

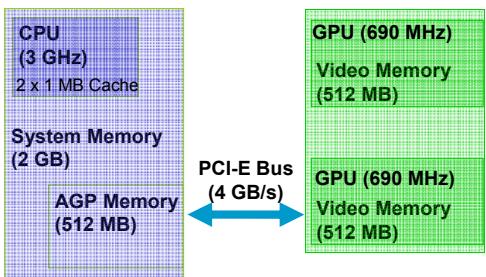
Query Processing on GPUs

- Graphics Processor Overview
- Mapping Computation to GPUs
- Database and data mining applications
 - Database queries
 - Quantile and frequency queries
 - External memory sorting
 - Scientific computations
- Summary

Databases

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

CPU vs. GPU



Databases

THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL

Query Processing on CPUs

- ➊ Slow random memory accesses
 - Small CPU caches (< 2MB)
 - Random memory accesses slower than even sequential disk accesses
- ➋ High memory latency
 - Huge memory to compute gap!
- ➌ CPUs are deeply pipelined
 - Pentium 4 has 30 pipeline stages
 - Do not hide latency - high cycles per instruction (CPI)
- ➍ CPU is under-utilized for data intensive applications

Databases @Carnegie Mellon

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Graphics Processing Units (GPUs)

- Commodity processor for graphics applications
- Massively parallel vector processors
- High memory bandwidth
 - Low memory latency pipeline
 - Programmable
- High growth rate
- Power-efficient

Databases

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

GPU: Commodity Processor

Database Desktops

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

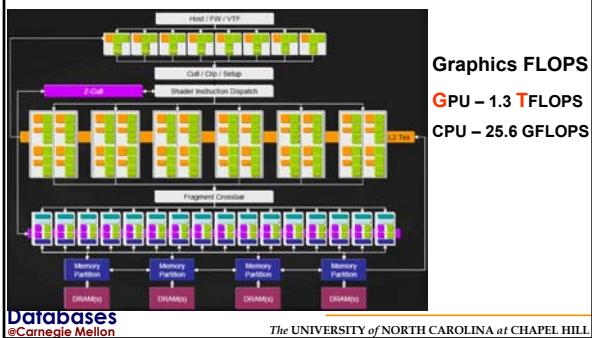
Graphics Processing Units (GPUs)

- Commodity processor for graphics applications
- *Massively parallel vector processors*
 - **10x** more operations per sec than CPUs
- High memory bandwidth
 - Low memory latency pipeline
 - Programmable
- High growth rate
- Power-efficient

Databases

11 of 11 | Page | [Home](#) | [About](#) | [Contact](#) | [Feedback](#) | [Help](#)

Parallelism on GPUs



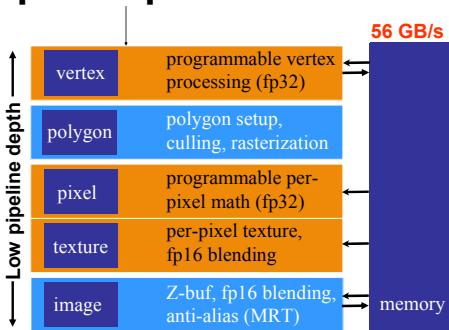
Graphics Processing Units (GPUs)

- Commodity processor for graphics applications
- Massively parallel vector processors
- *High memory bandwidth*
 - Low memory latency pipeline
 - Programmable
 - **10x more memory bandwidth than CPUs**
- High growth rate
- Power-efficient

Databases
@Carnegie Mellon

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Graphics Pipeline



Databases

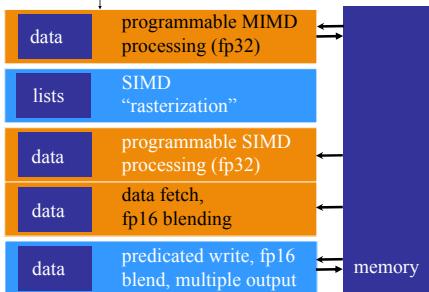
THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL

NON-Graphics Pipeline Abstraction

Courtesy:
David Kirk,
Chief Scientist,
NVIDIA

Databases
@Carnegie Mellon

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



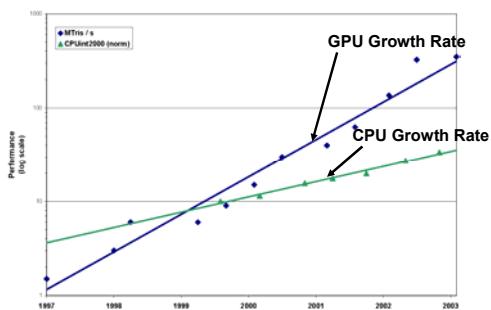
Graphics Processing Units (GPUs)

- Commodity processor for graphics applications
- Massively parallel vector processors
- High memory bandwidth
 - Low memory latency pipeline
 - Programmable
- High growth rate**
- Power-efficient

Databases
@Carnegie Mellon

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Exploiting Technology Moving Faster than Moore's Law



Databases
@Carnegie Mellon

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Graphics Processing Units (GPUs)

- Commodity processor for graphics applications
- Massively parallel vector processors
- High memory bandwidth
 - Low memory latency pipeline
 - Programmable
- High growth rate
- *Power-efficient*

Databases

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

CPU vs. GPU

(Henry Moreton: NVIDIA, Aug. 2005)

	PEE 840	7800GTX	GPU/CPU
Graphics GFLOPs	25.6	1300	50.8
Power (W)	130	65	0.5
GFLOPS/W	0.2	20.0	101.6

Databases

THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL

Outline

- Graphics Processor Overview
- Mapping Computation to GPUs
- Database and data mining applications
 - Database queries
 - Quantile and frequency queries
 - External memory sorting
 - Scientific computations
- Summary

Databases

THE UNIVERSITY OF NORTH CAROLINA, CHAPEL HILL

The Importance of Data Parallelism

- GPU are designed for graphics
 - Highly parallel tasks
- GPUs process *independent* vertices & fragments
 - Temporary registers are zeroed
 - No shared or static data
 - No read-modify-write buffers
- Data-parallel processing
 - GPU architecture is ALU-heavy
 - Multiple vertex & pixel pipelines, multiple ALUs per pipe**
 - Hide memory latency (with more computation)

Databases

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Arithmetic Intensity

- Arithmetic intensity
 - ops per word transferred
 - Computation / bandwidth
- Best to have *high* arithmetic intensity
- Ideal GPGPU apps have
 - Large data sets
 - High parallelism
 - Minimal dependencies between data elements

Databases

THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL

Data Streams & Kernels

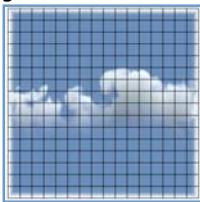
- Streams
 - Collection of records requiring similar computation
 - Vertex positions, Voxels, FEM cells, etc.**
 - Provide data parallelism
- Kernels
 - Functions applied to each element in stream
 - transforms, PDE, ...**
 - Few dependencies between stream elements
 - Encourage high Arithmetic Intensity**

Databases

Digitized by srujanika@gmail.com

Example: Simulation Grid

- Common GPGPU computation style
 - Textures represent computational grids = streams
- Many computations map to grids
 - Matrix algebra
 - Image & Volume processing
 - Physically-based simulation
- Non-grid streams can be mapped to grids



Databases

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Stream Computation

- Grid Simulation algorithm
 - Made up of steps
 - Each step updates entire grid
 - Must complete before next step can begin
- Grid is a stream, steps are kernels
 - Kernel applied to each stream element

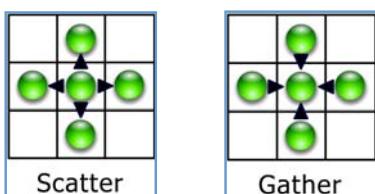


Databases

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Scatter vs. Gather

Grid communication



Databases

Journal of Oral Rehabilitation 2013, 40, 103–110

Computational Resources Inventory

- Programmable parallel processors
 - Vertex & Fragment pipelines
- Rasterizer
 - Mostly useful for interpolating addresses (texture coordinates) and per-vertex constants
- Texture unit
 - Read-only memory interface
- Render to texture
 - Write-only memory interface

Databases

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Vertex Processor

- Fully programmable (SIMD / MIMD)
- Processes 4-vectors (RGBA / XYZW)
- Capable of scatter but not gather
 - Can change the location of current vertex
 - Cannot read info from other vertices
 - Can only read a small constant memory
- Latest GPUs: Vertex Texture Fetch
 - Random access memory for vertices
 - ≈Gather (But not from the vertex stream itself)

Databases
@Carnegie Mellon

THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL

Fragment Processor

- Fully programmable (SIMD)
- Processes 4-component vectors (RGBA / XYZW)
- Random access memory read (textures)
- Capable of gather but not scatter
 - RAM read (texture fetch), but no RAM write
 - Output address fixed to a specific pixel
- Typically more useful than vertex processor
 - More fragment pipelines than vertex pipelines
 - Direct output (fragment processor is at end of pipeline)

Databases

ANSWER

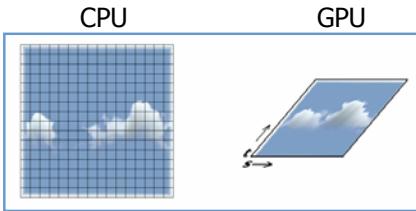
CPU-GPU Analogies

- CPU programming is familiar
- GPU programming is graphics-centric
- Analogies can aid understanding

Databases @Carnegie Mellon

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

CPU-GPU Analogies

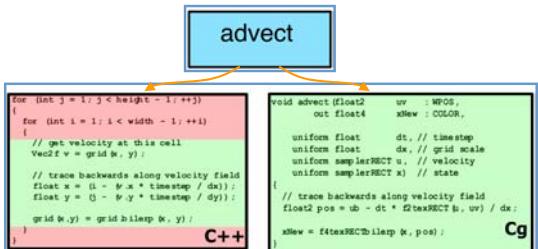


Stream / Data Array = Texture
Memory Read = Texture Sample

Databases @Carnegie Mellon

THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL

Kernels



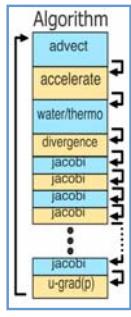
Kernel / loop body / algorithm step = Fragment Program

Databases

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Feedback

- Each algorithm step depends on the results of previous steps
- Each time step depends on the results of the previous time step



Databases

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Feedback

Grid[i][j] = x;
.
.
.

Texture unit → Fragment Unit

Databases

THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL

GPU Simulation Overview

- Analogy: Analogies lead to implementation
 - Algorithm steps are fragment programs
 - Computational kernels**
 - Current state is stored in textures
 - Feedback via render to texture
- One question: how do we invoke computation?

Databases

THE UNIVERSITY OF NORTH CAROLINA, CHAPEL HILL

Invoking Computation

- Must invoke computation at each pixel
 - Just draw geometry!
 - Most common GPGPU invocation is a full-screen quad
- Other Useful Analogies
 - Rasterization = Kernel Invocation
 - Texture Coordinates = Computational Domain
 - Vertex Coordinates = Computational Range

Databases

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Typical “Grid” Computation

- Initialize "view" (so that pixels:texels::1:1)

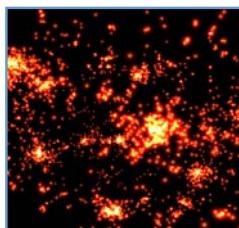
```
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(0, 1, 0, 1, 0, 1);
glViewport(0, 0, outTexResX, outTexResY);
```
- For each algorithm step:
 - Activate render-to-texture
 - Setup input textures, fragment program
 - Draw a full-screen quad (1x1)

Databases

THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL

Example: N-Body Simulation

- Brute force 😞
- $N = 8192$ bodies
- N^2 gravity computations
- 64M force comps. / frame
- ~25 flops per force
- 10.5 fps
- 17+ GFLOPs sustained



*Nyland, Harris, Prins,
GP² 2004 poster*

GeFor
Databases
@Carnegie Mellon

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Computing Gravitational Forces

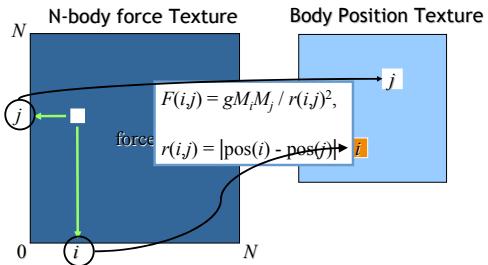
- Each body attracts all other bodies
 - N bodies, so N^2 forces
- Draw into an $N \times N$ buffer
 - Pixel (i, j) computes force between bodies i and j
 - Very simple fragment program

Databases

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Computing Gravitational Forces



Force is proportional to the inverse square of the distance between bodies

Databases @Carnegie Mellon

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Computing Gravitational Forces

```

float4 force(float2 ij           : WPOS,
            uniform sampler2D pos) : COLOR0
{
    // Pos texture is 2D, not 1D, so we need to
    // convert body index into 2D coords for pos tex
    float4 iCoords = getBodyCoords(ij);
    float4 iPosMass = texture2D(pos, iCoords.xy);
    float4 jPosMass = texture2D(pos, iCoords.zw);
    float3 dir = iPos.xyz - jPos.xyz;
    float r2 = dot(dir, dir);
    dir = normalize(dir);

    return dir * g * iPosMass.w * jPosMass.w / r2;
}

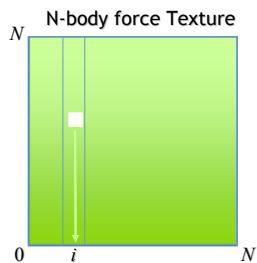
```

Databases

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Computing Total Force

- Have: array of (i,j) forces
- Need: total force on each particle i
 - Sum of each column of the force array
- Can do all N columns in parallel



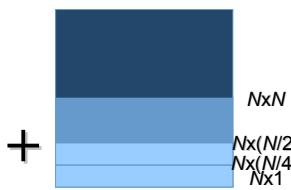
Databases

@Carnegie Mellon

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Parallel Reductions

- 1D parallel reduction:
 - sum N columns or rows in parallel
 - add two halves of texture together
 - repeatedly...
 - Until we're left with a single row of texels



Databases

@Carnegie Mellon

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Update Positions and Velocities

- Now we have a 1-D array of total forces
 - One per body
- Update Velocity
 - $\mathbf{u}(i, t+dt) = \mathbf{u}(i, t) + \mathbf{F}_{total}(i) * dt$
 - Simple pixel shader reads previous velocity and force textures, creates new velocity texture
- Update Position
 - $\mathbf{x}(i, t+dt) = \mathbf{x}(i, t) + \mathbf{u}(i, t) * dt$
 - Simple pixel shader reads previous position and velocity textures, creates new position texture

Databases

@Carnegie Mellon

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Summary

- Presented mappings of basic computational concepts to GPUs
 - Basic concepts and terminology
 - For introductory "Hello GPGPU" sample code, see <http://www.gpgpu.org/developer>
- Only the beginning:
 - Rest of course presents advanced techniques, strategies, and specific algorithms.

Databases

@Carnegie Mellon

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Outline

- Graphics Processor Overview
- Mapping Computation to GPUs
- Applications
 - Database queries
 - Quantile and frequency queries
 - External memory sorting
 - Scientific computations
- Summary

Databases

@Carnegie Mellon

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

N. Govindaraju, B. Lloyd, W. Wang, M. Lin and D. Manocha,
Proc. of ACM SIGMOD 04

Basic DB Operations

Basic SQL query

*Select A
From T
Where C*

A= attributes or aggregations (SUM, COUNT, MAX etc)

T=relational table

C= Boolean Combination of Predicates (using operators AND, OR, NOT)

Databases

@Carnegie Mellon

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Database Operations

- **Predicates**
 - a op constant or a op a
 - op: $<$, $>$, $<=$, $>=$, $!=$, $=$, TRUE, FALSE
- **Boolean combinations**
 - Conjunctive Normal Form (CNF)
- **Aggregations**
 - COUNT, SUM, MAX, MEDIAN, AVG

Databases

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

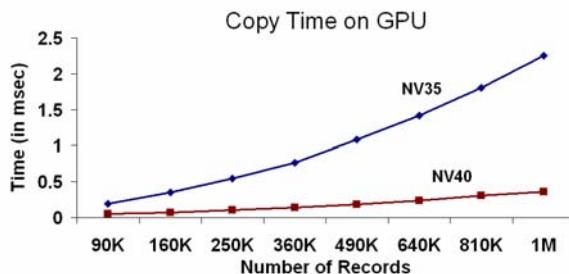
Data Representation

- Attribute values a_i are stored in 2D textures on the GPU
- A fragment program is used to copy attributes to the depth buffer

Databases @Carnegie Mellon

THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL

Copy Time to the Depth Buffer



Databases

Digitized by srujanika@gmail.com

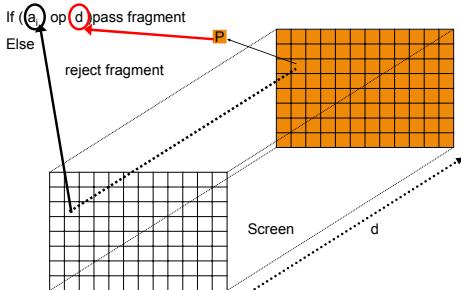
Predicate Evaluation

- a_i op constant (d)
 - Copy the attribute values a_i into depth buffer
 - Specify the comparison operation used in the depth test
 - Draw a screen filling quad at depth d and perform the depth test

Databases @Carnegie Mellon

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

a_j op d

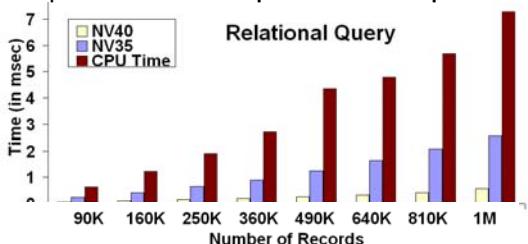


Databases

THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL

Predicate Evaluation

CPU implementation — Intel compiler 7.1 with SIMD optimizations



GPU is nearly **20 times** faster than 2.8 GHz Xeon

Databases

Predicate Evaluation

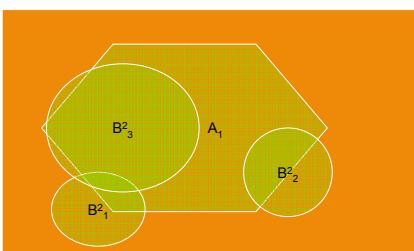
- $a_i \text{ op } a_j$
 - Equivalent to $(a_i - a_j) \text{ op } 0$

Boolean Combination

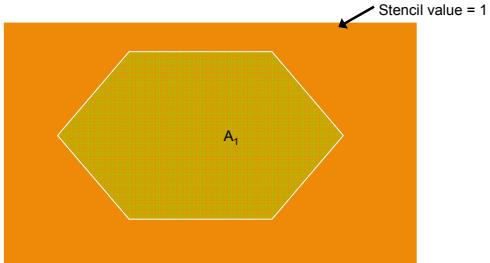
- CNF:
 - $(A_1 \text{ AND } A_2 \text{ AND } \dots \text{ AND } A_k)$ where $A_i = (B_{i1}^i \text{ OR } B_{i2}^i \text{ OR } \dots \text{ OR } B_{im}^i)$
- Performed using stencil test recursively
 - $C_i = (\text{TRUE AND } A_i) = A_i$
 - $C_i = (A_1 \text{ AND } A_2 \text{ AND } \dots \text{ AND } A_i) = (C_{i-1} \text{ AND } A_i)$
- Different stencil values are used to code the outcome of C_i
 - Positive stencil values — pass predicate evaluation
 - Zero — fail predicate evaluation

A₁ AND A₂

$$A_2 = (B^2_1 \text{ OR } B^2_2 \text{ OR } B^2_3)$$



A₁ AND A₂

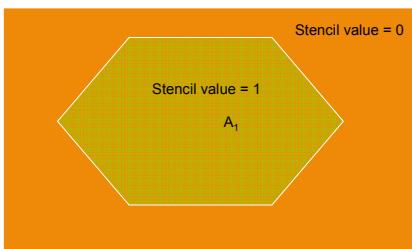


Databases
@Carnegie Mellon

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

A₁ AND A₂

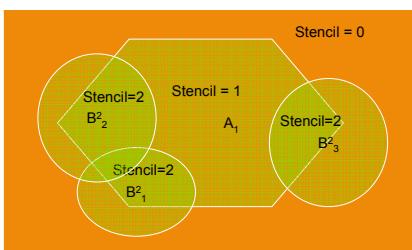
TRUE AND A₁



Databases
@Carnegie Mellon

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

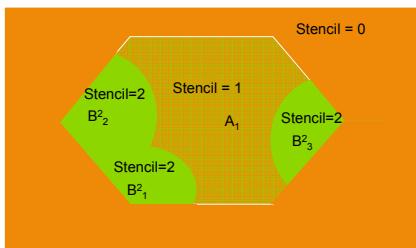
A₁ AND A₂



Databases
@Carnegie Mellon

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

A₁ AND A₂

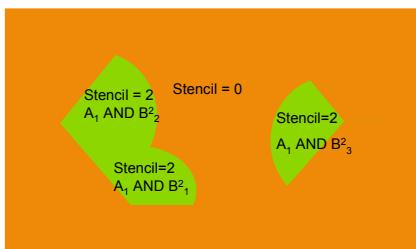


Databases

ellon

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

A₁ AND A₂

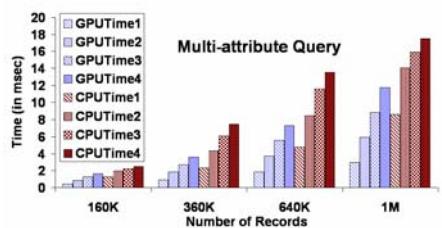


Databases

ellon

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Multi-Attribute Query



Databases

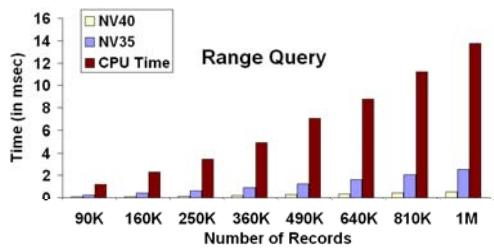
ellon

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Range Query

- Compute a_i within $[low, high]$
 - Evaluated as $(a_i \geq low) \text{ AND } (a_i \leq high)$
- Use NVIDIA depth bounds test to evaluate both conditionals in a single clock cycle

Range Query



GPU is nearly **20 times** faster than 2.8 GHz Xeon

Aggregations

- COUNT, MAX, MIN, SUM, AVG

COUNT

- Use **occlusion queries** to get the number of pixels passing the tests
- Syntax:
 - Begin occlusion query
 - Perform database operation
 - End occlusion query
 - Get count of number of attributes that passed database operation
- Involves no additional overhead!
- Efficient selectivity computation

MAX, MIN, MEDIAN

- Kth-largest number
- Traditional algorithms require data rearrangements
- We perform
 - no data rearrangements
 - no frame buffer readbacks

K-th Largest Number

- Given a set S of values
 - $c(m)$ — number of values $\geq m$
 - v_k — the k -th largest number
- We have
 - If $c(m) > k-1$, then $m \leq v_k$
 - If $c(m) \leq k-1$, then $m > v_k$
- Evaluate one bit at a time

2nd Largest in 9 Values

0011	1011	1101
0111	0101	0001
0111	1010	0010

$$m = 0000$$
$$v_2 = 1011$$

Draw a Quad at Depth 8 Compute c(1000)

0011	1011	1101
0111	0101	0001
0111	1010	0010

$$m = 1000$$
$$v_2 = 1011$$

1st bit = 1

0011	1011	1101
0111	0101	0001
0111	1010	0010

$$m = 1000$$
$$v_2 = 1011$$

$$c(m) = 3$$

Draw a Quad at Depth 12 Compute $c(1100)$

0011	1011	1101
0111	0101	0001
0111	1010	0010

$$m = 1100$$
$$v_2 = 1011$$

2nd bit = 0

0011	1011	1101
0111	0101	0001
0111	1010	0010

$$m = 1100$$
$$v_2 = 1011$$

$$c(m) = 1$$

Draw a Quad at Depth 10 Compute $c(1010)$

0011	1011	1101
0111	0101	0001
0111	1010	0010

$$m = 1010$$
$$v_2 = 1011$$

3rd bit = 1

0011	1011	1101
0111	0101	0001
0111	1010	0010

$$m = 1010$$

$$c(m) = 3$$

Databases @Carnegie Mellon

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Draw a Quad at Depth 11 Compute $c(1011)$

0011	1011	1101
0111	0101	0001
0111	1010	0010

$$m = 1011$$

Databases
©Carnegie Mellon

THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL

4th bit = 1

0011	1011	1101
0111	0101	0001
0111	1010	0010

$$m = 1011$$
$$v_2 = 1011$$

$$c(m) = 2$$

Databases

Digitized by srujanika@gmail.com

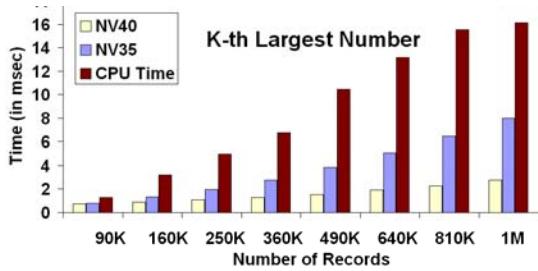
Our algorithm

- Initialize m to 0
- Start with the MSB and scan all bits till LSB
- At each bit, put 1 in the corresponding bit-position of m
- If $c(m) < k$, make that bit 0
- Proceed to the next bit

Databases

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Median



Databases

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Outline

- Graphics Processor Overview
- Mapping Computation to GPUs
- **Database and data mining applications**
 - Database queries
 - Quantile and frequency queries
 - External memory sorting
 - Scientific computations
- Summary

Databases

THE UNIVERSITY OF NORTH CAROLINA, CHAPEL HILL

- Stream is a continuous sequence of data values arriving at a port
- Many real world applications process data streams
 - Networking data,
 - Stock marketing and financial data,
 - Data collected from sensors
 - Data logs from web trackers

Stream Queries

- Applications perform continuous queries and usually collect statistics on streams
 - Frequencies of elements
 - Quantiles in a sequence
 - And many more (SUM, MEAN, VARIANCE, etc.)
- Widely studied in databases, networking, computational geometry, theory of algorithms, etc.

Stream Queries

- Massive amounts of data is processed in real-time!
- Memory limitations – estimate the query results instead of exact results

Approximate Queries

24

Stream

Stream history

Databases @Carnegie Mellon

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Approximate Queries

24

Stream

Databases

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

ε -Approximate Queries

ϕ -quantile : element with rank $\lceil \phi N \rceil$, $0 < \phi < 1$

ε -approximate ϕ -quantile : Any element with rank
 $\lceil (\phi \pm \varepsilon) N \rceil \quad 0 < \varepsilon < 1$

Frequency: Number of occurrences of an element **f**

ϵ -approximate frequency: Any element with frequency $f \geq f' \geq (f - \epsilon N)$, $0 \leq \epsilon < 1$

Databases

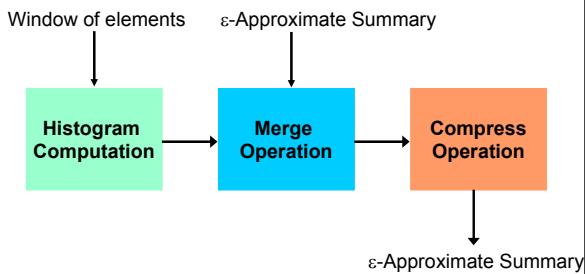
THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL

ε -Approximate Queries

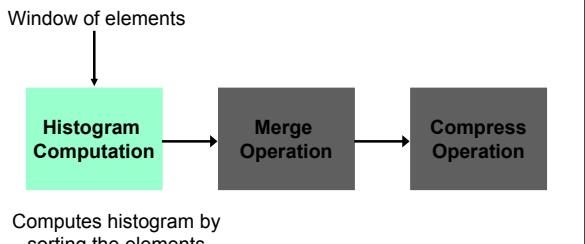
Queries computed using a ϵ -approximate summary data structure

- Performed by batch insertion a subset of window elements
- Ref: [Manku and Motwani 2002, Greenwald and Khanna 2004, Arasu and Manku 2004]

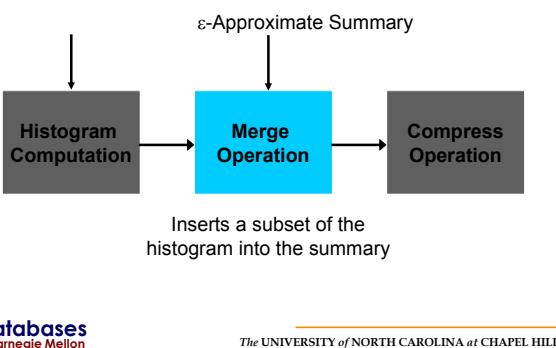
ε -Approximate Summary Construction



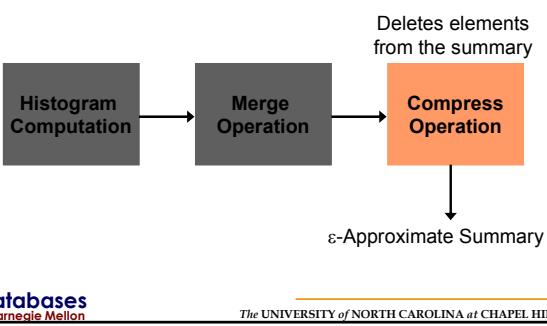
ε -Approximate Summary Construction



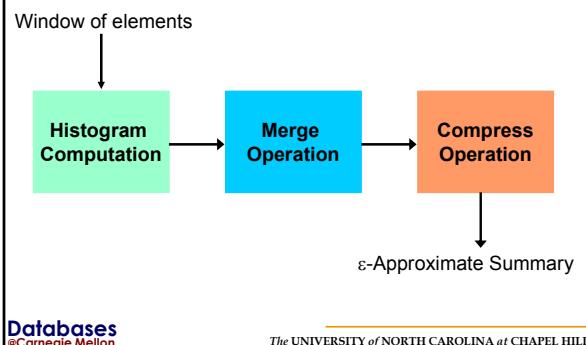
ϵ -Approximate Summary Construction



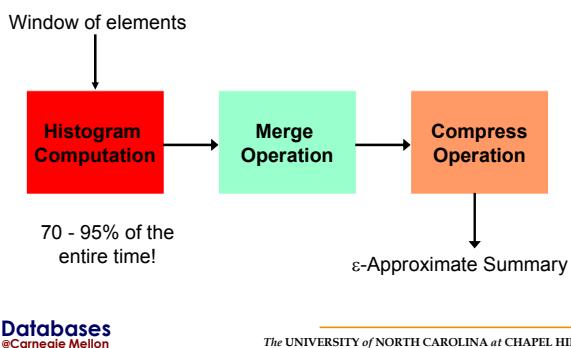
ϵ -Approximate Summary Construction



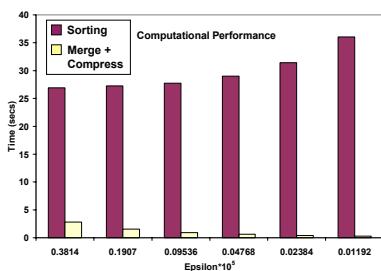
ϵ -Approximate Summary Construction



ε -Approximate Summary Construction



Timing Breakup: Frequency Estimation



Sorting takes nearly 90% time on CPUs

Sorting on CPUs

- Well studied
 - Optimized Quicksort performs better [LaMarca and Ladner 1997]
- Performance mainly governed by cache sizes
 - Large overhead per cache miss – nearly 100 clock cycles

Databases

@Carnegie Mellon

Sorting on CPUs

- Sorting incurs cache misses
 - Irregular data access patterns in sorting
 - Small cache sizes (few KB)
- Additional stalls - branch mispredictions
- Degrading performance in new CPUs!
[LaMarca and Ladner 97]

Databases

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Sorting on GPUs

- Use the high data parallelism, and memory bandwidth on GPUs for fast sorting
- Many sorting algorithms require writes to arbitrary locations
 - Not supported on GPUs
 - Map algorithms with deterministic access pattern to GPUs (e.g., periodic balanced sorting network [Dowd 89])
 - Represent data in 2D images

Databases
@Carnegie Mellon

THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL

Sorting Networks

- Multi-stage algorithm
 - Each stage involves multiple steps
- In each step
 1. Compare one pixel against exactly one other pixel
 2. Perform a conditional assignment (MIN or MAX) at each pixel

Databases @Carnegie Mellon

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

2D Memory Addressing

- GPUs optimized for 2D representations
 - Map 1D arrays to 2D arrays
 - Minimum and maximum regions mapped to row-aligned or column-aligned quads

Databases
@Carnegie Mellon

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

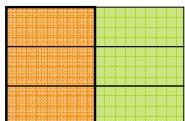
1D – 2D Mapping

MIN MAX

Databases
@Carnegie Mellon

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

1D – 2D Mapping



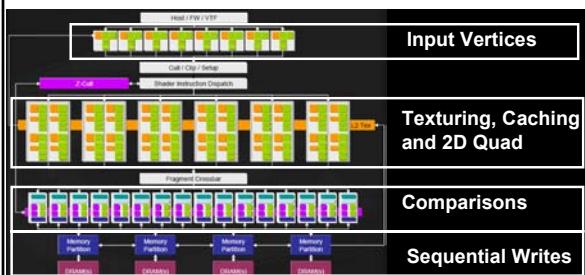
Effectively reduce instructions per element

MIN

Databases @Carnegie Mellon

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Sorting on GPU: Pipelining and Parallelism



Databases

THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL

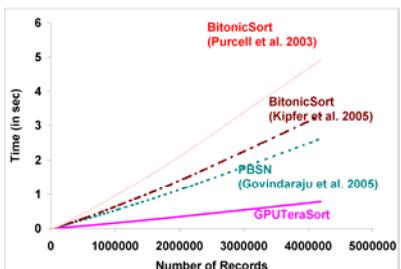
Sorting Analysis

- Performed entirely on GPU
 - $O(\log^2 n)$ steps
 - Each step performs n comparisons
 - Total comparisons: $O(n \log^2 n)$
- Data sent and readback from GPU
 - Bandwidth: $O(n)$ — low bandwidth requirement from CPU to GPU

Databases @Carnegie Mellon

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Comparison with GPU-Based Algorithms



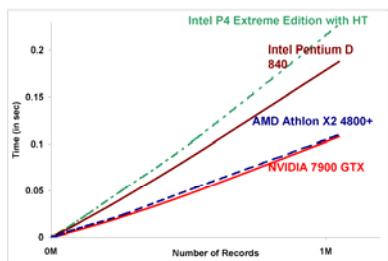
3-6x faster than prior GPU-based algorithms!

Databases

@Carnegie Mellon

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

GPU vs. High-End Multi-Core CPUs



2-2.5x faster than Intel high-end processors
Single GPU performance comparable to high-end dual core Athlon

Hand-optimized CPU code from Intel Corporation!

Databases

@Carnegie Mellon

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

GPU Cache Model

N. Govindaraju, J. Gray, D. Manocha
Microsoft Research TR 2005

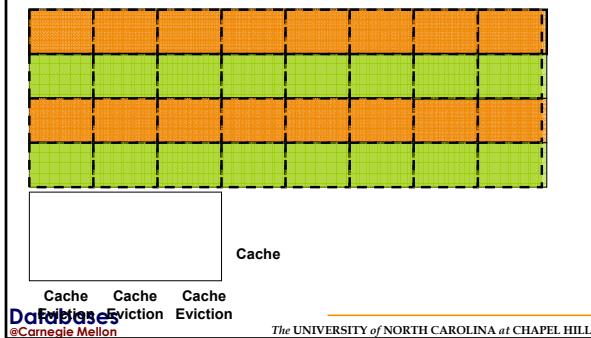
- Small data caches
 - Low memory latency
 - Vendors do not disclose cache information – critical for scientific computing on GPUs
- We design simple model
 - Determine cache parameters (block and cache sizes)
 - Improve sorting performance

Databases

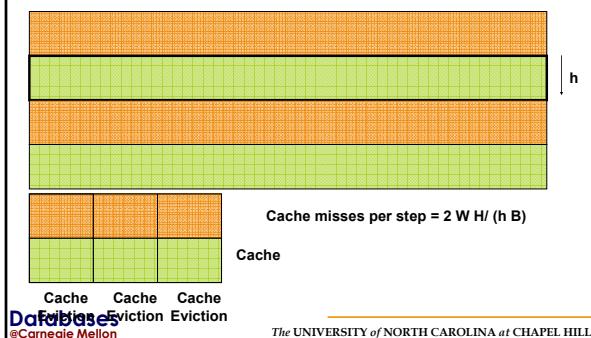
@Carnegie Mellon

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Cache Evictions



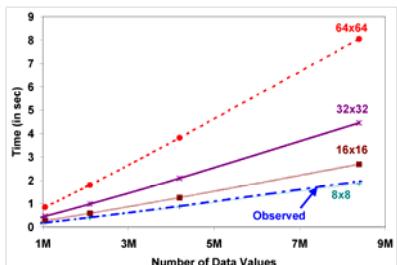
Cache issues



Analysis

- $\lg n$ possible steps in bitonic sorting network
- Step k is performed $(\lg n - k+1)$ times and $h = 2^{k-1}$
- Data fetched from memory = **2 n f(B)**
$$f(B) = (B-1) (\lg n - 1) + 0.5 (\lg n - \lg B)^2$$

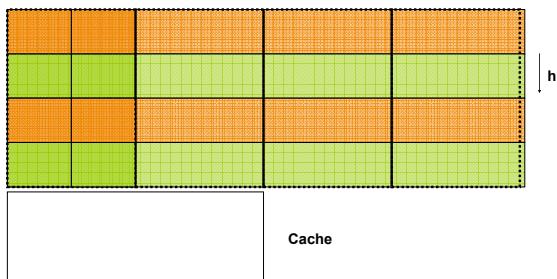
Block Sizes on GPUs



Databases
@Carnegie Mellon

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

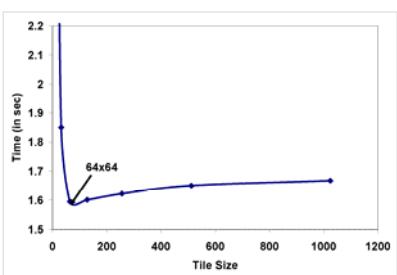
Cache-Efficient Algorithm



Databases
@Carnegie Mellon

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

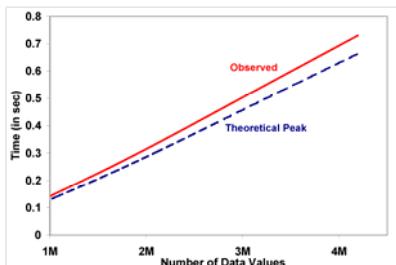
Cache Sizes on GPUs



Databases
@Carnegie Mellon

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

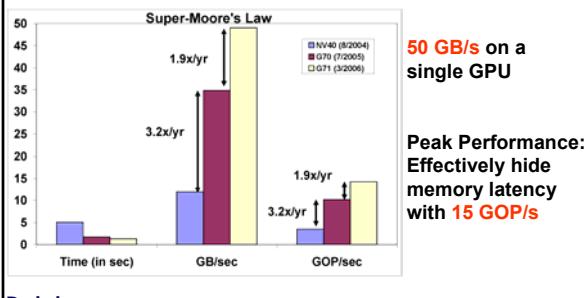
Cache-Efficient Algorithm Performance



Databases
@Carnegie Mellon

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

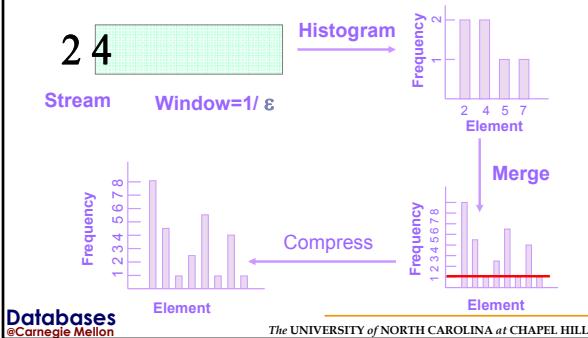
Super-Moore's Law Growth



Databases
@Carnegie Mellon

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

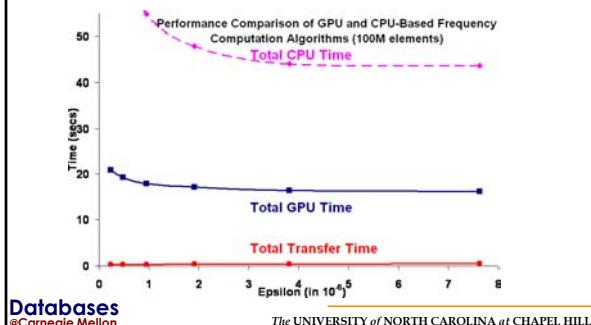
Frequency Estimation



Databases
@Carnegie Mellon

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

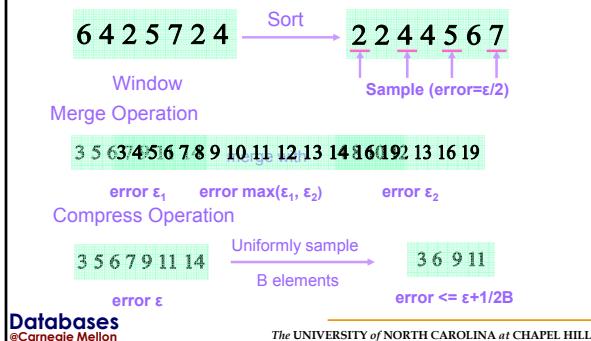
Applications: Frequency Estimation



Databases
@Carnegie Mellon

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

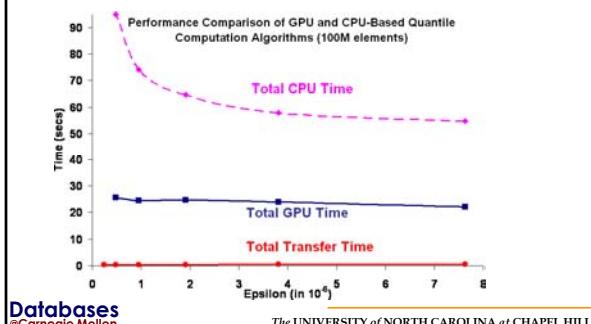
Quantile Estimation



Databases
@Carnegie Mellon

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

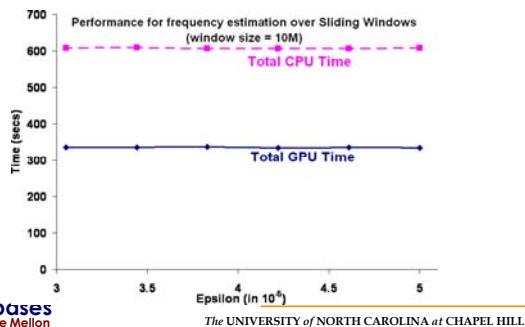
Applications: Quantile Estimation



Databases
@Carnegie Mellon

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Applications: Sliding Windows



Advantages

- Sorting performed as stream operations entirely on GPUs
 - Uses specialized functionality of texture mapping and blending - **high performance**
- Low bandwidth requirement
 - <10% of total computation time

Outline

- Graphics Processor Overview
- Mapping Computation to GPUs
- Database and data mining applications
 - Database queries
 - Quantile and frequency queries
 - External memory sorting
 - Scientific computations
- Summary

External Memory Sorting

- Performed on Terabyte-scale databases
- Two phases algorithm [**Vitter01**, **Salzberg90**,
Nyberg94, **Nyberg95**]
 - Limited main memory
 - First phase – partitions input file into large data chunks and writes sorted chunks known as “Runs”
 - Second phase – Merge the “Runs” to generate the sorted file

External Memory Sorting

- Performance mainly governed by I/O

Salzberg Analysis: Given the main memory size M and the file size N , if the I/O read size per run is T in phase 2, external memory sorting achieves efficient I/O performance if and only if the run size R in phase 1 is given by $R \approx \sqrt{TN}$

Salzberg Analysis

- If $N=100\text{GB}$, $T=2\text{MB}$, then
 $R \approx 230\text{MB}$
- Large data sorting is inefficient on CPUs
 - $R \gg \text{CPU cache sizes} - \text{memory latency}$

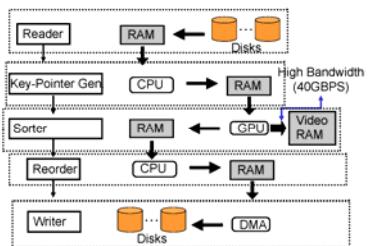
External memory sorting

- External memory sorting on CPUs has low performance due to
 - High memory latency
 - Or low I/O performance
- Our algorithm
 - Sorts large data arrays on GPUs
 - Perform I/O operations in parallel on CPUs

Databases

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

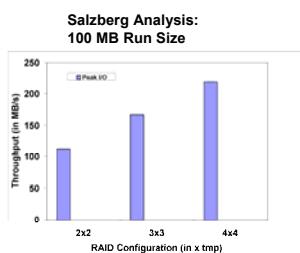
GPU TeraSort



Databases
©Carnegie Mellon

THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL

I/O Performance

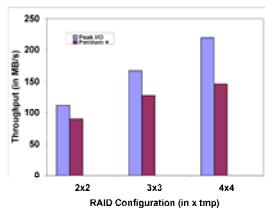


Databases

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

I/O Performance

Salzberg Analysis: 100 MB Run Size



**Pentium IV:
25MB Run
Size**

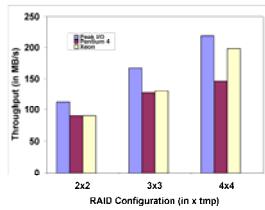
**Less work
and only 75%
IO efficient!**

Databases

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

I/O Performance

Salzberg Analysis: 100 MB Run Size



**Dual 3.6 GHz
Xeons: 25MB
Run size**

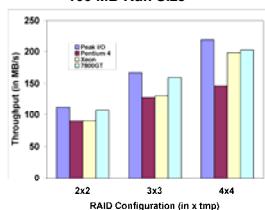
More cores,
less work but
only 85% IO
efficient!

Databases @Carnegie Mellon

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

I/O Performance

Salzberg Analysis: 100 MB Run Size



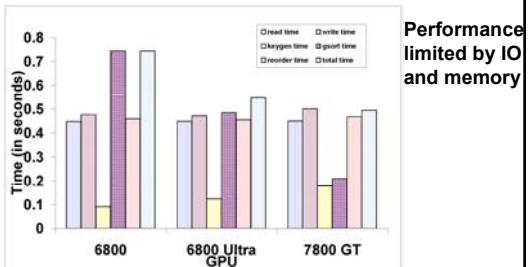
7800 GT:
100MB run
size

**Ideal work,
and 92% IO
efficient with
single CPU!**

Databases

THE UNIVERSITY OF NORTH CAROLINA, CHAPEL HILL

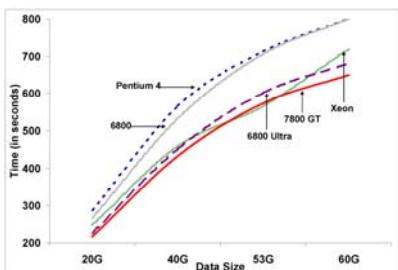
Task Parallelism



Databases

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Overall Performance

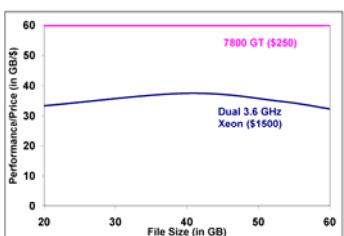


Faster and more scalable than Dual Xeon processors (3.6 GHz)!

Databases @Carnegie Mellon

THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL

Performance/\$



1.8x faster than
current Terabyte
sorter

World's best performance/\$ system

*N. Govindaraju, J. Gray, R. Kumar, D. Manocha,
Proc. Of ACM SIGMOD 06*

<http://research.microsoft.com/barc/SortBenchMark/>

Databases @Carnegie Mellon

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Advantages

- Exploit high memory bandwidth on GPUs
 - Higher memory performance than CPU-based algorithms
- High I/O performance due to large run sizes

Databases

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Advantages

- ➊ Offload work from CPUs
 - CPU cycles well-utilized for resource management
- ➋ Scalable solution for large databases
- ➌ Best performance/price solution for terabyte sorting

Databases @Carnegie Mellon

THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL

Applications

- Frequency estimation [Manku and Motwani 02]
- Quantile estimation [Greenwald and Khanna 01, 04]
- Sliding windows [Arasu and Manku 04]

Databases
@Carnegie Mellon

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Outline

- Graphics Processor Overview
- Mapping Computation to GPUs
- Database and data mining applications
 - Database queries
 - Quantile and frequency queries
 - External memory sorting
 - Scientific computations
- Summary

Databases

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Scientific Computations

- Applied extensively in data mining algorithms
 - Least square fits, dimensionality reduction, classification etc.
- We present mapping of LU-decomposition on GPUs
 - Extensions to QR-decomposition, singular value decomposition (GPU-LAPACK)

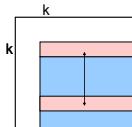
Databases

THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL

*N. Galoppo, N. Govindaraju, M. Henson, D. Manocha,
Proc. Of ACM SuperComputing 05*

LU decomposition

- Sequence of row eliminations:
 - Scale and add: $A(i,j) = A(i,j) - A(i,k) A(k,j)$
 - Input data mapping: 2 distinct memory areas
 - No data dependencies
- Pivoting: row/column swap
 - Pointer-swap vs. data copy



Databases

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

LU decomposition

- ➊ Theoretical complexity: $2/3n^3 + O(n^2)$
- ➋ Performance <> Architecture
 - ➌ Order of operations
 - ➌ Data access (latency)
 - ➌ Memory bandwidth

Commodity CPUs

• LINPACK Benchmark:

Motivation for LU-GPU

- LU decomposition maps well:
 - Stream program
 - Few data dependencies
- Pivoting
 - Parallel pivot search
 - Exploit large memory bandwidth

GPU based algorithms

- Data representation
- Algorithm mapping

Databases @Carnegie Mellon

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Data representation

- Matrix elements
 - 2D texture memory
 - One-to-one mapping
- Texture memory = on-board memory
 - Exploit bandwidth
 - Avoid CPU-GPU data transfer

Databases @Carnegie Mellon

THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL

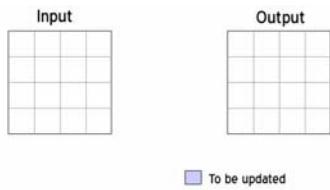
Stream computation

- Rasterize quadrilaterals
 - Generates computation stream
 - Invokes SIMD units
 - Rasterization simulates blocking
- Rasterization pass = row elimination
- Alternating memory regions

Databases @Carnegie Mellon

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Stream computation



Databases

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Benchmarks

Commodity CPU

3.4 GHz Pentium IV with Hyper-Threading

1 MB L2 cache

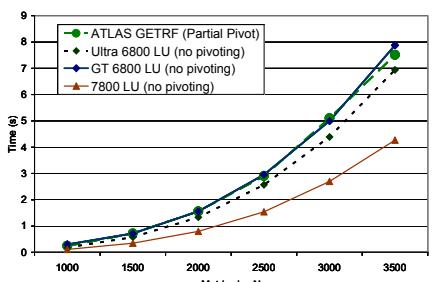
LAPACK `getrf()` (blocked algorithm, SSE-optimized ATLAS library)

GPU	SIMD units	Core clock	Memory	Memory clock
6800 GT	12	350 MHz	256 Mb	900 MHz
6800 Ultra	16	425 MHz	256 Mb	1100 MHz
7800 Ultra	24	430 MHz	256 Mb	1200 MHz

Databases

THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL

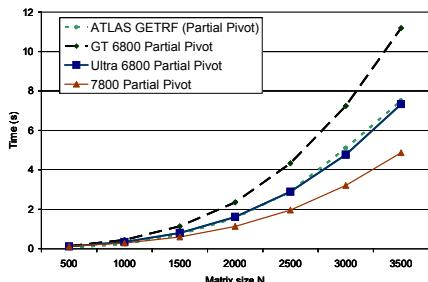
Results: No pivoting



Databases
@Carnegie Mellon

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

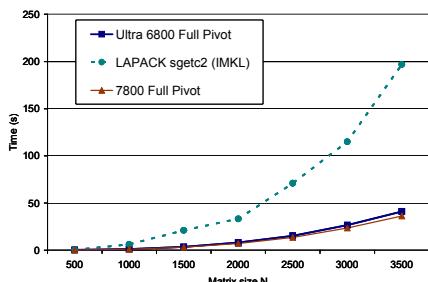
Results: Partial pivoting



Databases
@Carnegie Mellon

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Results: Full Pivoting



Databases
@Carnegie Mellon

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

LUGPU Library

<http://gamma.cs.unc.edu/LUGPULIB>

Databases
@Carnegie Mellon

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Outline

- Graphics Processor Overview
- Mapping Computation to GPUs
- Database and data mining applications
- Summary

Conclusions

Novel algorithms to perform

- Database management on GPUs
 - Evaluation of predicates, boolean combinations of predicates, aggregations and join queries
- Data streaming on GPUs
 - Quantile and Frequency estimation
- Terabyte data management
- Data mining applications
 - LU decomposition, QR decomposition

Conclusions

- Algorithms take into account GPU limitations
 - No data rearrangements
 - No frame buffer readbacks
- Preliminary comparisons with optimized CPU implementations is promising
- GPU as a useful co-processor

GPGP: GPU-based Algorithms

- Spatial Database computations
 - Sun, Agrawal, Abbadi 2003
 - Bandi, Sun, Agrawal, Abbadi 2004
- Data streaming
 - Buck et al. 04, McCool et al. 04
- Scientific computations
 - Bolz et al. 03, Kruger et al. 03
- Compilers
 - Brook-GPU (Stanford), Sh (U. Waterloo), Accelerator (Microsoft Research)
- ...

More at <http://www.gpgpu.org>

Databases
@Carnegie Mellon

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Advantages

- Algorithms progress at GPU growth rate
- Offload CPU work
 - Streaming processor parallel to CPU
- Fast
 - Massive parallelism on GPUs
 - High memory bandwidth
- Commodity hardware!

Databases
@Carnegie Mellon

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL