
1

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Query Processing on GPUs

Graphics Processor Overview
Mapping Computation to GPUs
Database and data mining 
applications

Database queries
Quantile and frequency queries
External memory sorting
Scientific computations

Summary

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

CPU vs. GPU

CPU
(3 GHz)

System Memory
(2 GB)

AGP Memory
(512 MB)

PCI-E Bus
(4 GB/s)

Video Memory
(512 MB)

GPU (690 MHz)

Video Memory
(512 MB)

GPU (690 MHz)

2 x 1 MB Cache

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Query Processing on CPUs

Slow random memory accesses
Small CPU caches (< 2MB)
Random memory accesses slower than even sequential disk 
accesses

High memory latency
Huge memory to compute gap!

CPUs are deeply pipelined
Pentium 4 has 30 pipeline stages
Do not hide latency - high cycles per instruction (CPI)

CPU is under-utilized for data intensive 
applications



2

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Graphics Processing Units (GPUs)

Commodity processor for graphics 
applications
Massively parallel vector processors
High memory bandwidth

Low memory latency pipeline
Programmable

High growth rate
Power-efficient

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

GPU: Commodity Processor

Cell phones Laptops Consoles

PSP
Desktops

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Graphics Processing Units (GPUs)

Commodity processor for graphics 
applications
Massively parallel vector processors

10x more operations per sec than CPUs

High memory bandwidth
Low memory latency pipeline
Programmable

High growth rate
Power-efficient



3

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Parallelism on GPUs

Graphics FLOPS

GPU – 1.3 TFLOPS

CPU – 25.6 GFLOPS 

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Graphics Processing Units (GPUs)

Commodity processor for graphics 
applications
Massively parallel vector processors
High memory bandwidth

Low memory latency pipeline
Programmable
10x more memory bandwidth than CPUs

High growth rate
Power-efficient

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

vertex

setup
rasterizer

pixel

texture

image

per-pixel texture, 
fp16 blending

Graphics Pipeline

programmable vertex
processing (fp32)

programmable per-
pixel math (fp32)

polygon
polygon setup,
culling, rasterization

Z-buf, fp16 blending,
anti-alias (MRT) memory

Hides 
memory 
latency!!

Lo
w

 p
ip

el
in

e 
de

pt
h

56 GB/s



4

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

data

setup
rasterizer

data

data

data

data fetch, 
fp16 blending

NON-Graphics Pipeline 
Abstraction

programmable MIMD
processing (fp32)

programmable SIMD
processing (fp32)

lists
SIMD
“rasterization”

predicated write, fp16
blend, multiple output memory

Courtesy: 
David Kirk,
Chief Scientist, 
NVIDIA

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Graphics Processing Units (GPUs)

Commodity processor for graphics 
applications
Massively parallel vector processors
High memory bandwidth

Low memory latency pipeline
Programmable

High growth rate
Power-efficient

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Exploiting Technology Moving
Faster than Moore’s Law

CPU Growth Rate

GPU Growth Rate



5

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Graphics Processing Units (GPUs)

Commodity processor for graphics 
applications
Massively parallel vector processors
High memory bandwidth

Low memory latency pipeline
Programmable

High growth rate
Power-efficient

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

CPU vs. GPU
(Henry Moreton: NVIDIA, Aug. 2005)

101.620.00.2GFLOPS/W
0.565130Power (W)
50.8130025.6Graphics GFLOPs

GPU/CPU7800GTXPEE 840

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Outline

Graphics Processor Overview
Mapping Computation to GPUs
Database and data mining 
applications

Database queries
Quantile and frequency queries
External memory sorting
Scientific computations

Summary



6

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

The Importance of Data 
Parallelism

GPUs are designed for graphics
Highly parallel tasks

GPUs process independent vertices & 
fragments

Temporary registers are zeroed
No shared or static data
No read-modify-write buffers

Data-parallel processing
GPUs architecture is ALU-heavy

• Multiple vertex & pixel pipelines, multiple ALUs per 
pipe

Hide memory latency (with more computation)

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Arithmetic Intensity

Arithmetic intensity
ops per word transferred
Computation / bandwidth

Best to have high arithmetic intensity
Ideal GPGPU apps have

Large data sets
High parallelism
Minimal dependencies between data elements

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Data Streams & Kernels

Streams
Collection of records requiring similar 
computation

• Vertex positions, Voxels, FEM cells, etc.

Provide data parallelism

Kernels
Functions applied to each element in stream

• transforms, PDE, …

Few dependencies between stream elements
• Encourage high Arithmetic Intensity



7

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Example: Simulation Grid

Common GPGPU computation style
Textures represent computational grids = streams

Many computations map to grids
Matrix algebra
Image & Volume processing
Physically-based simulation

Non-grid streams can be 
mapped to grids

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Stream Computation

Grid Simulation algorithm
Made up of steps
Each step updates entire grid
Must complete before next step can begin

Grid is a stream, steps are kernels
Kernel applied to each stream element

Cloud 
simulation 
algorithm

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Scatter vs. Gather

Grid communication
Grid cells share information



8

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Computational Resources 
Inventory

Programmable parallel processors
Vertex & Fragment pipelines

Rasterizer
Mostly useful for interpolating addresses 
(texture coordinates) and per-vertex constants

Texture unit
Read-only memory interface

Render to texture
Write-only memory interface

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Vertex Processor

Fully programmable (SIMD / MIMD)
Processes 4-vectors (RGBA / XYZW)
Capable of scatter but not gather

Can change the location of current vertex
Cannot read info from other vertices
Can only read a small constant memory

Latest GPUs: Vertex Texture Fetch
Random access memory for vertices
≈Gather (But not from the vertex stream itself)

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Fragment Processor

Fully programmable (SIMD)
Processes 4-component vectors (RGBA / 
XYZW)
Random access memory read (textures)
Capable of gather but not scatter

RAM read (texture fetch), but no RAM write
Output address fixed to a specific pixel

Typically more useful than vertex processor
More fragment pipelines than vertex pipelines
Direct output (fragment processor is at end of pipeline)



9

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

CPU-GPU Analogies

CPU programming is familiar
GPU programming is graphics-centric

Analogies can aid understanding

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

CPU-GPU Analogies

CPU GPU

Stream / Data Array =    Texture
Memory Read          =    Texture Sample

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Kernels

Kernel / loop body / algorithm step   =   
Fragment Program

CPU GPU



10

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Feedback

Each algorithm step 
depends on the results of 
previous steps

Each time step depends on 
the results of the previous 
time step

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Feedback

.
Grid[i][j]= x;

.

.

.

Array Write =  Render to Texture

CPU GPU

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

GPU Simulation Overview

Analogies lead to implementation
Algorithm steps are fragment programs

• Computational kernels
Current state is stored in textures
Feedback via render to texture

One question: how do we invoke 
computation?



11

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Invoking Computation

Must invoke computation at each 
pixel

Just draw geometry!
Most common GPGPU invocation is a full-screen 
quad

Other Useful Analogies
Rasterization = Kernel Invocation
Texture Coordinates = Computational Domain
Vertex Coordinates = Computational Range

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Typical “Grid” Computation

Initialize “view” (so that pixels:texels::1:1)
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(0, 1, 0, 1, 0, 1);
glViewport(0, 0, outTexResX, outTexResY);

For each algorithm step:
Activate render-to-texture
Setup input textures, fragment program
Draw a full-screen quad (1x1)

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Example: N-Body 
Simulation

Brute force 
N = 8192 bodies
N2 gravity computations

64M force comps. / frame
~25 flops per force
10.5 fps 
17+ GFLOPs sustained

GeForce 7800 GTX

Nyland, Harris, Prins,
GP2 2004 poster



12

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Computing Gravitational 
Forces

Each body attracts all other bodies
N bodies, so N2 forces

Draw into an NxN buffer
Pixel (i,j) computes force between bodies i and 
j
Very simple fragment program

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Computing Gravitational 
Forces

NN--body force Texturebody force Texture

force(force(ii,,jj))

NNii

NN

00

j

ii

jj

Body Position TextureBody Position Texture

F(i,j) = gMiMj / r(i,j)2,

r(i,j) = |pos(i) - pos(j)|

Force is proportional to the inverse square Force is proportional to the inverse square 
of the distance between bodiesof the distance between bodies

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Computing Gravitational 
Forces

float4 force(float2 ij : WPOS,
uniform sampler2D pos) : COLOR0

{
// Pos texture is 2D, not 1D, so we need to
// convert body index into 2D coords for pos tex
float4 iCoords = getBodyCoords(ij);
float4 iPosMass = texture2D(pos, iCoords.xy);
float4 jPosMass = texture2D(pos, iCoords.zw);
float3 dir = iPos.xyz - jPos.xyz;
float r2 = dot(dir, dir);
dir = normalize(dir);
return dir * g * iPosMass.w * jPosMass.w / r2;

}



13

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Computing Total Force

Have: array of (i,j) 
forces
Need: total force on 
each particle i

Sum of each column of the 
force array

Can do all N columns 
in parallel

This is called a Parallel Reduction

force(i,j)

NN--body force Texturebody force Texture

NNii

NN

00

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Parallel Reductions

1D parallel reduction: 
sum N columns or rows in 
parallel
add two halves of texture 
together
repeatedly...
Until we’re left with a 
single row of texels ++

NNxxNN

NNx(x(NN/2)/2)
NNx(x(NN/4)/4)
NNx1x1

Requires logRequires log22NN stepssteps

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Update Positions and 
Velocities

Now we have a 1-D array of total 
forces

One per body

Update Velocity
u(i,t+dt) = u(i,t) + Ftotal(i) * dt
Simple pixel shader reads previous velocity and 
force textures, creates new velocity texture

Update Position
x(i, t+dt) = x(i,t) + u(i,t) * dt
Simple pixel shader reads previous position and 
velocity textures, creates new position texture



14

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Summary

Presented mappings of basic 
computational concepts to GPUs

Basic concepts and terminology
For introductory “Hello GPGPU” sample code, 
see http://www.gpgpu.org/developer

Only the beginning:
Rest of course presents advanced techniques, 
strategies, and specific algorithms.

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Outline

Graphics Processor Overview
Mapping Computation to GPUs
Applications

Database queries
Quantile and frequency queries
External memory sorting
Scientific computations

Summary

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Basic DB Operations

Basic SQL query 
Select   A
From T
Where C

A= attributes or aggregations (SUM, COUNT, 
MAX etc)

T=relational table
C= Boolean Combination of Predicates (using 

operators AND, OR, NOT)

N. Govindaraju, B. Lloyd, W. Wang, M. Lin and D. Manocha , 
Proc. of ACM SIGMOD 04



15

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Database Operations

Predicates 
ai op constant or ai op aj

op: <,>,<=,>=,!=, =, TRUE, FALSE

Boolean combinations 
Conjunctive Normal Form (CNF)

Aggregations
COUNT, SUM, MAX, MEDIAN, AVG

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Data Representation

Attribute values ai are stored in 2D 
textures on the GPU
A fragment program is used to copy 
attributes to the depth  buffer

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Copy Time to the Depth 
Buffer 



16

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Predicate Evaluation

ai op constant (d)
Copy the attribute values ai into depth buffer
Specify the comparison operation used in the 
depth test
Draw a screen filling quad at depth d and 
perform the depth test

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Screen

P
If ( ai op  d )pass fragment

Else 

reject fragment

ai op d

d

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Predicate Evaluation

CPU implementation — Intel compiler 7.1 with SIMD optimizations

GPU is nearly 20 times faster than 2.8 GHz Xeon



17

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Predicate Evaluation

ai op aj
Equivalent to  (ai – aj) op 0 

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Boolean Combination

CNF: 
(A1 AND A2 AND … AND Ak) where
Ai = (Bi

1 OR Bi
2 OR … OR Bi

mi ) 

Performed using stencil test recursively
C1 = (TRUE AND A1) = A1

Ci = (A1 AND A2 AND … AND Ai) = (Ci-1 AND Ai)

Different stencil values are used to code 
the outcome of Ci

Positive stencil values — pass predicate evaluation 
Zero — fail predicate evaluation

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

A1 AND A2

A1

B2
1

B2
2

B2
3

A2 = (B2
1 OR B2

2 OR B2
3 )



18

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

A1 AND A2

A1

Stencil value = 1

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

A1 AND A2

A1

Stencil value = 0

Stencil value = 1

TRUE AND A1

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

A1 AND A2

A1

Stencil = 0

Stencil = 1

B2
1

Stencil=2

B2
2

Stencil=2

B2
3

Stencil=2



19

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

A1 AND A2

A1

Stencil = 0

Stencil = 1

B2
1

B2
2

B2
3

Stencil=2

Stencil=2
Stencil=2

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

A1 AND A2

Stencil = 0

Stencil=2
A1 AND B2

1

Stencil = 2
A1 AND B2

2 Stencil=2

A1 AND B2
3

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Multi-Attribute Query



20

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Range Query

Compute ai within [low, high]
Evaluated as ( ai >= low ) AND ( ai <= high )

Use NVIDIA depth bounds test to 
evaluate both conditionals in a single 
clock cycle 

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Range Query

GPU is nearly 20 times faster than 2.8 GHz Xeon

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Aggregations

COUNT, MAX, MIN, SUM, AVG



21

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

COUNT

Use occlusion queries to get the number of 
pixels passing the tests
Syntax:

Begin occlusion query
Perform database operation
End occlusion query
Get count of number of attributes that passed database 
operation

Involves no additional overhead!
Efficient selectivity computation

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

MAX, MIN, MEDIAN

Kth-largest number
Traditional algorithms require data 
rearrangements
We perform 

no data rearrangements 
no frame buffer readbacks

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

K-th Largest Number

Given a set S of values
c(m) —number of values ≥ m
vk — the k-th largest number

We have
If c(m) > k-1, then m ≤ vk

If c(m) ≤ k-1, then m > vk

Evaluate one bit at a time



22

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

0011 1011 1101

0111 0101 0001

0111 1010 0010

m = 0000
v2 = 1011

2nd Largest in 9 Values

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

0011 1011 1101

0111 0101 0001

0111 1010 0010

m = 1000
v2 = 1011

Draw a Quad at Depth 8 
Compute c(1000)

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

0011 1011 1101

0111 0101 0001

0111 1010 0010

m = 1000
v2 = 1011

c(m) = 3 

1st bit = 1



23

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

0011 1011 1101

0111 0101 0001

0111 1010 0010

m = 1100
v2 = 1011

Draw a Quad at Depth 12 
Compute c(1100)

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

0011 1011 1101

0111 0101 0001

0111 1010 0010

m = 1100
v2 = 1011

c(m) = 1 

2nd bit = 0

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

0011 1011 1101

0111 0101 0001

0111 1010 0010

m = 1010
v2 = 1011

Draw a Quad at Depth 10 
Compute c(1010)



24

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

0011 1011 1101

0111 0101 0001

0111 1010 0010

m = 1010
v2 = 1011

c(m) = 3 

3rd bit = 1

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

0011 1011 1101

0111 0101 0001

0111 1010 0010

m = 1011
v2 = 1011

Draw a Quad at Depth 11 
Compute c(1011)

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

0011 1011 1101

0111 0101 0001

0111 1010 0010

m = 1011
v2 = 1011

c(m) = 2 

4th bit = 1



25

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Our algorithm

Initialize m to 0
Start with the MSB and scan all bits 
till LSB
At each bit, put 1 in the 
corresponding bit-position of m
If c(m) < k, make that bit 0
Proceed to the next bit

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Median

GPU is nearly 6 times faster than 2.8 GHz Xeon!

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Outline

Graphics Processor Overview
Mapping Computation to GPUs
Database and data mining 
applications

Database queries
Quantile and frequency queries
External memory sorting
Scientific computations

Summary



26

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Streaming

Stream is a continuous sequence of data 
values arriving at a port

Many real world applications process data 
streams

Networking data, 
Stock marketing and financial data, 
Data collected from sensors
Data logs from web trackers

N. Govindaraju, N. Raghuvanshi, D. Manocha
Proc. Of ACM SIGMOD 05

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Stream Queries

Applications perform continuous queries and usually 
collect statistics on streams

Frequencies of elements
Quantiles in a sequence
And many more  (SUM, MEAN, VARIANCE, etc.)

Widely studied in databases, networking, 
computational geometry, theory of algorithms, etc.

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Stream Queries

Massive amounts of data is processed in 
real-time!

Memory limitations – estimate the query 
results instead of exact results



27

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Approximate Queries

Stream historyStream

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Approximate Queries

Stream
Discarded InformationSliding Window

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

ε-Approximate Queries

ϕ-quantile : element with rank ϕ N, 0 < ϕ < 1

ε-approximate ϕ-quantile : Any element with rank 
(ϕ ± ε) N 0 < ε < 1

Frequency : Number of occurrences of an element f

ε-approximate frequency : Any element with frequency 
f ≥ f’ ≥ (f - εN), 0 < ε < 1



28

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

ε-Approximate Queries

Queries computed using a ε-approximate
summary data structure

Performed by batch insertion a subset of 
window elements 

Ref: [Manku and Motwani 2002, Greenwald and 
Khanna 2004, Arasu and Manku 2004]

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

ε-Approximate Summary 
Construction

Histogram 
Computation

Merge 
Operation

Compress
Operation

ε-Approximate Summary

ε-Approximate Summary

Window of elements

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

ε-Approximate Summary 
Construction

Histogram 
Computation

Merge 
Operation

Compress
Operation

Computes histogram by 
sorting the elements

Window of elements



29

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

ε-Approximate Summary 
Construction

Histogram 
Computation

Merge 
Operation

Compress
Operation

Inserts a subset of the 
histogram into the summary

ε-Approximate Summary

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

ε-Approximate Summary 
Construction

Histogram 
Computation

Merge 
Operation

Compress
Operation

ε-Approximate Summary

Deletes elements 
from the summary

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

ε-Approximate Summary 
Construction

Histogram 
Computation

Merge 
Operation

Compress
Operation

ε-Approximate Summary

Window of elements



30

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

ε-Approximate Summary 
Construction

Histogram 
Computation

Merge 
Operation

Compress
Operation

70 - 95% of the 
entire time!

Window of elements

ε-Approximate Summary

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Timing Breakup: 
Frequency Estimation 

Sorting takes nearly 90% time on CPUs

Computational Performance 

0

5

10

15

20

25

30

35

40

0.3814 0.1907 0.09536 0.04768 0.02384 0.01192
Epsilon*105

Ti
m

e 
(s

ec
s)

Sorting Time
Merge time

Sorting
Merge + 
Compress

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Sorting on CPUs

Well studied
Optimized Quicksort performs better 
[LaMarca and Ladner 1997]

Performance mainly governed by cache sizes
Large overhead per cache miss – nearly 100 clock 
cycles



31

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Sorting on CPUs

Sorting incurs cache misses
Irregular data access patterns in sorting 
Small cache sizes (few KB)

Additional stalls - branch mispredictions

Degrading performance in new CPUs! 
[LaMarca and Ladner 97]

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Sorting on GPUs

Use the high data parallelism, and memory 
bandwidth on GPUs for fast sorting

Many sorting algorithms require writes to 
arbitrary locations

Not supported on GPUs
Map algorithms with deterministic access pattern 
to GPUs (e.g., periodic balanced sorting network 
[Dowd 89])
Represent data in 2D images

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Sorting Networks

Multi-stage algorithm
Each stage involves multiple steps

In each step
1. Compare one pixel against exactly one other pixel
2. Perform a conditional assignment (MIN or MAX) at 

each pixel



32

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

2D Memory Addressing

GPUs optimized for 2D representations
Map 1D arrays to 2D arrays
Minimum and maximum regions mapped to row-
aligned or column-aligned quads

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

1D – 2D Mapping

MIN MAX



33

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

1D – 2D Mapping

MIN

Effectively reduce instructions 
per element

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Sorting on GPU: Pipelining and 
Parallelism

Input Vertices

Texturing, Caching 
and 2D Quad

Comparisons

Sequential Writes

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Sorting Analysis

Performed entirely on GPU
O(log2n) steps
Each step performs n comparisons
Total comparisons: O(n log2n) 

Data sent and readback from GPU
Bandwidth: O(n) — low bandwidth requirement 
from CPU to GPU



34

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Comparison with GPU-Based 
Algorithms

3-6x faster than 
prior GPU-based 
algorithms! 

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

GPU vs. High-End Multi-Core 
CPUs

2-2.5x faster than
Intel high-end 
processors

Single GPU 
performance 
comparable to
high-end dual core
Athlon

Hand-optimized CPU code from Intel Corporation!

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

GPU Cache Model

Small data caches
Low memory latency
Vendors do not disclose cache information –
critical for scientific computing on GPUs

We design simple model
Determine cache parameters (block and cache 
sizes)
Improve sorting performance

N. Govindaraju, J. Gray, D. Manocha
Microsoft Research TR 2005



35

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Cache Evictions

Cache 
Eviction

Cache 
Eviction

Cache 
Eviction

Cache

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Cache issues

Cache 
Eviction

Cache 
Eviction

Cache 
Eviction

h

Cache misses per step = 2 W H/ (h B) 

Cache

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Analysis

lg n possible steps in bitonic sorting 
network

Step k is performed (lg n – k+1) times and 
h = 2k-1

Data fetched from memory = 2 n f(B)
where 
f(B)=(B-1) (lg n -1) + 0.5 (lg n –lg B)2



36

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Block Sizes on GPUs

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Cache-Efficient Algorithm

h

Cache

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Cache Sizes on GPUs



37

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Cache-Efficient Algorithm 
Performance

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Super-Moore’s Law Growth

50 GB/s on a 
single GPU

Peak Performance: 
Effectively hide 
memory latency 
with 15 GOP/s

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Frequency Estimation

Fr
eq

ue
nc

y

Element

1 
2 

3 
4 

5 
6 

7 
8

Window=1/ εStream

Histogram

Merge

Fr
eq

ue
nc

y

Element
2    4   5   7

1 
   

   
  2

Compress

Fr
eq

ue
nc

y

1 
2 

3 
4 

 5
 6

 7
 8

Element



38

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Applications: Frequency 
Estimation 

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Quantile Estimation

Window

Sort

Sample (error=ε/2)
Merge Operation

error ε1

merge with

error ε2error max(ε1, ε2)
Compress Operation

error ε

Uniformly sample

B elements
error <= ε+1/2B

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Applications: Quantile
Estimation 



39

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Applications: Sliding Windows

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Advantages

Sorting performed as stream 
operations entirely on GPUs

Uses specialized functionality of texture 
mapping and blending - high performance

Low bandwidth requirement
<10% of total computation time

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Outline

Graphics Processor Overview
Mapping Computation to GPUs
Database and data mining 
applications

Database queries
Quantile and frequency queries
External memory sorting
Scientific computations

Summary



40

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

External Memory Sorting

Performed on Terabyte-scale databases

Two phases algorithm [Vitter01, Salzberg90, 
Nyberg94, Nyberg95]

Limited main memory
First phase – partitions input file into large data chunks 
and writes sorted chunks known as “Runs”
Second phase – Merge the “Runs” to generate the sorted 
file 

N. Govindaraju, J. Gray, R. Kumar, D. Manocha, 
Proc. Of ACM SIGMOD 06

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

External Memory Sorting

Performance mainly governed by I/O 

Salzberg Analysis: Given the main 
memory size M and the file size N, if the 
I/O read size per run is T in phase 2, 
external memory sorting achieves efficient 
I/O performance if and only if the run size 
R in phase 1 is given by R ≈ √(TN)

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Salzberg Analysis

If N=100GB, T=2MB, then 
R ≈ 230MB 

Large data sorting is inefficient on 
CPUs

R » CPU cache sizes – memory latency



41

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

External memory sorting

External memory sorting on CPUs has 
low performance due to 

High memory latency
Or low I/O performance

Our algorithm 
Sorts large data arrays on GPUs
Perform I/O operations in parallel on CPUs

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

GPUTeraSort

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

I/O Performance

Salzberg Analysis: 
100 MB Run Size



42

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

I/O Performance

Pentium IV: 
25MB  Run 
Size

Less work 
and only 75% 
IO efficient!

Salzberg Analysis: 
100 MB Run Size

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

I/O Performance

Dual 3.6 GHz 
Xeons: 25MB 
Run size

More cores, 
less work but 
only 85% IO 
efficient!

Salzberg Analysis: 
100 MB Run Size

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

I/O Performance

7800 GT: 
100MB run 
size

Ideal work, 
and 92% IO 
efficient with 
single CPU!

Salzberg Analysis: 
100 MB Run Size



43

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Task Parallelism 

Performance 
limited by IO 
and memory

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Overall Performance

Faster and more scalable than Dual Xeon processors (3.6 GHz)! 

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

1.8x faster than 
current Terabyte 
sorter

World’s best 
performance/$ 
system

N. Govindaraju, J. Gray, R. Kumar, D. Manocha, 
Proc. Of ACM SIGMOD 06

http://research.microsoft.com/barc/SortBenchMark/

Performance/$



44

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Advantages

Exploit high memory bandwidth on 
GPUs

Higher memory performance than CPU-based 
algorithms

High I/O performance due to large 
run sizes

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Advantages

Offload work from CPUs
CPU cycles well-utilized for resource management

Scalable solution for large databases

Best performance/price solution for 
terabyte sorting

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Applications

Frequency estimation [Manku and Motwani 02]

Quantile estimation [Greenwald and Khanna 01, 04]

Sliding windows [Arasu and Manku 04]



45

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Outline

Graphics Processor Overview
Mapping Computation to GPUs
Database and data mining 
applications

Database queries
Quantile and frequency queries
External memory sorting
Scientific computations

Summary

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Scientific Computations

Applied extensively in data mining 
algorithms

Least square fits, dimensionality reduction, 
classification etc. 

We present mapping of LU-decomposition 
on GPUs

Extensions to QR-decomposition, singular value 
decomposition (GPU-LAPACK)

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

LU decomposition

Sequence of row eliminations: 
Scale and add: A(i,j) = A(i,j) – A(i,k) A(k,j)
Input data mapping: 2 distinct memory areas
No data dependencies

Pivoting: row/column swap
Pointer-swap vs. data copy

k

k

k

N. Galoppo, N. Govindaraju, M. Henson, D. Manocha, 
Proc. Of ACM SuperComputing 05



46

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

LU decomposition

Theoretical complexity: 2/3n3 + O(n2)

Performance <> Architecture
Order of operations
Data access (latency)
Memory bandwidth

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Commodity CPUs

LINPACK Benchmark:

Intel Pentium 4, 3.06 GHz: 2.88 GFLOPs/s 

(Dongarra, Oct’05)

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Motivation for LU-GPU

LU decomposition maps well:
Stream program
Few data dependencies

Pivoting
Parallel pivot search
Exploit large memory bandwidth



47

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

GPU based algorithms

Data representation

Algorithm mapping

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Data representation

Matrix elements 
2D texture memory
One-to-one mapping

Texture memory = on-board memory
Exploit bandwidth
Avoid CPU-GPU data transfer

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Stream computation

Rasterize quadrilaterals
Generates computation stream
Invokes SIMD units
Rasterization simulates blocking

Rasterization pass = row elimination

Alternating memory regions



48

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Stream computation

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Benchmarks

Memory clockMemoryCore clockSIMD unitsGPU

430 MHz

425 MHz

350 MHz

24

16

12

1200 MHz256 Mb7800 Ultra

1100 MHz256 Mb6800 Ultra

900 MHz256 Mb6800 GT

3.4 GHz Pentium IV with Hyper-Threading
1 MB L2 cache
LAPACK getrf() (blocked algorithm, SSE-optimized ATLAS library)

Commodity CPU

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Results: No pivoting

0

1

2

3

4

5

6

7

8

9

1000 1500 2000 2500 3000 3500
Matrix size N

Ti
m

e 
(s

)

ATLAS GETRF (Partial Pivot)
Ultra 6800 LU (no pivoting)
GT 6800 LU (no pivoting)
7800 LU (no pivoting)

0

1

2

3

4

5

6

7

8

9

1000 1500 2000 2500 3000 3500
Matrix size N

Ti
m

e 
(s

)

ATLAS GETRF (Partial Pivot)
Ultra 6800 LU (no pivoting)
GT 6800 LU (no pivoting)
7800 LU (no pivoting)

0

1

2

3

4

5

6

7

8

9

1000 1500 2000 2500 3000 3500
Matrix size N

Ti
m

e 
(s

)

ATLAS GETRF (Partial Pivot)
Ultra 6800 LU (no pivoting)
GT 6800 LU (no pivoting)
7800 LU (no pivoting)

0

1

2

3

4

5

6

7

8

9

1000 1500 2000 2500 3000 3500
Matrix size N

Ti
m

e 
(s

)

ATLAS GETRF (Partial Pivot)
Ultra 6800 LU (no pivoting)
GT 6800 LU (no pivoting)
7800 LU (no pivoting)



49

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Results: Partial pivoting

0

2

4

6

8

10

12

500 1000 1500 2000 2500 3000 3500
Matrix size N

Ti
m

e 
(s

)

ATLAS GETRF (Partial Pivot)
GT 6800 Partial Pivot
Ultra 6800 Partial Pivot
7800 Partial Pivot

0

2

4

6

8

10

12

500 1000 1500 2000 2500 3000 3500
Matrix size N

Ti
m

e 
(s

)

ATLAS GETRF (Partial Pivot)
GT 6800 Partial Pivot
Ultra 6800 Partial Pivot
7800 Partial Pivot

0

2

4

6

8

10

12

500 1000 1500 2000 2500 3000 3500
Matrix size N

Ti
m

e 
(s

)

ATLAS GETRF (Partial Pivot)
GT 6800 Partial Pivot
Ultra 6800 Partial Pivot
7800 Partial Pivot

0

2

4

6

8

10

12

500 1000 1500 2000 2500 3000 3500
Matrix size N

Ti
m

e 
(s

)

ATLAS GETRF (Partial Pivot)
GT 6800 Partial Pivot
Ultra 6800 Partial Pivot
7800 Partial Pivot

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Results: Full Pivoting

0

50

100

150

200

250

500 1000 1500 2000 2500 3000 3500
Matrix size N

Ti
m

e 
(s

)

Ultra 6800 Full Pivot

LAPACK sgetc2 (IMKL)

7800 Full Pivot

0

50

100

150

200

250

500 1000 1500 2000 2500 3000 3500
Matrix size N

Ti
m

e 
(s

)

Ultra 6800 Full Pivot

LAPACK sgetc2 (IMKL)

7800 Full Pivot

0

50

100

150

200

250

500 1000 1500 2000 2500 3000 3500
Matrix size N

Ti
m

e 
(s

)

Ultra 6800 Full Pivot

LAPACK sgetc2 (IMKL)

7800 Full Pivot

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

LUGPU Library

http://gamma.cs.unc.edu/LUGPULIB



50

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Outline

Graphics Processor Overview
Mapping Computation to GPUs
Database and data mining 
applications
Summary

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Conclusions

Novel algorithms to perform 
Database management on GPUs
• Evaluation of predicates, boolean combinations 

of predicates, aggregations and join queries

Data streaming on GPUs
• Quantile and Frequency estimation

Terabyte data management
Data mining applications
• LU decomposition, QR decomposition

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Conclusions

Algorithms take into account GPU 
limitations

No data rearrangements
No frame buffer readbacks

Preliminary comparisons with 
optimized CPU implementations is 
promising
GPU as a useful co-processor



51

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

GPGP: GPU-based Algorithms

Spatial Database computations
Sun, Agrawal, Abbadi 2003
Bandi, Sun, Agrawal, Abbadi 2004

Data streaming
Buck et al. 04, McCool et al. 04 

Scientific computations
Bolz et al. 03, Kruger et al. 03

Compilers
Brook-GPU (Stanford), Sh (U. Waterloo), 
Accelerator (Microsoft Research)

…
More at http://www.gpgpu.org

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Advantages

Algorithms progress at GPU growth 
rate
Offload CPU work

Streaming processor parallel to CPU

Fast 
Massive parallelism on GPUs
High memory bandwidth

Commodity hardware!


