
Carnegie Mellon University
Department of Computer Science
15-415 - Database Applications

Spring 2000

FINAL EXAMINATION

Important points:

• 3 hours duration

• All aids allowed (open books, open notes, calculators etc., except computer with
network connection)

• Graded out of 100 points. Numbers in [square brackets] indicate points.

• You should have 9 non-empty pages, including this cover

• Always highlight your final answer; unsolicited explanations will be used to give you
partial credit, if your answer is wrong.

• When done, return all booklets, plus this handout.

LAST NAME (pls print)
First Name
andrew login

1



Contents

Q1. Normal Forms [05 pts] 3

Q2. Storage - RAID [10 pts] 3

Q3. Indexing - I [07 pts] 3

Q4. Indexing -II [10 pts] 4

Q5. Query optimization - Join plans [10 pts] 4

Q6. Query optimization - selectivities [10 pts] 5

Q7. Recovery [21 pts] 5

Q8. Serializability [05 pts] 6

Q9. Locking - multiple granularity [10 pts] 7

Q10.Deadlocks [02 pts] 8

Q11.Semijoins [10 pts] 8

2



Q1. Normal Forms [05 pts]

Consider the relation R(A, B, C).

1. Is it possible that it may be in 3NF, but not BCNF?

ANSWER: Yes [2 pts]

2. If yes, give some (simple) functional dependencies, so that R is in 3NF, but not BCNF.
If not, explain, or point to a theorem in the book. [3 pts]

ANSWER: AB → C; C → A

Q2. Storage - RAID [10 pts]

Compare RAID Level-3 (bit-interleaved parity) with RAID Level-5 (block-interleaved dis-
tributed parity), with respect to ’small reads’, ’small writes’, ’large reads’ and ’large writes’.
The goal is to have as high throughput as possible, that is, maximum number of transactions
completed per second). For each setting,

1. choose among ’level-3 wins’, ’level-5 wins’, and ’tie’ and mark your responses on the
table of Figure Q2. Negative points for wrong answers. [4 pts]

2. justify your answers briefly [6 pts]

winner Level-3 Level-5 Tie
Setting
small reads
large reads
small writes
large writes

Figure 1: RAID - mark your response with ’X’

ANSWER: sr: ’5’; lr: tie; sw: ’5’; lw: tie. For small reads, level-3 will engage all the disks
for a single transaction, blocking the other transactions, while level-5 won’t. Similarly for
small writes; moreover, the single parity disk of level-3 will be the bottleneck, eliminating all
parallelism among the writes. For large reads and writes, each transaction will block all the
disks, for both RAID levels.

Q3. Indexing - I [07 pts]

Consider the relation EMP (ssn, name, salary), with the following specifications:

• it has ssn as the primary key,

3



• it has n tuples, each 50 bytes long,

• there are many, exact match queries on the ssn only

• there are rare insertions and deletions.

Assume a page (=block) size of 8Kb, and consider the indexing alternatives:

• (a) no index

• (b) B-tree clustering index on ssn

• (c) B-tree non-clustering index on ssn

• (d) a hashed index on ssn

If you were the DBA, which indexing alternative you would choose

1. if n=100 tuples [1 pts] Justify your answer briefly [1 pts]

ANSWER: ’no index’, because the whole table fits in a block. 1 disk access and sequen-
tial scan will be very fast anyway

2. if n=1,000,000 tuples [2 pts] . Jystify briefly [3 pts] .

ANSWER: ’hashed index’, because it is the fastest, and none of the disadvantages of
hashing will create a problem: there is no growth/shrinkage of the table; there is no
need for maintaining the key ordering, since we only have exact match queries

Q4. Indexing -II [10 pts]

Consider B-trees of order 5, that is, there are at most 5 pointers per node. What is the most
sparse such B-tree we can ever have, that stores the integers 1, 2, . . . , 17.
ANSWER: 3 levels: ’9’ is the only key at the root, the left parent has keys ’3’ and ’6’, the
right parent has keys ’12’ and ’15’, and the leaves have each two keys: (1,2), (4,5) ... (16,17)

Q5. Query optimization - Join plans [10 pts]

Consider the join of relation ’R’ with relation ’S’, where ’R’ spans br = 1, 000 pages and
’S’ spans bs = 100 pages. Let k be the number of buffers (=pages) that we have in main
memory, for the blocked nested loop method. Also assume that we do not scan relations
backwards. Recall that the ’outer’ relation is the one in the outer loop of the nested loop
method.

1. for k=2 buffers,

• which relation should be the outer relation? [1 pts]

ANSWER: the one with the fewest pages: ’S’

4



• how many disk accesses we shall need then? [3 pts]

ANSWER: bs + bs ∗ br = 100 + 100,000 = 100,100

2. for k=200 buffers,

• which relation should be the outer? [1 pts]

ANSWER: again, ’S’

• how many buffers should we give it? [2 pts]

ANSWER: bs=100 buffers - the maximum possible to keep it all in main memory

• how many disk accesses we shall need then? [3 pts]

ANSWER: bs + br = 1,100 - just a single scan of each table

Q6. Query optimization - selectivities [10 pts]

Consider the relation LEG(source, destination), recording non-stop flight-legs from one air-
port (’source’) to another (’destination’). Assume that it contains n = 1,000 tuples. Consider
the query to find all airports within two hops from Pittsburgh (keep the duplicates, for sim-
plicity):

select L2.destination

from LEG as L1, LEG as L2

where L1.destination = L2.source and

L1.source = ’Pittsburgh’

Estimate the number of output tuples for the above query if we have 100 distinct airports,
that is V (LEG, source) = V (LEG, destination) = 100. Hint: First, estimate the number of
tuples in the self-join
ANSWER: 100 tuples. We have nr ∗nr / V(LEG, source)= 1000 * 1000/100 tuples for the
join, that is, all the pairs of airports that are within 2 hops; and then we need to divide by
V(LEG, source)=100 for the ones originating from ’pittsburgh’

Q7. Recovery [21 pts]

Figure 2 shows three logs of three different DBMSs, each after a crash. The logs respectively
operate under (a) the deferred update scheme, (b) the incremental update scheme with
checkpoints, and (c) the incremental updates scheme, without checkpoints,

For the incremental updates, recall that the format of each log record is

(transaction-id, item-id, old-value, new-value)

For each of the three cases, answer the following questions - there will be negative points
for wrong answers:

5



(T1 start) (T50 start) (T51 start)
(T2 start) (T50, K, 10, 20) (T51, X, 10, 20)
(T1, A, 50) (T60 start) (T61 start)
(T2, B, 100) (T50 commit) (T51 commit)
(T3 start) (T60, L, 100, 200) (T61, Y, 100, 200)
(T2 commit) (T70 start) (T71 start)
(T3, C, 500) (T70, M, 1000, 2000) (T71, W, 1000, 2000)
(T3, D, 600) (checkpoint {T60, T70})
(T4 start) (T70 commit) (T71 commit)
(T4, E, 900) (T80 start) (T81 start)
(T4 commit) (T80, N, 750, 850) (T81, Z, 750, 850)
–crash—– (checkpoint {T80, T60})

(T80 commit) (T81 commit)
–crash——- –crash——-

(a) def. upd (b) incr. upd (c) incr. - no ckp

Figure 2: Write-ahead logs after a crash, with (a) deferred updates (b) incremental updates
(c) incremental updates without checkpoints

1. just after the crash, and before we start the recovery algorithm, what are the values
of the corresponding data items on the disk (A, B, . . ., K, L, M, . . ., X, Y, . . . )? The
acceptable answers are: ’its old value’, ’its new value’, and ’can-not-tell’ [3×3 pts]

ANSWER: (a) def. updates: A,C,D: old; B,E: can-not-tell. (b) incr. upd.: all: new;
(c) incr-no-ckp: all: can-not-tell:w

2. List the transactions that have to be undone (if any) [3×1 pts]

ANSWER: (a): undo nothing; (b) undo T60; (c) undo T61

3. List the transactions that have to be redone (if any) [3×1 pts]

ANSWER: (a): redo T2, T4; (b) redo T80; (c) redo T51, T71, T81

4. List the values of all the data items (A, B, ...), after the recovery algorithm is over.
Again, the answers should be ’old’, ’new’, ’can-not-tell’ [3×2 pts]

ANSWER: (a) def. upd: A,C,D: old; B,E: new; (b) inc. upd: K,M,N: new; L:old; (c)
inc. upd w/ckp: X,W,Z: new; Y:old.

Q8. Serializability [05 pts]

Consider the schedule of Figure 3.

1. Is it serializable? If yes, give an equivalent serial execution; if not, explain briefly. [1
pts]

6



T1 T2 T3
t9 ... ... ...

t10 read(A)
t11 write(A)
t12 ... ... ...
...

t19 ... ... ...
t20 read(A)
t21 write(A)
t22 ... ... ...
...

t29 ... ... ...
t30 read(B)
t31 write(B)
t32 ... ... ...
...

t39 ... ... ...
t40 read(B)
t41 write(B)
t42 ... ... ...

Figure 3: An interleaved schedule

ANSWER: Yes: (T3, T1, T2); also correct (T1, T3, T2)

2. Is it at all possible that the above schedule is produced by the 2PL protocol? [1 pts]

ANSWER: yes

3. If it is not possible to be produced by 2PL, explain briefly; if yes, show where the
’lock()’ and ’unlock()’ requests would be in time (you may mark on the figure your
final answers, cleanly). [3 pts]

ANSWER: the lock requests of T1 and T3 are obvious; for T2, we have: t19-lock(A);
t39-lock(B); t42-unlock(A) unlock(B)

Q9. Locking - multiple granularity [10 pts]

Consider the multiple-granularity locking algorithm, operating on the following lock-able
items:

1. ’db’: the whole database

2. ACCOUNT: a table with attributes (account-id, customer-id, balance)

3. CUSTOMER: a table with attributes (customer-id, name, address)

7



4. a1, . . . , a1000: the 1000 records of the ACCOUNT table

5. c1, . . . , c100: the 100 records of the CUSTOMER table

Consider also the following transactions - specify all the locks that each will ask for, on
what items, and with what order. For example, a (possibly wrong) answer for T1 could be:
”T1 will first ask for an ’IS’ lock on ACCOUNT and then for X-locks on a10 and a50.

• T1: report the balance of two accounts, a10 and a50 [3 pts]

ANSWER: IS for ’db’; IS for ’ACCOUNT’; S for a10 and a50

• T2: increase all balances by 3% [4 pts]

ANSWER: IX for ’db’; X for ’ACCOUNT’

• T3: move 10 dollars from a30 to a31 [3 pts]

ANSWER: IX for ’db’; IX for ’ACCOUNT’; X for a30; X for a31

Q10. Deadlocks [02 pts]

Assume that we only have eXclusive locks, for simplicity. Consider the following transactions,
T1, T2, T3, and T4, who have issued the following lock requests:

T1: lock(A); T2: lock(B); T3: lock(C); T1: lock(B); T4 lock(B);

1. Do we have a deadlock? [1 pts]

ANSWER: No

2. Justify your answer. [1 pts]

ANSWER: there is no cycle in the wait-for graph: T1 waits for T2 because of B; T4
waits for T2 because of B.

Q11. Semijoins [10 pts]

Consider the relations R(A, B), S(B, C) and T (C, D), residing in three different sites. Sup-
pose that each attribute is 4 bytes long.

R A B S B C T C D
a1 b1 b3 c1 c1 d3
a2 b3 b5 c2 c5 d20
a3 b5 b7 c5 c3 d50

8



1. Show the result of R.< S [1 pts]

ANSWER: { (a2,b3), (a3,b5) }
2. What is the cost of the previous operation (in number of bytes transmitted)? [1 pts]

ANSWER: 3*4 = 12 bytes

3. Show the result of S.< T [1 pts]

ANSWER: { (b3,c1), (b7, c5) }
4. What is the cost of the previous operation (in number of bytes transmitted)? [1 pts]

ANSWER: 3*4 = 12 bytes

5. Show the result of R.< (S.< T ) [3 pts]

ANSWER: { (a2,b3) }
6. What is the total cost of these operation (in number of bytes transmitted)? [3 pts]

ANSWER: 12+8=20 bytes

This is the end of the exam questions. Good luck!

9


