Homework Assignment 6

15-415 Database Applications
Carnegie Mellon University

April 18, 2003
Due: April 25, 2003 (3pm)

1 Administrivia (and lots of it)

This assignment is to be done individually. Please prepare your answers typed up in a doc, .ps, .pdf, or .tex format, and email them to Joe (josepht AT andrew) before the submission deadline. For all questions in this assignment, justify your answers briefly. Answers with no justification at all will not be given any credit.

2 Functional Dependencies (40 points)

1. Consider the following tables and functional dependencies.
$\mathrm{R}\left(\mathrm{A}_{1}, \mathrm{~B}_{1}, \mathrm{C}_{1}, \mathrm{D}_{1}\right)$
(a) $\mathrm{A}_{1} \rightarrow \mathrm{~B}_{1} \mathrm{C}_{1} \mathrm{D}_{1}$
(b) $\mathrm{C}_{1} \rightarrow \mathrm{~A}_{1} \mathrm{~B}_{1}$
$\mathrm{S}\left(\mathrm{A}_{2}, \mathrm{~B}_{2}, \mathrm{C}_{2}, \mathrm{D}_{2}, \mathrm{E}_{2}, \mathrm{~F}_{2}, \mathrm{G}_{2}\right)$
(a) $\mathrm{A}_{2} \rightarrow \mathrm{~B}_{2} \mathrm{C}_{2}$
(b) $\mathrm{A}_{2} \mathrm{~B}_{2} \mathrm{C}_{2} \rightarrow \mathrm{D}_{2}$
$\mathrm{T}\left(\mathrm{A}_{3}, \mathrm{~B}_{3}, \mathrm{C}_{3}, \mathrm{D}_{3}, \mathrm{E}_{3}, \mathrm{~F}_{3}\right)$
(a) $\mathrm{A}_{3} \rightarrow \mathrm{~B}_{3} \mathrm{C}_{3}$
(b) $\mathrm{A}_{3} \mathrm{C}_{3} \rightarrow \mathrm{D}_{3} \mathrm{E}_{3} \mathrm{~F}_{3}$
(c) $\mathrm{F}_{3} \rightarrow \mathrm{~A}_{3} \mathrm{~B}_{3}$

For each of the tables R, S, and T, answer the following questions:
(a) List all of the candidate keys. (3×3 points)
(b) Give the minimal cover of the set of functional dependencies. (3×5 points)
2. Recall the following axioms:

Reflexivity: If $\mathrm{Y} \subseteq \mathrm{X}$, then $\mathrm{X} \rightarrow \mathrm{Y}$.
Augmentation: If $\mathrm{X} \rightarrow \mathrm{Y}$, then $\mathrm{XW} \rightarrow \mathrm{YW}$.
Transitivity: If $\mathrm{X} \rightarrow \mathrm{Y}$ and $\mathrm{Y} \rightarrow \mathrm{Z}$, then $\mathrm{X} \rightarrow \mathrm{Z}$.
Union: If $\mathrm{X} \rightarrow \mathrm{Y}$ and $\mathrm{X} \rightarrow \mathrm{Z}$, then $\mathrm{X} \rightarrow \mathrm{YZ}$.
Decomposition: If $\mathrm{X} \rightarrow \mathrm{YZ}$, then $\mathrm{X} \rightarrow \mathrm{Y}$ and $\mathrm{X} \rightarrow \mathrm{Z}$.

Pseudotransitivity: If $\mathrm{X} \rightarrow \mathrm{Y}$ and $\mathrm{WY} \rightarrow \mathrm{Z}$, then $\mathrm{XW} \rightarrow \mathrm{Z}$.
Set accumulation: If $\mathrm{X} \rightarrow \mathrm{YZ}$ and $\mathrm{Z} \rightarrow \mathrm{W}$, then $\mathrm{X} \rightarrow \mathrm{YZW}$.
From the following set of four functional dependencies, derive (a), (b), and (c). Label each step with the rule from the above axioms.

1. $\mathrm{A} \rightarrow \mathrm{B}$
2. $\mathrm{C} \rightarrow \mathrm{B}$
3. $\mathrm{D} \rightarrow \mathrm{ABC}$
4. $\mathrm{AC} \rightarrow \mathrm{D}$
(a) $\mathrm{D} \rightarrow \mathrm{ABCD}$ (3 points)
(b) $\mathrm{AC} \rightarrow \mathrm{BD}$ (5 points)
(c) $\mathrm{AC} \rightarrow \mathrm{ABCD}$ (8 points)

3 Decompositions (35 points)

1. Decompose the table S from the last question into two tables, $S 1$ and $S 2$, so that they are all in BCNF, with a lossless and dependency-preserving decomposition. (10 points)
2. Consider the table $\mathrm{U}\left(\mathrm{A}_{4}, \mathrm{~B}_{4}, \mathrm{C}_{4}, \mathrm{D}_{4}, \mathrm{E}_{4}, \mathrm{~F}_{4}\right)$, with the following functional dependencies.
(a) $\mathrm{B}_{4} \mathrm{C}_{4} \rightarrow \mathrm{D}_{4}$
(b) $\mathrm{D}_{4} \mathrm{E}_{4} \rightarrow \mathrm{~A}_{4} \mathrm{~F}_{4}$
(c) $\mathrm{B}_{4} \mathrm{C}_{4} \rightarrow \mathrm{E}_{4}$

Decompose U into two tables, U 1 and U 2 , such that the decomposition is lossless and dependency preserving, and U1 and U2 are in BCNF. (10 points)
3. Suppose we have a relational schema $\mathrm{V}\left(\mathrm{A}_{5}, \mathrm{~B}_{5}, \mathrm{C}_{5}\right)$, with the only functional dependency being $\mathrm{A} \rightarrow$ B. Suppose also that we decide to decompose this schema into $\mathrm{V} 1\left(\mathrm{~A}_{5}, \mathrm{~B}_{5}\right)$ and $\mathrm{V} 2\left(\mathrm{~B}_{5}, \mathrm{C}_{5}\right)$. Give an example of an instance of relation V whose projection onto V 1 and V 2 and subsequent rejoining does not yield the same relation instance. (15 points)

4 Normal Forms (25 points)

1. Consider the table $X(A, B, C)$. Give a pair of functional dependencies for X that would put it in $3 N F$, but not BCNF. (5 points)
2. For each of the tables R, S, T, and U above, answer the following questions.
(a) Is the table in 3 NF ? (4×3 points)
(b) Is the table in BCNF? (4×2 points)
