
15-415 Midterm Answer Key March 14, 2003 1

CARNEGIE MELLON UNIVERSITY

COMPUTER SCIENCE DEPARTMENT

15-415 DATABASE APPLICATIONS

MIDTERM EXAMINATION ANSWER KEY

SPRING 2003

• 80 minutes duration (1:30-2:50pm)

• Fill out your information on both this page and on the blue book cover.

• Read each question carefully and ask if there is something you do not understand.

• Start from the easy questions and work your way to the harder ones.

• All paper aids (i.e., books and notes) are allowed (no laptops/PDAs).

• Be brief and explain your answers where you are explicitly asked to do so.

• Please write clearly and be neat. Hard-to-read answers will not be considered.

• You should have 4 non-empty pages, including this one.

LAST NAME

first name

andrew login

Question Points

1. ER Diagrams /10

2. Relational Query Languages /40

3. Indexing I /4

4. Indexing II /8

5. Indexing III /8

6. External Sorting /15

7. Disks and Files /15

Total /100

15-415 Midterm Answer Key March 14, 2003 2

1. E-R diagrams [10]

Consider a video rental store, which keeps track of videos. Each video has a unique prod-
uct-id, a title and a date of production. For each video, there are one or more copies
('tapes'), each with a unique tape-id number (unique across all tapes of all videos). We also
want to keep track of the customers: for each one, we want to record a unique customer-id,
credit-card number, name, and address. For each rental, we record the customer, the tape,
the date it was rented, the date it is due, and the date it was actually returned.

(a) Give the correct E-R diagram for the above setting. You may choose to list the
attributes separately, to un-clutter your diagram. [4]

(b) List all candidate keys for every strong entity. [2]

(c) List the weak entities, if any, and their partial keys. [2]

(d) List the cardinalities for every relationship. [2]

Answer:

Strong entities:VIDEO(p-id, title, date)
CUSTOMER(c-id, name, address, credit-card-number)
TAPE(tape-id)

Relationships:HAS-COPY: 1-to-N, from VIDEO to TAPE
BORROWS: N-to-M, from CUSTOMER to TAPE;

attributes: date-out, date-due, date-returned
partial key: date-out

TAPE(tape-id)
Strong entities:VIDEO(p-id, title, date)

CUSTOMER(c-id, name, address, credit-card-number)
TAPE(tape-id)

Also acceptable:to turn BORROWS into a weak entity:
RENTAL(date-out, date-due, date-returned)

depending on either CUSTOMER or TAPE (or both)
Then, there should be 1-to-N relationships

from CUSTOMER to RENTAL and from TAPE to RENTAL.
Also acceptable: to group CUSTOMER-BORROWS-TAPE with aggregation.

2. Relational Query Languages [40]

Consider the following relational schema, that keeps track of customers, orders, products
and preferences:

CUSTOMER (cid, cname, address)
PRODUCT (pid, pname, unit_price)
ORDER (cid, pid, quantity, date)
DESIRES (cid, pid)

15-415 Midterm Answer Key March 14, 2003 3

Each customer has a unique cid; each product has a unique pid; a customer may order the
same product multiple times. DESIRES shows which customer desires what products
(either he/she has ordered them, or not).

Express the following queries, in all of the three query languages:

• Relational Algebra (RA)

• Relational Tuple Calculus (RTC)

• SQL

The queries are:

(a) Find the pid's of the products that cost 10 or more dollars. [2,2,1]

RA: Πpid (σunit-price =10(product))
RTC: {P|∃ Q (Q∈ Product ∧ Q.pid = P.pid ∧ Q.unit_price ≥10)}
SQL: select pid

from products
where unit-price ≥ 10

(b) Find the names of the products that the customer with cid='C123' has ordered. [2,2,1]

RA: Πpname (σe-id = ‘C123’ (PRODUCT ωϖ ORDER))
RTC:{X | ∃ P(P∈ PRODUCT ∧ P.pname=X.pname ∧

∃ O (O∈ ORDER ∧ O.cid=’C123’∧ O.pid = P.pid))}
SQL: select pname

from PRODUCT, ORDER
where PRODUCT.pid = ORDER.pid and ORDER.cid =’C123’

(c) Find the pid's of products that are more expensive than the product with pid='P001'.
[5,5,5]

RA: ΠPRODUCT.pid [ρP1(σpid=’P001’(PRODUCT)) ωϖ θ PRODUCT]
where θ = P1.unit-price < PRODUCT.unit-price

RTC: {P|∃ P1(P1 ∈ PRODUCT ∧ P.pid = P1.pid ∧ ∃ P2
 (P2 ∈ PRODUCT ∧ P1.unit-price > P2.unit-price ∧ P2.pid= ‘P001’))}
SQL: select P1.pid

from PRODUCT P1, PRODUCT P2
where P2.pid =‘P0-01’ and P1.unit-price . P2.unit-price

(d) List all the cid’s for customers that have already ordered everything they desire. [5,5,5]

RA: Πcid (DESIRES)- Πcid (DESIRES – Πcid,pid (ORDER))
RTC: unsafe, but acceptable:

{D|∀ D1 (D1 ∈ DESIRES ∧ D1.cid = D.cid) =>
∃ O (O∈ ORDER ∧ O.cid = D1.cid ∧ O.pid = D1.pid)}
safe:

{C|∃ C1 (C1 ∈ CUSTOMER ∧ C1.cid –c.cid ∧
∀ D (D∈ DESIRES ∧ D.cid= C1.cid) =>
∃ O (O ∈ ORDER ∧ O.cid = D.cid ∧ O.pid = C1.pid))}

15-415 Midterm Answer Key March 14, 2003 4

SQL: (select cid
From DESIRES)
Except

(select cid
from ((select cid, pid
from DESIRES)
except

(select cid,pid
from ORDER)))

or,
select Customer.cid
from customer
where not exists

(select DESIRES.cid
from DESIRES
where DESIRES.cid = CUSTOMER.cid and DESIRES.pid NOT IN

(select ORDER.pid
from ORDER
where ORDER.cid = CUSTOMER.cid))

3. Indexing I [4]

For each of the following statements, state whether it is true or false.

___F___B+-trees are always faster than sequential scanning on range queries. [1]

___T___A hash-based index can answer range queries efficiently (e.g., queries with
range predicates, e.g., “100 ≤ ssn ≤ 200”). [1]

___T___A hash-based index can answer exact-match queries efficiently (queries with
exact-match predicates, e.g, “ssn = 123”). [1]

__T/F__For exact-match queries, a hash-based index is guaranteed to be faster than a

B+-tree index. [1]

This last one is tricky, because it depends on the implementation of the hash
index. The statement is True if the implementation is very good (a binary
search on the corted bucket contents), otherwise it is false.

4. Indexing II [8]

Consider a clustering B+-tree index on the primary key ssn of table EMP(ssn, ...). The
table spans D disk pages. The index uses the Alternative 1 for data entries (actual data
records on leaves). Let h be the height of the tree.

(a) What is the minimum number of disk accesses required for an exact-match search
query (eg., ssn = 123)? [1]
h+1. also acceptable: h, for unsuccessful search.

15-415 Midterm Answer Key March 14, 2003 5

(b) What is the maximum? [1]
h+1.

(c) What is the minimum number of disk accesses (reads + writes) for inserting a new
record? [1]
h+1 reads plus1 write.

(d) What is the maximum? [3]
3*(h+1)+1: the worst case is a propagated split that creates a new root;

then we have h+1 to find the place; 2 writes on the file; 2*h writes for all lev-
els of the tree; 1 more write for the new root. Total 3*h+4 disk accesses.

(e) What is the minimum number of disk accesses for printing all records in key order? [1]
h+D

(f) What is the maximum? [1]
h+D

5. Indexing III [8]

Consider a B+-tree of order m=5 (i.e., at most 4 keys per non-root node). Consider the

densest possible B+-tree that can hold the keys 1, 2, ..., 15.

(a) (Yes/No) Is it possible for this tree to have 4 nodes? [2]
No.

(b) Give a drawing of it. [6]
Leaves: (1,2,3,4), (6,7,8,9), (11,12), (14,15); root (5,10,13). There are

many more correct solutions.

6. External Sorting [15]

Consider a file with 20,000 pages, and you have three available pages in memory to use as
sorting buffers. Answer the following questions, assuming you use the most general sort-
ing algorithm to sort this file. Your answers should contain only numbers (and, for com-
plex calculations, arithmetic operators) but no variables (e.g., log17(200*635) is an
acceptable answer, but N*300 is not).

Clarification given in class:

The “most general sorting algorithm” is the algorithm that, in Pass 0, uses all
the available buffers to create the fewest, longest possible runs using quick-
sort.

(a) How many runs will you produce during the first pass (Pass 0)? [2]

In the first pass (Pass 0) �N/B� runs are produced, where N is the number of
file pages and B is the number of available buffer pages:

�20000/3�=6667 sorted runs.

15-415 Midterm Answer Key March 14, 2003 6

(b) How many passes will it take to sort the file completely? [3]

The number of passes required to sort the file completely, including the initial
sorting pass, is �logB-1N1�+1:, where N1=�N/B� is the number of runs pro-
duced by Pass 0:

�log26667�+1 = 14 passes.

(c) What is the total I/O cost of sorting the file? [4]

Since each file is read and written once per pass, the total number of page I/
O operations for sorting the file is 2*N*#of passes:

2*20000*14 = 560000 page I/Os.

(d) How many buffer pages do you need to sort the file completely in just two passes? [6]

In pass 0, �N/B� runs are produced; in pass 1, we must be able to merge this
many runs; i.e., B-1 ≥ �N/B� . This implies that B must at least be large
enough to satisfy B*(B-1) ≥ N; this can be used to guess B, and the guess
must be validated by checking the first inequality. Thus:

With 20000 pages in the file, B=142 satisfies both inequalities, B=141 does
not, so we need 142 buffer pages.

7. Disks and Files [15]

Modern disk drives store more sectors on the outer tracks than on the inner tracks. Since
the rotation speed is constant, the sequential data transfer rate is also higher on the outer
tracks. The seek time and rotational delay are unchanged. Given this information, which
are good strategies for placing files with the following kinds of access patterns? For
instance, should we place the file on the inner tracks, on the outer tracks, on the middle
tracks, or it does not matter? Explain your answer.

(a) Sequential scans of a large file (e.g., selection from a relation with no index). [5]
Place the file in the outer tracks. Sequential speed is most important, and

outer tracks maximize it.

(b) Random accesses to a large file via an index (e.g., selection from a relation via an
index). Here, you must choose a strategy to store both the index and the file. [5]
Place the file and index on the inner tracks. The DBMS will alternately

access pages of the index and of the file, and thus the two should reside in
close proximity to minimize seek times. By placing the file and the index on
the inner tracks we also save valuable space on the faster(outer) tracks for
other files that are accessed sequentially.

(c) Sequential scans of a small file. [5]
Place small files in the inner half of the disk. A scan of a small file is effec-

tively random I/O because the cost is dominated by the cost of the initial seek
to the beginning of the file.

