field of every tuple records information that cannot be inferred using FDs alone.
 - Say we know \(RX \rightarrow A \) holds this example relation:
X	Y	A
x	y1	a
x	y2	?
 - Can you guess the value of the missing attribute?
 - Yes, so relation is not in BCNF

Decomposition of a Relation Scheme
- If a relation is not in a desired normal form, it can be decomposed into multiple relations that each are in that normal form.
- Suppose that relation \(R \) contains attributes \(A_1 \ldots A_n \). A decomposition of \(R \) consists of replacing \(R \) by two or more relations such that:
 - Each new relation scheme contains a subset of the attributes of \(R \), and
 - Every attribute of \(R \) appears as an attribute of at least one of the new relations.
Example (same as before)

SNLWRH has FDs S \rightarrow SNLWRH and R \rightarrow W

Q: Is this relation in BCNF?

No. The second FD causes a violation: W values repeatedly associated with R values.

Decomposing a Relation

Easiest fix is to create a relation RW to store these associations, and to remove W from the main schema:

<table>
<thead>
<tr>
<th>S</th>
<th>N</th>
<th>L</th>
<th>R</th>
<th>W</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>123-22-3666</td>
<td>Atishoo</td>
<td>48</td>
<td>8</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>231-31-5368</td>
<td>Smiley</td>
<td>22</td>
<td>8</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>131-24-3650</td>
<td>Smethurst</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>30</td>
</tr>
<tr>
<td>434-26-3751</td>
<td>Guldu</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>32</td>
</tr>
<tr>
<td>612-67-4134</td>
<td>Madayan</td>
<td>35</td>
<td>8</td>
<td>10</td>
<td>40</td>
</tr>
</tbody>
</table>

Hourly_Emps

<table>
<thead>
<tr>
<th>S</th>
<th>N</th>
<th>L</th>
<th>R</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>123-22-3666</td>
<td>Atishoo</td>
<td>48</td>
<td>8</td>
<td>40</td>
</tr>
<tr>
<td>231-31-5368</td>
<td>Smiley</td>
<td>22</td>
<td>8</td>
<td>30</td>
</tr>
<tr>
<td>131-24-3650</td>
<td>Smethurst</td>
<td>35</td>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>434-26-3751</td>
<td>Guldu</td>
<td>35</td>
<td>5</td>
<td>32</td>
</tr>
<tr>
<td>612-67-4134</td>
<td>Madayan</td>
<td>35</td>
<td>8</td>
<td>40</td>
</tr>
</tbody>
</table>

Wages

Hourly_Emps2

Q: Are both of these relations now in BCNF?

Decompositions should be used only when needed.

Q: Potential problems of decomposition?

Problems with Decompositions

There are three potential problems to consider:
1) May be impossible to reconstruct the original relation! (Lossiness)
 • Fortunately, not in the SNLWRH example.
2) Dependency checking may require joins.
 • Fortunately, not in the SNLWRH example.
3) Some queries become more expensive.
 • e.g., How much does Guldu earn?

Tradeoff: Must consider these issues vs. redundancy.

Lossless Decomposition (example)

Lossy Decomposition (example)
Lossless Join Decompositions

- Decomposition of R into X and Y is **lossless-join** w.r.t. a set of FDs F if, for every instance r that satisfies F:

 \[\pi_X(r) \bowtie \pi_Y(r) = r \]

- It is always true that \(r \subseteq \pi_X(r) \bowtie \pi_Y(r) \)

 - In general, the other direction does not hold! If it does, the decomposition is lossless-join.

- Definition extended to decomposition into 3 or more relations in a straightforward way.

- It is essential that all decompositions used to deal with redundancy be lossless! *(Avoids Problem #1)*

More on Lossless Decomposition

- The decomposition of R into X and Y is **lossless with respect to F** if and only if the closure of F contains:

 \[X \cap Y \rightarrow X, \text{ or } X \cap Y \rightarrow Y \]

 - in example: decomposing ABC into AB and BC is lossy, because intersection (i.e., “B”) is not a key of either resulting relation.

- **Useful result:** If W \(\rightarrow Z \) holds over R and W \(\cap Z \) is empty, then decomposition of R into R-Z and WZ is loss-less.

Lossless Decomposition (example)

\[
\begin{array}{ccc}
A & B & C \\
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 2 & 8 \\
\end{array}
\quad \rightarrow \quad
\begin{array}{ccc}
A & C \\
1 & 3 \\
4 & 6 \\
7 & 8 \\
\end{array}
\quad \bowtie \\
\begin{array}{ccc}
B & C \\
2 & 3 \\
5 & 6 \\
2 & 8 \\
\end{array}
\]

A \(\rightarrow \) B; C \(\rightarrow \) B

But, now we can’t check A \(\rightarrow \) B without doing a join!

Dependency Preserving Decomposition

- **Dependency preserving decomposition** (Intuitive):

 - If R is decomposed into X, Y and Z, and we enforce the FDs that hold individually on X, Y and Z, then all FDs that were given to hold on R should also hold. *(Avoids Problem #2 on our list.)*

- **Projection of set of FDs F**: If R is decomposed into X and Y the projection of F on X (denoted \(F_X \)) is the set of FDs U \(\rightarrow \) V in \(F^* \) (closure of \(F \), not just \(F \)) such that all of the attributes U, V are in X. *(same holds for Y of course)*

Dependency Preserving Decompositions (Cont.)

- **Definition:** Decomposition of R into X and Y is **dependency preserving** if \(F_X \cup F_Y = F^* \)

 - i.e., if we consider only dependencies in the closure \(F^* \) that can be checked in X without considering Y, and in Y without considering X, these imply all dependencies in \(F^* \).

 - **Important to consider \(F^* \) in this definition:**

 - ABC, A \(\rightarrow \) B, B \(\rightarrow \) C, C \(\rightarrow \) A, decomposed into AB and BC.
 - Is this dependency preserving? Is C \(\rightarrow \) A preserved????

 * note: \(F^* \) contains \(F \cup (A \rightarrow C, B \rightarrow A, C \rightarrow B) \), so...

 - FAB contains A \(\rightarrow \) B and B \(\rightarrow \) A? FBC contains B \(\rightarrow \) C and C \(\rightarrow \) B

 - So, \((FAB \cup FBC)^* \) contains C \(\rightarrow \) A

 - Definition: Decomposition of R into X and Y is **dependency preserving** if \(F_X \cup F_Y = F^* \)

 - i.e., if we consider only dependencies in the closure \(F^* \) that can be checked in \(F^* \) without considering X, and in Y without considering Y, these imply all dependencies in \(F^* \).

 - **Important to consider \(F^* \) in this definition:**

 - ABC, A \(\rightarrow \) B, B \(\rightarrow \) C, C \(\rightarrow \) A, decomposed into AB and BC.
 - Is this dependency preserving? Is C \(\rightarrow \) A preserved????

 * note: \(F^* \) contains \(F \cup (A \rightarrow C, B \rightarrow A, C \rightarrow B) \), so...

 - FAB contains A \(\rightarrow \) B and B \(\rightarrow \) A? FBC contains B \(\rightarrow \) C and C \(\rightarrow \) B

 - So, \((FAB \cup FBC)^* \) contains C \(\rightarrow \) A

Decomposition into BCNF

- Consider relation R with FDs F. If X \(\rightarrow \) Y violates BCNF, decompose R into X, Y and XY (guaranteed to be loss-less).

 - Repeated application of this idea will give us a collection of relations that are in BCNF: lossless join decomposition, and guaranteed to terminate.

 - e.g., CSDPVQ, key C, \(JP \rightarrow C, SD \rightarrow P, J \rightarrow S \)

 - (contracted; supplier, project, depot, part, qty, value)

 - To deal with SD \(\rightarrow \) P, decompose into SDP, CSDPVQ.

 - To deal with J \(\rightarrow \) S, decompose CSDPVQ into JS and CJDQV

 - So we end up with: SDP, JS, and CJDQV

- **Note:** several dependencies may cause violation of BCNF. The order in which we “deal with” them could lead to very different sets of relations!
BCNF and Dependency Preservation

- In general, there may not be a dependency preserving decomposition into BCNF.
 - e.g., CSZ, CS \rightarrow Z, Z \rightarrow C
 - Can’t decompose while preserving 1st FD; not in BCNF.
- Similarly, decomposition of CSJDPQV into SDP, JS and CJDQV is not dependency preserving (w.r.t. the FDs JP \rightarrow P and J \rightarrow S).
 - \{contractid, supplierid, projectid, deptid, partid, qty, value\}

- However, it is a lossless join decomposition.
- In this case, adding JPC to the collection of relations gives us a dependency preserving decomposition.
 - but JPC tuples are stored only for checking the f.d. (Redundancy?)

What Does 3NF Achieve?

- If 3NF violated by X \rightarrow A, one of the following holds:
 - X is a subset of some key K ("partial dependency")
 - We store (X, A) pairs redundantly.
 - e.g., Reserves SBD (C is for credit card) with key SBD and S \rightarrow C
 - X is not a proper subset of any key. ("transitive dep.")
 - There is a chain of FDs K \rightarrow X \rightarrow A, which means that we cannot associate an X value with a K value unless we also associate an A value with an X value (different K's, same X implies same A!).
 - problem with initial SNLBBNH example.
 - But: even if R is in 3NF, these problems could arise.
 - e.g., Reserves SBD (note: "C" is for credit card here), S \rightarrow C, C \rightarrow S is in 3NF (why?), but for each reservation of sailor S, same (S, C) pair is stored.
 - Thus, 3NF is indeed a compromise relative to BCNF.

Decomposition into 3NF

- Obviously, the algorithm for lossless join decompose BCNF can be used to obtain a lossless join decompose into 3NF (typically, can stop earlier) but does not ensure dependency preservation.

- To ensure dependency preservation, one idea:
 - If X \rightarrow Y is not preserved, add relation XY.
 - Problem is that XY may violate 3NF! e.g., consider the addition of CJP to ‘preserve’ JP \rightarrow C. What if we also have J \rightarrow C?
- Refinement: Instead of the given set of FDs F, use a minimal cover for F.

Minimal Cover for a Set of FDs

- Minimal cover G for a set of FDs F:
 - Closure of F = closure of G.
 - Right hand side of each FD in G is a single attribute.
 - If we modify G by deleting an FD or by deleting attributes from an FD in G, the closure changes.

- Intuitively, every FD in G is needed, and `as small as possible’ in order to get the same closure as F.
 - e.g., A \rightarrow B, ABCD \rightarrow E, EF \rightarrow GH, ACD \rightarrow EG has the following minimal cover:
 - A \rightarrow B, ACD \rightarrow E, EF \rightarrow G and EF \rightarrow H
 - M.C. implies Lossless-Join, Dep. Pres. Decomp!!!
 - (in book)

Summary of Schema Refinement

- BCNF: each field contains information that cannot be inferred using only FDs.
 - ensuring BCNF is a good heuristic.
- Not in BCNF? Try decomposing into BCNF relations.
 - Must consider whether all FDs are preserved!
- Lossless-join, dependency preserving decompose into BCNF impossible? Consider 3NF.
 - Same if BCNF decom is unsuitable for typical queries
 - Decompositions should be carried out and/or re-examined while keeping performance requirements in mind.
- Note: even more restrictive Normal Forms exist (we don’t cover them in this course, but some are in the book.)