
Homework Assignment 2

15-415 Database Applications
Carnegie Mellon University

February 10, 2003
Due: March 3, 2003 (8pm)

1 Overview: Hybrid Hashing for Grouped Aggregates

In Project 1, you studied how to change the page replacement policy of the PostgreSQL buffer manager. In
this project you will move to a higher level in the system and add functionality to the PostgreSQL query
executor. We will restrict our focus togrouped aggregates. This project will be considerably more complex
than Project 1, both in terms of the amount of coding involved and in understanding existing code. The
major parts of the project are:

1. A “big picture” understanding of a query executor

2. An understanding of different aggregation strategies

3. Examining and understanding existing code

4. Enhancing an implementation to be more “real world”

In lecture 7, you saw how grouped aggregates can be implemented withsortingas well ashashing. We
are providing you with a PostgreSQL version that supports sorting and in-memory hashing. When there are
manydistinct valuesgrouping columns, the in-memory hashing implementation performs poorly. Your job
is to understand the code that we provide, and enhance it to deal with insufficient memory byspilling data
to disk.

1.1 Administrivia

As with Project 1, we will provide you a leaner PostgreSQL source tree. Make sure your code runs smoothly
on the Itanium machines prior to submission, sinceall grading wilbe done on those. The instructions pro-
vided are designed to work smoothly on these machines, which are the only ones we will officially support.

1.2 Tasks

The following table lists the various tasks you will have to complete while working on this assignment.

Task Name Credit

1 Compile and test our version of PostgreSQL.
2 Study and understand the aggregation implementation based on sorting and

hashing that is provided.
3 Enhance hashed aggregation to spill to disk when required. 75%
4 Compare the performance of sorted and hashed aggregation 25%
5 Understand and implement recursive partitioning forvery large data sets. 30%

Bonus

1

Please remember that you only have 3 weeks. This project will take a fair amount of time. Spend some time
to read this document completely before beginning work.Start early and avoid a last-minute scramble!

Since understanding the code is an important part of this project, the TAs and Professor
will not assist you in understanding the existing code beyond what is discussed here.

2 Compile and Test PostgreSQL

Everything needed for this project is available at/usr0/dbclass/hw2/hw2-pkg.tar.gz on all Itanium
machines. To begin, copy this package to your own directory and untar it with:tar -zxvf hw2-pkg.tar.gz.
You will see the following two subdirectories:

1. postgresql-7.2.2/: Source code of a version of PostgreSQL based on the 7.2.2 release. This
distribution includes abackportof the in-memory hashing strategy for grouped aggregates that has
just been developed by the PostgreSQL Global Development Group. You will not find this particular
version at any other location, so make sure you use it.

2. exec/: Some scripts you need to run experiments.

To compile and run PostgreSQL you just have tocd to the hw2/postgresql-7.2.2 directory and
execute./compile.sh. There is no need to run theconfigure utility. After running compile.sh the
PostgreSQL binaries will be installed in your$HOME/pgsql-hashagg/bin directory. Note that yourPATH
should be set to pick up this local PostgreSQL installation first. Test this by runningwhich postgres to
confirm that you are accessing executables from this directory.

3 Examine code for aggregation: Sorting and Hashing

As stated earlier, the implementation of PostgreSQL that we are providing is capable of using either asort
or ahashbased strategy for grouped aggregation. You will find the details in theGroup andAgg operators
in source filesnodeGroup.c, nodeAgg.c andaggHash.c. These modules are all part of the PostgreSQL
query executor and can be found in thepostgresql-7.2.2/src/backend/executor directory. In this
section we will provide you with a short tour of the modules and routines that you should study.

3.1 Enabling a specific strategy

The scripts that we provide inhw2/execor running experiments can be used to selectively enable and
parametrize the appropriate strategy for grouped aggregation in PostgreSQL. However, for you to under-
stand and debug the code it is useful to know what’s going on.

By default, PostgreSQL will always pick a hashing strategy, unless prohibited on startup with the-fg
option. The hashing and sorting strategies can be tuned with the configuration parameteressort mem and
hash mem. These parameters affect the private memory that is used by the two strategies. The easiest way
to set these parameters is using the-S and-H options to the postmaster.

The parameterhash mem is actually available in the code as the global variableHashMem. This is the
amount of memory available for the in-memory hash table in Phase 1 of hybrid hashing. Note that this
variable is not used in the implementation provided—however,youwill use it in your implementation !

3.2 An Agg overview

The Agg operatorcombinesthe implementation of the sorting and hashing based strategies for grouped
aggregates. The choice is made by the optimizer and fixed in theaggstrategy field of theAgg node. The
entry point to theAgg node is the functionExecAgg in the file nodeAgg.c – this function calls one of

2

exec sorted agg or exec hashed agg based on theaggstrategy. While you need not read the former,
make sure that you understand every detail inexec hashed agg, as this is the code path that you will
modify.

Note that youmightfind it necessary to change the interfaces of some of the functions we have provided.
In particular you should carefully examine the following:

1. Building, using and freeing hash tables

• build hash table() andBuildTupleHashTable() (pay attention to the memory context)

• GetTupleHashKey() – note that this can also be used for your partitioning hash function

• lookup hash entry() – when you are in Phase 2 you will need to check for existence without
inserting into the hash table.

• TupleHashSize – a macro that keeps track of memory usage in the hash table.

2. Transition values (building and maintenance): TheAggStatePerAggData structure contains all the
information for each aggregatefunctionthat you need to evaluate. This structure contains all the infor-
mation necessary about how to initialize and advance transition values. TheAggStatePerGroupData
structure holds the aggregate function transitionvaluesfor each distinct group-by value. The following
functions should be fairly self-explanatory:

• initialize aggregates(): Initializes a per-group structure based on the information of the
per-agg structure.

• advance aggregates(): Advances the transition value in the per-group structure, based on the
new tuple valus and the aggregate function information in the per-agg structure.

• finalize aggregates(): Computes the final aggregate function value from the transition
value information in the per-group state and the aggregate function described by the per-agg
structure.

For the most part, these functions are called in the appropriate places already. However, when spilling
to disk, you will need to move things around in the code, so you should be aware of what these
functions do.

3. Cleanup. Starting off inExecEndAgg(), it’s useful for similar work you might want to do in clean-
ing up an existing in-memory hash table. You may also want to see the code innodeHash.c and
nodeHashjoin.c (see also subsection 4.3).

3.3 Memory contexts

PostgreSQL uses its own memory manager, which performs functions similar tomalloc andfree that
you are familiar with. However, instead of allocating memory from a single global heap, the PostgreSQL
allocators work off an abstraction calledmemory contextsfor convenience and performance. Essentially,
each allocated chunk of memory belongs to a particular context and all chunks can be deallocatedin one
shot. Imagine that at some point you allocate a relatively complex data structure (e.g., a linked list, or a tree,
or a hashtable!). Normally, in order to free the memory it uses, you would have to traverse the structure
and free each node individually. This traversal is both tedious to write and expensive to perform. Instead,
PostgreSQL allows you to do the following:

treeCxt = AllocSetContextCreate(...)
while (...) {

newNode = MemoryContextAlloc(treeCxt, sizeof(TreeNode))
...

}
MemoryContextDelete(treeCxt)

3

For convenience, PostgreSQL provides the functionspalloc andpfree which operate on a default memory
context (called thecurrent contextand pointed to by theCurrentContext global variable). Thus

ptr = MemoryContextAlloc(cxt, n)

is exactly equivalent to

oldCxt = MemoryContextSwitchTo(cxt)
ptr = palloc(n)
MemoryContextSwitchTo(oldCxt)

If you are performing several allocations, this can save you some typing. You can change the current context
usingMemoryContextSwitchTo(cxt). It is your code’s responsibility to properly manage (i.e., set and
restore) the current memory context. Be careful to avoid insidious bugs !

Finally, memory contexts are organized in a hierarchy. When creating a new context withAllocSet-
ContextCreate(), the first argument is the parent context. Deleting a context also deletes all its child
contexts at the same time.

The filepostgresql-7.2.2/src/backend/util/mmgr/README contains a detailed description of the
PostgreSQL memory manager, should you need it, although the above information is more than sufficient
for what you need to do in this assignment.

3.4 Tuple table slots

Examine the PostgreSQL implementation of theiterator model. A good place to start in the executor com-
ponent is the moduleexecProcnode.c that contains dispatch functions that call the appropriate operator-
specific methods. Observe that the functionExecProcNode and indeed, all the functions it calls such
as ExecAgg and ExecSort return pointers toTupleTableSlot structures. This is defined in the file
src/include/executor/tuptable.h. PostgreSQL tuples (of typeHeapTuple) are exchanged viaTuple-
TableSlot objects. EachTupleTableSlot contains aval field which points to aHeapTuple.

Heap filesare just an unordered (hence the name) collection of tuples. The heap manager is built on top
of the buffer manager, which you saw in the first assignment. The buffer manager knows only of pages; it is
the heap manager’s job to keep track individual tuples within pages. Tuples that are read from disk reside in
the very buffer slots you saw in the previous assignment!

However, during query execution, tuples are passed around executor nodes and copies are made in mem-
ory locations outside the buffer pool. It is necessary to keep a slew of “bookkeeping metadata” (such as if
the tuple is in a buffer slot, is the page pinned in the buffer, and so on). Thetuple tableis a structure that
allows the executor to store all this information in a central place, instead of explicitly passing it around all
the time, wasting time and space. A tuple tableslot is an entry in the tuple table that points to the actual
tuple data (through theval field), as well as all the necessary “bookkeeping metadata”.

Thus, the tuple table makes your life much easier! For this assignment, you should not have to deal with
this metadata. All you need to do is remember to pass tuple table slots around and access the actual tuples
via theval field of a slot.

4 Implement hybrid hashing

Here is a a brief sketch of the algorithm you have to implement:

4

// Initial pass
while (tuple← get next()) 6= NULL do

(hashKey, exists)← lookup hashtable(tuple)
if existsthen

update trans-value in hash
else ifhashtablesize≤ HashMemthen

initialize new trans-value
insert (group-key, trans-value) in hash

else
if necessary, initialize temporary files
partition← partition hashindex(hashKey)
write tuple(tempFile[partition], tuple)

endif
endwhile
for each (group-key, trans-value)in hashdo

append finalize(trans-value) to output stream
endfor

// Processing of spilled tuples
for eachpartition ido

re-initialize hash table
while (tuple← readtuple(tempFile[i])do
(hashKey, exists)← lookup hashtable(tuple)
if existsthen

update trans-value in hash
else

initialize new transition value
insert (group-key, trans-value) in hash

endif
endwhile
for each (group-key, trans-value)in hashdo

append finalize(trans-value) to output stream
endfor

endfor

Much of this is already in the implementation we have given you—you have to modify the code to implement
spilling in the first pass and then processes each partition (which isn’t essentially different from the way
tuples are processed during the first pass, except for the fact that they are fetched from disk rather than
produced by the outer plan). In the following sections we describe various aspects that you should pay
attention to while doing the actual implementation.

4.1 Temporary files

To spill your tuples to disk, you will need to be able to open, read, write and close files. Rather than
using the standard library, werequire you to use functions within PostgreSQL. Specifically, theBufFile
interfaces that are declared inpostgresql-7.2.2/src/include/storage/buffile.h. These functions
are attractive because you don’t have to deal with file names and you get buffered I/O for free.

Note that you will not be able to generate performance numbers if you do not use the
BufFile interfaces. Worse still, our autograder will not give you any credit either.

The interface is almost identical to the standard C library functions (i.e.,fopen() andtmpfile(),
fclose(), fseek()). Instead ofFILE * you will work with BufFile * pointers, but everything else
remains essentially the same.The only thing you have to be careful about is the memory context in which
BufFile structures are allocated.You should only need to use the following functions:

• BufFileCreateTemp(void): This is the equivalent oftmpfile(void) of the C standard library. It
will return a pointer to the associated file structure, which is allocatedin the current memory context.

• BufFileSeek(BufFile *file, int fileno, long offset, int whence): This is the equiv-
alent offseek(). The only extra argument isfileno. The operating system limits the maximum
size of a single file (typically to the size oflong, i.e. 2 Gbytes for 32-bit architectures). How-
ever, a database file can grow larger than the maximum physical file size, so PostgreSQL implements
BufFiles as a collection of physical disk files, so file offsets are specified by afileno, offset pair
(whereoffset refers within thefileno-th physical file).

In any case, you will only have to seek to the beginning of the file, which you can do withBufFileSeek(fp,
0, 0L, SEEK SET).

5

• BufFileClose(BufFile *file): The equivalent offclose(), will close the file and de-allocate
the space occupied by thefile structure.

Also, for completeness, here are two more file-related functions:

• BufFileRead(BufFile *file, void *ptr, size t size): This is the equivalent offread()
and will writesize number of bytes fromptr into file.

• BufFileWrite(BufFile *file, void *ptr, size t size): This is the equivalent offread()
and will readsize bytes intoptr. As with the C standard library, you have to make sure you wont
overrun the space pointed to byptr.

These last two functions are used by functions which we already provide for you:

• hash write tuple(): Write aHeapTuple into a file.

• hash read tuple(): Read a tuple from a file into aTupleTableSlot.

These are all you should need to use (see also subsection 4.2).

4.2 Batch tuple slot

In order to make things easier for you, we have allocated a tuple table slot into which you can read tuples
from the temporary files. This slot is pointed to by thebatchSlot field of the aggregate node’s state
structure. All you need to do is make sure to pass this slot tohash read tuple(). For convenience, this
function returns a pointer to this slot, after it has properly read the tuple from the temporary file.

4.3 Allocating a per-run context

You will need to be able to efficiently deallocate all memory occupied by the hash table after you are done
processing one batch. As explained in subsection 3.3, this is one of the primary reasons for using memory
contexts. The hash table may grow fairly large and traversing each individual bucket to deallocate the space
it occupies is tedious and time consuming. Therefore, you should create a separate memory context for the
hash table (which is thehashcxt argument toBuildTupleHashTable()).

You may want to look at howhashCxt is used innodeHash.c andnodeHashjoin.c for exactly the
same purpose. Be careful not to allocate anything that should persist across runs in this context (such as the
BufFile structures for your temporary files)!

4.4 Setting the initial hash table size

The fourth argument (nentries) to BuildTupleHashTable() is the size of the array of pointers to bucket
chains. This should be proportional to the number of entries that the hash table is expected to have; a good
rule of the thumb is to set that to twice the expected hash size in order to avoid excessively long bucket
chains.

In build hash table(), this parameter is set to the product ofHASH FUDGE and the expected number of
unique group-by values. The latter is estimated by the planner simply as 10% of the outer plan’splan rows.
You should define the former as somereasonablevalue. It is entirely possible that, with this initial size, the
hash table will exceedHashMem Kbytes immediately after its creation. Thus, you need to ensure that the
initial size of the hashtable is such that it will fit in the allowed space. You can do this by choosing to reduce
the estimate of unique group-by values so that the initial hash table fits inHashMem Kbytes.

6

4.5 Estimating number of partitions

When the hash table grows large enough so you have to begin spilling, you need to decide upon the number
of partitions. One way to come up with an estimate for this number is to assume that the distribution of
unique values will not change. In this case, you can set the number of partitions to the number of tuples
you expect to see divided by the number of tuples you’ve seen up to the point you begin spilling. You can
keep track of the latter number easily. You are only missing the overall number of tuples you expect to
see. Anestimateof this is stored in theplan rows field of each plan node. You can examine this field in
the outer plan of your aggregate node implementation. Thus, assume that in yourexec hashed agg(Agg
*aggNode) implementation, you keep a counter of tuples seen so far, which you increment each time you
fetch a new tuple from the subplan:

Plan *outerPlan = outerPlan(aggNode);
int tuples_so_far = 0;
[...]
outerslot = ExecProcNode(outerPlan, (Plan *) aggNode);
++tuples_so_far;

Then, when you need to decide on the number of partitions, you can use something like:

int numBatches = FUDGE_FACTOR * (outerPlan->plan_rows / tuples_so_far);

As with HASH FUDGE, choose a reasonable value forFUDGE FACTOR. Remember, however, thatouter-
Plan->planRows is only anestimate. If the input stream of the aggregate operator is a table on disk, then
the estimate will be the correct number of tuples, (provided the ANALYZE utility has been run, as explained
in subsection 4.6). In general, the input stream from the subplan may be the result of several other operators
(such as a join), in which case it is difficult (if not impossible) to know the number of tuples that it will
produce.

Therefore, you should check that the number of partitions you estimate in this way actually makes sense
(e.g., if it is less than 1, you probably want to set it to a reasonable number!). Conversely, if the estimate is
too large, you probably want to reduce it to something reasonable (you don’t want to start creating thousands
of temporary files!).

4.6 Maintaining statistics

For the optimizer to produce “good quality” plans, it needs to have estimates of the data in the various tables
in the system. This would include the number of rows in a table, the most common values for each column
etc. In PostgreSQL theANALYZE command is used to update these estimates at administrator controlled
intervals. You can useANALYZE to update table statistics so that the estimates inplan rows are not horribly
off. You can do this from withinpsql:

test=# ANALYZE table;
ANALYZE

The test scripts we have provided should do this for you, but you may want to do this yourself if necessary
(i.e., if you create or modify a table for testing purposes) while debugging your code.

4.7 Query plans andexplain

In the process of debugging your implementation, you may want to see how the query planner has chosen to
use your operator and where it fits into the overall query plan. To this end, you can useexplain in psql. If
you prefix a query withexplain, the DBMS will complete all the stages up to and including query planning.
However, instead of executing the plan and returning the results, it will stop at that point and print out the
plan. For example, if you have not enabled the hashed aggregate mode:

7

test=# EXPLAIN SELECT a, AVG(b) FROM table GROUP BY a;
NOTICE: QUERY PLAN:

Sorted Aggregate (cost=1.14..1.17 rows=1 width=8)
-> Group (cost=1.14..1.15 rows=6 width=8)

-> Sort (cost=1.14..1.14 rows=6 width=8)
-> Seq Scan on table (cost=0.00..1.06 rows=6 width=8)

EXPLAIN
test=# EXPLAIN SELECT a, AVG(b) FROM table GROUP BY a ORDER BY a;
NOTICE: QUERY PLAN:

Sorted Aggregate (cost=1.14..1.17 rows=1 width=8)
-> Group (cost=1.14..1.15 rows=6 width=8)

-> Sort (cost=1.14..1.14 rows=6 width=8)
-> Seq Scan on table (cost=0.00..1.06 rows=6 width=8)

EXPLAIN

At this stage, you can ignore the information contained in the parentheses. This tells you that your query
would be executed by scanning the entiretable relation (operatorSeq Scan), sorting it (operatorSort)
then feeding the sorted result into theGroup operator (which adds NULL delimeters between groups) and
finally executing the aggregate operator in sorted mode.

When you enable hashed aggregates, you should see something like:

test=# EXPLAIN SELECT a, AVG(b) FROM table GROUP BY a;
NOTICE: QUERY PLAN:

Hashed Aggregate (cost=1.14..1.17 rows=1 width=8)
-> Seq Scan on table (cost=0.00..1.06 rows=6 width=8)

EXPLAIN
test=# EXPLAIN SELECT a, AVG(b) FROM table GROUP BY a ORDER BY a;
NOTICE: QUERY PLAN:

Sort (cost=1.18..1.18 rows=1 width=8)
-> Hashed Aggregate (cost=1.14..1.17 rows=1 width=8)

-> Seq Scan on table (cost=0.00..1.06 rows=6 width=8)

EXPLAIN

Note that in this case, since the hashed aggregate produces its results in a random order, its output needs to
be explicitly sorted (Sort operator at the top) when you add anORDER BY clause.

4.8 Where to make changes

You should not change anything apart from the following files.

1. src/backend/executor/nodeAgg.c

2. src/backend/executor/aggHash.c

3. src/include/executor/aggHash.h

8

4. src/include/nodes/execnodes.h

Thehw2/execirectory contains scripts that can aid you in producing smaller test cases for debugging.
You are encouraged to look atexec/init.sh – see howinitexp.sh callsexec/init.sh for more details.

5 Performance study: Sorting vs Hashing

In this part of the project, you will conduct a performance study with a single query and different data sets
to understand the relative costs of the implementations of the two strategies (sort and hash). We will provide
you with the data sets and the query. You must run the experiments using our scripts and interpret the results
for us. The query is:

SELECT col1, sum(col2), avg(col3), max(col4), min(col5)
FROM <table>
GROUP BY

The two datasets are represented by tablesR andS that each have 1 million records. The number of
distinct values ofcol1 are however very different. Use the following procedure after changing your directory
to hw2/execnd enter your results in the tables below: I/Os in Figure 1 and elapsed time in seconds in
Figure 2. You will want to use at least the following scripts:

1. Initialize setup:./initexp.sh <DATADIR> <DBNAME>

2. Run experiments:./runall.sh <DATADIR> <LOGBASE> <DBNAME>

3. Produce results:./results.sh <LOGBASE>

Please remember to turn offDEBUG log messages when running your experiments to measure time. Writing
too many messages to the logfile may cause a serious performance hit!

32KB 128KB 1024KB
Strategy R S R S R S

Sort
Hash
Hash Spill

Figure 1: Experimental Results: I/Os

32KB 128KB 1024KB
Strategy R S R S R S

Sort
Hash
Hash Spill

Figure 2: Experimental Results: Total Time (seconds)

In addition, answer the following questions:

1. Explain the behavior of your performance experiments

2. Under what circumstance would you expect sorting to be a better optionoverall.

9

6 Implement recursive partitioning (30% Bonus)

The version of spilling you have to implement has one drawback. During the initial pass over the input tuple
stream, the hash table is guaranteed not to exceed HashThreshold. However, when subsequently loading the
hash table with each partition, it is conceivable that the hash table may exceed HashThreshold. If the hash
function has done a good job, then distinct valuesof the group-by keyshould be evenly distributed among
runs (regardlessof how many times each of these values occurs in the tuple stream—why?). Therefore,
HashThreshold should not be exceeded by much; you can think of it as asoft thresholdthat will be exceeded
with low probability. However unlikely, the possibility remains that the table will grow excessively large.

One simple approach to enforce a hard threshold on the hash table size is the following: First, fill the
hashtable with up to HashThreshold unique values and spill the tuples that didn’t make it into a single disk
file. Then, repeat this process iteratively, treating the tuples in the disk file as the original input and creating
another temporary file for those that again didn’t make it. When all tuples have made it, we’re done.

The main problem with this approach is inefficiency: If a tuple makes it during iterationi + 1, it will
have been written to diskexactly itimes. Reading and writing tuples to disk multiple times is inefficient. As
explained, we expect the threshold to be exceeded infrequently and we want to incur the cost of extra writes
only when absolutely necessary.

Another approach would be to store hash buckets instead of tuples on disk. However, with this approach,
you again have to access the disk to update the transition value foreach tuplethat does not fit in memory
during the original pass through the data.

This suggest a recursive partitioning approach (detailes in [2], section 2.2, pp 92-93). Tuples are split
into partitions. When loading a partition, it is recursively splitonly if the hash table size is exceeded. Since
small variations in the distribution of unique group-by values is expected, it is a good idea to use a hard
threshold that is slightly larger than HashThreshold. This should avoid unnecessary re-partitioning that will
lead to sub-partitions with very few distinct group-by key values.

In order to implement this algorithm, you will have to manage a nested structure (and the associated
memory contexts for each nesting level) instead of a plain array of partitions.

7 Submitting your solution

You should submit a tarball with the filenamehw2-solution.tar.gz containing the following:

• A subdirectorybackend/executor which at the very least should contain the filesaggHash.c and
nodeHash.c (even if you haven’t modified all of them).

• A subdirectoryinclude/executor which at the very least should containt the filesaggHash.h and
nodeAgg.h (again, even if you do not modify all of them).

• A subdirectoryinclude/nodes which at the very least should containt the fileexecnodes.h.

• A textfile GROUP as in the first assignment, with group member Andrew IDs and your grading of each
group partner. Also, if you implement recursive paritioning, please make sure to state it clearly. At
your option, you may alsobrieflycomment on what works and what doesn’t.

• A textfile PERFORMANCE with your results from section 5, i.e., the output fromresults.sh, along
with your answers to the questions.

• Optionally a context diffrecursive.diff of your recursive partitioning implementation. This is
only if you need to modify files outside the directories allowed by the above scheme (see below).
Follow the instructions insrc/tools/make diff/README on how to create the context diff from
our distribution.

Thus, at the very least, your tarball contents should look something like:

10

$ tar -ztvf hw2-solution.tar.gz
GROUP
PERFORMANCE
backend/executor/aggHash.c
backend/executor/nodeAgg.c
include/executor/aggHash.h
include/executor/nodeAgg.h
include/nodes/execnodes.h

You can create this tarfile by going intopostgresql-7.2.2/src, placing your textfiles in there and run-
ning mkhandin.sh (examine it to see exactly what it does—this is only for your convenience andyouwill
need to make sure you include all the files). However, we allow you to modify and/or create more than
these files, if you wish to (thismaybe useful if you decide to do the bonus section). The contents of the
backend/executor subdirectory will be copied intopostgresql-7.2.2/src/backend/executor and
the contents of yourinclude/{executor,nodes} subdirectories will be copied intopostgresql-7.2.2/
src/include/{executor,nodes} of a clean source tree during our testing. Thus, these are the only two
places in the PostgreSQL source tree that you are allowed to make modifications and/or additions.

Make sure that you include all modified or added files (including Makefiles, if you have added source
files) that are necessary for us to properly compile your solution! We will not accept solutions that do not
compile properly!

If you submit on time, then the person submitting (onlyonegroup member has to submit) should place
the tarball in the AFS directory/afs/cs.cmu.edu/academic/class/15415/submit/AndrewID /hw2.
Your write permissions will be revoked when the deadline has passed. If you need to use slip days, you
should email your tarball to the TAs instead.

8 Resources

In addition to lecture notes, you might find some of the following material useful:

1. Textbook [4], Section 14.6, pp 469–471

2. Survey paper [2], Sections 2,4.2,4.3,4.4.

3. Unary Hashing paper [1]

4. Hybrid Cache paper [3]

If you are in the cmu.edu domain you can download these papers from the ACM Digital Library
website:http://www.acm.org/dl. Contact us if you need help getting these materials.

References

[1] Kjell Bratbergsengen. Hashing methods and relational algebra operations. InProceedings of 10th
International Conference on Very Large Data Bases, pages 323–333, August 1984.

[2] Goetz Graefe. Query evaluation techniques for large databases.ACM Computing Surveys, 25(2):73–170,
June 1993.

[3] Joseph M. Hellerstein and Jeffrey F. Naughton. Query execution techniques for caching expensive
methods. InProceedings of ACM SIGMOD International Conference on Management of Data, pages
423–464, 1996.

[4] Raghu Ramakrishnan and Johannes Gehrke.Database Management Systems. McGraw Hill, 3rd edition,
2003.

11

http://www.acm.org/dl

	Overview: Hybrid Hashing for Grouped Aggregates
	Administrivia
	Tasks

	Compile and Test PostgreSQL
	Examine code for aggregation: Sorting and Hashing
	Enabling a specific strategy
	An Agg overview
	Memory contexts
	Tuple table slots

	Implement hybrid hashing
	Temporary files
	Batch tuple slot
	Allocating a per-run context
	Setting the initial hash table size
	Estimating number of partitions
	Maintaining statistics
	Query plans and explain
	Where to make changes

	Performance study: Sorting vs Hashing
	Implement recursive partitioning (30% Bonus)
	Submitting your solution
	Resources

