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Query Processing on GPUs

Graphics Processor Overview
Mapping Computation to GPUs
Database and data mining 
applications

Database queries
Quantile and frequency queries
External memory sorting
Scientific computations
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CPU vs. GPU

CPU
(3 GHz)

System Memory
(2 GB)

AGP Memory
(512 MB)

PCI-E Bus
(4 GB/s)

Video Memory
(512 MB)

GPU (690 MHz)

Video Memory
(512 MB)

GPU (690 MHz)

2 x 1 MB Cache
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Query Processing on CPUs

Slow random memory accesses
Small CPU caches (< 2MB)
Random memory accesses slower than even sequential disk 
accesses

High memory latency
Huge memory to compute gap!

CPUs are deeply pipelined
Pentium 4 has 30 pipeline stages
Do not hide latency - high cycles per instruction (CPI)

CPU is under-utilized for data intensive 
applications
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Graphics Processing Units (GPUs)

Commodity processor for graphics 
applications
Massively parallel vector processors
High memory bandwidth

Low memory latency pipeline
Programmable

High growth rate
Power-efficient
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GPU: Commodity Processor

Cell phones Laptops Consoles

PSP
Desktops
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Graphics Processing Units (GPUs)

Commodity processor for graphics 
applications
Massively parallel vector processors

10x more operations per sec than CPUs

High memory bandwidth
Low memory latency pipeline
Programmable

High growth rate
Power-efficient
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Parallelism on GPUs

Graphics FLOPS

GPU – 1.3 TFLOPS

CPU – 25.6 GFLOPS 
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Graphics Processing Units (GPUs)

Commodity processor for graphics 
applications
Massively parallel vector processors
High memory bandwidth

Low memory latency pipeline
Programmable
10x more memory bandwidth than CPUs

High growth rate
Power-efficient
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vertex

setup
rasterizer

pixel

texture

image

per-pixel texture, 
fp16 blending

Graphics Pipeline

programmable vertex
processing (fp32)

programmable per-
pixel math (fp32)

polygon
polygon setup,
culling, rasterization

Z-buf, fp16 blending,
anti-alias (MRT) memory

Hides 
memory 
latency!!
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data

setup
rasterizer

data

data

data

data fetch, 
fp16 blending

NON-Graphics Pipeline 
Abstraction

programmable MIMD
processing (fp32)

programmable SIMD
processing (fp32)

lists
SIMD
“rasterization”

predicated write, fp16
blend, multiple output memory

Courtesy: 
David Kirk,
Chief Scientist, 
NVIDIA
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Graphics Processing Units (GPUs)

Commodity processor for graphics 
applications
Massively parallel vector processors
High memory bandwidth

Low memory latency pipeline
Programmable

High growth rate
Power-efficient
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Exploiting Technology Moving
Faster than Moore’s Law

CPU Growth Rate

GPU Growth Rate
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Graphics Processing Units (GPUs)

Commodity processor for graphics 
applications
Massively parallel vector processors
High memory bandwidth

Low memory latency pipeline
Programmable

High growth rate
Power-efficient
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CPU vs. GPU
(Henry Moreton: NVIDIA, Aug. 2005)

101.620.00.2GFLOPS/W
0.565130Power (W)
50.8130025.6Graphics GFLOPs

GPU/CPU7800GTXPEE 840
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Outline

Graphics Processor Overview
Mapping Computation to GPUs
Database and data mining 
applications

Database queries
Quantile and frequency queries
External memory sorting
Scientific computations

Summary
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The Importance of Data 
Parallelism

GPUs are designed for graphics
Highly parallel tasks

GPUs process independent vertices & 
fragments

Temporary registers are zeroed
No shared or static data
No read-modify-write buffers

Data-parallel processing
GPUs architecture is ALU-heavy

• Multiple vertex & pixel pipelines, multiple ALUs per 
pipe

Hide memory latency (with more computation)
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Arithmetic Intensity

Arithmetic intensity
ops per word transferred
Computation / bandwidth

Best to have high arithmetic intensity
Ideal GPGPU apps have

Large data sets
High parallelism
Minimal dependencies between data elements

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Data Streams & Kernels

Streams
Collection of records requiring similar 
computation

• Vertex positions, Voxels, FEM cells, etc.

Provide data parallelism

Kernels
Functions applied to each element in stream

• transforms, PDE, …

Few dependencies between stream elements
• Encourage high Arithmetic Intensity
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Example: Simulation Grid

Common GPGPU computation style
Textures represent computational grids = streams

Many computations map to grids
Matrix algebra
Image & Volume processing
Physically-based simulation

Non-grid streams can be 
mapped to grids
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Stream Computation

Grid Simulation algorithm
Made up of steps
Each step updates entire grid
Must complete before next step can begin

Grid is a stream, steps are kernels
Kernel applied to each stream element

Cloud 
simulation 
algorithm
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Scatter vs. Gather

Grid communication
Grid cells share information
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Computational Resources 
Inventory

Programmable parallel processors
Vertex & Fragment pipelines

Rasterizer
Mostly useful for interpolating addresses 
(texture coordinates) and per-vertex constants

Texture unit
Read-only memory interface

Render to texture
Write-only memory interface
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Vertex Processor

Fully programmable (SIMD / MIMD)
Processes 4-vectors (RGBA / XYZW)
Capable of scatter but not gather

Can change the location of current vertex
Cannot read info from other vertices
Can only read a small constant memory

Latest GPUs: Vertex Texture Fetch
Random access memory for vertices
≈Gather (But not from the vertex stream itself)
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Fragment Processor

Fully programmable (SIMD)
Processes 4-component vectors (RGBA / 
XYZW)
Random access memory read (textures)
Capable of gather but not scatter

RAM read (texture fetch), but no RAM write
Output address fixed to a specific pixel

Typically more useful than vertex processor
More fragment pipelines than vertex pipelines
Direct output (fragment processor is at end of pipeline)
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CPU-GPU Analogies

CPU programming is familiar
GPU programming is graphics-centric

Analogies can aid understanding

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

CPU-GPU Analogies

CPU GPU

Stream / Data Array =    Texture
Memory Read          =    Texture Sample
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Kernels

Kernel / loop body / algorithm step   =   
Fragment Program

CPU GPU
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Feedback

Each algorithm step 
depends on the results of 
previous steps

Each time step depends on 
the results of the previous 
time step
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Feedback

.
Grid[i][j]= x;

.

.

.

Array Write =  Render to Texture

CPU GPU
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GPU Simulation Overview

Analogies lead to implementation
Algorithm steps are fragment programs

• Computational kernels
Current state is stored in textures
Feedback via render to texture

One question: how do we invoke 
computation?
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Invoking Computation

Must invoke computation at each 
pixel

Just draw geometry!
Most common GPGPU invocation is a full-screen 
quad

Other Useful Analogies
Rasterization = Kernel Invocation
Texture Coordinates = Computational Domain
Vertex Coordinates = Computational Range
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Typical “Grid” Computation

Initialize “view” (so that pixels:texels::1:1)
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(0, 1, 0, 1, 0, 1);
glViewport(0, 0, outTexResX, outTexResY);

For each algorithm step:
Activate render-to-texture
Setup input textures, fragment program
Draw a full-screen quad (1x1)
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Example: N-Body 
Simulation

Brute force 
N = 8192 bodies
N2 gravity computations

64M force comps. / frame
~25 flops per force
10.5 fps 
17+ GFLOPs sustained

GeForce 7800 GTX

Nyland, Harris, Prins,
GP2 2004 poster
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Computing Gravitational 
Forces

Each body attracts all other bodies
N bodies, so N2 forces

Draw into an NxN buffer
Pixel (i,j) computes force between bodies i and 
j
Very simple fragment program

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Computing Gravitational 
Forces

NN--body force Texturebody force Texture

force(force(ii,,jj))

NNii

NN

00

j

ii

jj

Body Position TextureBody Position Texture

F(i,j) = gMiMj / r(i,j)2,

r(i,j) = |pos(i) - pos(j)|

Force is proportional to the inverse square Force is proportional to the inverse square 
of the distance between bodiesof the distance between bodies
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Computing Gravitational 
Forces

float4 force(float2 ij : WPOS,
uniform sampler2D pos) : COLOR0

{
// Pos texture is 2D, not 1D, so we need to
// convert body index into 2D coords for pos tex
float4 iCoords = getBodyCoords(ij);
float4 iPosMass = texture2D(pos, iCoords.xy);
float4 jPosMass = texture2D(pos, iCoords.zw);
float3 dir = iPos.xyz - jPos.xyz;
float r2 = dot(dir, dir);
dir = normalize(dir);
return dir * g * iPosMass.w * jPosMass.w / r2;

}
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Computing Total Force

Have: array of (i,j) 
forces
Need: total force on 
each particle i

Sum of each column of the 
force array

Can do all N columns 
in parallel

This is called a Parallel Reduction

force(i,j)

NN--body force Texturebody force Texture

NNii

NN

00
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Parallel Reductions

1D parallel reduction: 
sum N columns or rows in 
parallel
add two halves of texture 
together
repeatedly...
Until we’re left with a 
single row of texels ++

NNxxNN

NNx(x(NN/2)/2)
NNx(x(NN/4)/4)
NNx1x1

Requires logRequires log22NN stepssteps
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Update Positions and 
Velocities

Now we have a 1-D array of total 
forces

One per body

Update Velocity
u(i,t+dt) = u(i,t) + Ftotal(i) * dt
Simple pixel shader reads previous velocity and 
force textures, creates new velocity texture

Update Position
x(i, t+dt) = x(i,t) + u(i,t) * dt
Simple pixel shader reads previous position and 
velocity textures, creates new position texture
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Summary

Presented mappings of basic 
computational concepts to GPUs

Basic concepts and terminology
For introductory “Hello GPGPU” sample code, 
see http://www.gpgpu.org/developer

Only the beginning:
Rest of course presents advanced techniques, 
strategies, and specific algorithms.
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Outline

Graphics Processor Overview
Mapping Computation to GPUs
Applications

Database queries
Quantile and frequency queries
External memory sorting
Scientific computations

Summary
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Basic DB Operations

Basic SQL query 
Select   A
From T
Where C

A= attributes or aggregations (SUM, COUNT, 
MAX etc)

T=relational table
C= Boolean Combination of Predicates (using 

operators AND, OR, NOT)

N. Govindaraju, B. Lloyd, W. Wang, M. Lin and D. Manocha , 
Proc. of ACM SIGMOD 04
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Database Operations

Predicates 
ai op constant or ai op aj

op: <,>,<=,>=,!=, =, TRUE, FALSE

Boolean combinations 
Conjunctive Normal Form (CNF)

Aggregations
COUNT, SUM, MAX, MEDIAN, AVG
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Data Representation

Attribute values ai are stored in 2D 
textures on the GPU
A fragment program is used to copy 
attributes to the depth  buffer

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
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Copy Time to the Depth 
Buffer 
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Predicate Evaluation

ai op constant (d)
Copy the attribute values ai into depth buffer
Specify the comparison operation used in the 
depth test
Draw a screen filling quad at depth d and 
perform the depth test
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Screen

P
If ( ai op  d )pass fragment

Else 

reject fragment

ai op d

d

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
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Predicate Evaluation

CPU implementation — Intel compiler 7.1 with SIMD optimizations

GPU is nearly 20 times faster than 2.8 GHz Xeon
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Predicate Evaluation

ai op aj
Equivalent to  (ai – aj) op 0 
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Boolean Combination

CNF: 
(A1 AND A2 AND … AND Ak) where
Ai = (Bi

1 OR Bi
2 OR … OR Bi

mi ) 

Performed using stencil test recursively
C1 = (TRUE AND A1) = A1

Ci = (A1 AND A2 AND … AND Ai) = (Ci-1 AND Ai)

Different stencil values are used to code 
the outcome of Ci

Positive stencil values — pass predicate evaluation 
Zero — fail predicate evaluation
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A1 AND A2

A1

B2
1

B2
2

B2
3

A2 = (B2
1 OR B2

2 OR B2
3 )
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A1 AND A2

A1

Stencil value = 1
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A1 AND A2

A1

Stencil value = 0

Stencil value = 1

TRUE AND A1
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A1 AND A2

A1

Stencil = 0

Stencil = 1

B2
1

Stencil=2

B2
2

Stencil=2

B2
3

Stencil=2
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A1 AND A2

A1

Stencil = 0

Stencil = 1

B2
1

B2
2

B2
3

Stencil=2

Stencil=2
Stencil=2
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A1 AND A2

Stencil = 0

Stencil=2
A1 AND B2

1

Stencil = 2
A1 AND B2

2 Stencil=2

A1 AND B2
3
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Multi-Attribute Query
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Range Query

Compute ai within [low, high]
Evaluated as ( ai >= low ) AND ( ai <= high )

Use NVIDIA depth bounds test to 
evaluate both conditionals in a single 
clock cycle 
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Range Query

GPU is nearly 20 times faster than 2.8 GHz Xeon
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Aggregations

COUNT, MAX, MIN, SUM, AVG
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COUNT

Use occlusion queries to get the number of 
pixels passing the tests
Syntax:

Begin occlusion query
Perform database operation
End occlusion query
Get count of number of attributes that passed database 
operation

Involves no additional overhead!
Efficient selectivity computation
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MAX, MIN, MEDIAN

Kth-largest number
Traditional algorithms require data 
rearrangements
We perform 

no data rearrangements 
no frame buffer readbacks
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K-th Largest Number

Given a set S of values
c(m) —number of values ≥ m
vk — the k-th largest number

We have
If c(m) > k-1, then m ≤ vk

If c(m) ≤ k-1, then m > vk

Evaluate one bit at a time
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0011 1011 1101

0111 0101 0001

0111 1010 0010

m = 0000
v2 = 1011

2nd Largest in 9 Values

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

0011 1011 1101

0111 0101 0001

0111 1010 0010

m = 1000
v2 = 1011

Draw a Quad at Depth 8 
Compute c(1000)
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0011 1011 1101

0111 0101 0001

0111 1010 0010

m = 1000
v2 = 1011

c(m) = 3 

1st bit = 1
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0011 1011 1101

0111 0101 0001

0111 1010 0010

m = 1100
v2 = 1011

Draw a Quad at Depth 12 
Compute c(1100)
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0011 1011 1101

0111 0101 0001

0111 1010 0010

m = 1100
v2 = 1011

c(m) = 1 

2nd bit = 0
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0011 1011 1101

0111 0101 0001

0111 1010 0010

m = 1010
v2 = 1011

Draw a Quad at Depth 10 
Compute c(1010)
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0011 1011 1101

0111 0101 0001

0111 1010 0010

m = 1010
v2 = 1011

c(m) = 3 

3rd bit = 1

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

0011 1011 1101

0111 0101 0001

0111 1010 0010

m = 1011
v2 = 1011

Draw a Quad at Depth 11 
Compute c(1011)
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0011 1011 1101

0111 0101 0001

0111 1010 0010

m = 1011
v2 = 1011

c(m) = 2 

4th bit = 1
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Our algorithm

Initialize m to 0
Start with the MSB and scan all bits 
till LSB
At each bit, put 1 in the 
corresponding bit-position of m
If c(m) < k, make that bit 0
Proceed to the next bit
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Median

GPU is nearly 6 times faster than 2.8 GHz Xeon!
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Outline

Graphics Processor Overview
Mapping Computation to GPUs
Database and data mining 
applications

Database queries
Quantile and frequency queries
External memory sorting
Scientific computations

Summary
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Streaming

Stream is a continuous sequence of data 
values arriving at a port

Many real world applications process data 
streams

Networking data, 
Stock marketing and financial data, 
Data collected from sensors
Data logs from web trackers

N. Govindaraju, N. Raghuvanshi, D. Manocha
Proc. Of ACM SIGMOD 05
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Stream Queries

Applications perform continuous queries and usually 
collect statistics on streams

Frequencies of elements
Quantiles in a sequence
And many more  (SUM, MEAN, VARIANCE, etc.)

Widely studied in databases, networking, 
computational geometry, theory of algorithms, etc.

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Stream Queries

Massive amounts of data is processed in 
real-time!

Memory limitations – estimate the query 
results instead of exact results
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Approximate Queries

Stream historyStream
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Approximate Queries

Stream
Discarded InformationSliding Window
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ε-Approximate Queries

ϕ-quantile : element with rank ϕ N, 0 < ϕ < 1

ε-approximate ϕ-quantile : Any element with rank 
(ϕ ± ε) N 0 < ε < 1

Frequency : Number of occurrences of an element f

ε-approximate frequency : Any element with frequency 
f ≥ f’ ≥ (f - εN), 0 < ε < 1
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ε-Approximate Queries

Queries computed using a ε-approximate
summary data structure

Performed by batch insertion a subset of 
window elements 

Ref: [Manku and Motwani 2002, Greenwald and 
Khanna 2004, Arasu and Manku 2004]
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ε-Approximate Summary 
Construction

Histogram 
Computation

Merge 
Operation

Compress
Operation

ε-Approximate Summary

ε-Approximate Summary

Window of elements
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ε-Approximate Summary 
Construction

Histogram 
Computation

Merge 
Operation

Compress
Operation

Computes histogram by 
sorting the elements

Window of elements
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ε-Approximate Summary 
Construction

Histogram 
Computation

Merge 
Operation

Compress
Operation

Inserts a subset of the 
histogram into the summary

ε-Approximate Summary
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ε-Approximate Summary 
Construction

Histogram 
Computation

Merge 
Operation

Compress
Operation

ε-Approximate Summary

Deletes elements 
from the summary
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ε-Approximate Summary 
Construction

Histogram 
Computation

Merge 
Operation

Compress
Operation

ε-Approximate Summary

Window of elements
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ε-Approximate Summary 
Construction

Histogram 
Computation

Merge 
Operation

Compress
Operation

70 - 95% of the 
entire time!

Window of elements

ε-Approximate Summary
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Timing Breakup: 
Frequency Estimation 

Sorting takes nearly 90% time on CPUs

Computational Performance 

0

5
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15
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0.3814 0.1907 0.09536 0.04768 0.02384 0.01192
Epsilon*105
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e 
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Sorting Time
Merge time

Sorting
Merge + 
Compress
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Sorting on CPUs

Well studied
Optimized Quicksort performs better 
[LaMarca and Ladner 1997]

Performance mainly governed by cache sizes
Large overhead per cache miss – nearly 100 clock 
cycles
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Sorting on CPUs

Sorting incurs cache misses
Irregular data access patterns in sorting 
Small cache sizes (few KB)

Additional stalls - branch mispredictions

Degrading performance in new CPUs! 
[LaMarca and Ladner 97]
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Sorting on GPUs

Use the high data parallelism, and memory 
bandwidth on GPUs for fast sorting

Many sorting algorithms require writes to 
arbitrary locations

Not supported on GPUs
Map algorithms with deterministic access pattern 
to GPUs (e.g., periodic balanced sorting network 
[Dowd 89])
Represent data in 2D images

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
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Sorting Networks

Multi-stage algorithm
Each stage involves multiple steps

In each step
1. Compare one pixel against exactly one other pixel
2. Perform a conditional assignment (MIN or MAX) at 

each pixel
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2D Memory Addressing

GPUs optimized for 2D representations
Map 1D arrays to 2D arrays
Minimum and maximum regions mapped to row-
aligned or column-aligned quads

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
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1D – 2D Mapping

MIN MAX



33

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

1D – 2D Mapping

MIN

Effectively reduce instructions 
per element
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Sorting on GPU: Pipelining and 
Parallelism

Input Vertices

Texturing, Caching 
and 2D Quad

Comparisons

Sequential Writes

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
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Sorting Analysis

Performed entirely on GPU
O(log2n) steps
Each step performs n comparisons
Total comparisons: O(n log2n) 

Data sent and readback from GPU
Bandwidth: O(n) — low bandwidth requirement 
from CPU to GPU
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Comparison with GPU-Based 
Algorithms

3-6x faster than 
prior GPU-based 
algorithms! 

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
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GPU vs. High-End Multi-Core 
CPUs

2-2.5x faster than
Intel high-end 
processors

Single GPU 
performance 
comparable to
high-end dual core
Athlon

Hand-optimized CPU code from Intel Corporation!

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
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GPU Cache Model

Small data caches
Low memory latency
Vendors do not disclose cache information –
critical for scientific computing on GPUs

We design simple model
Determine cache parameters (block and cache 
sizes)
Improve sorting performance

N. Govindaraju, J. Gray, D. Manocha
Microsoft Research TR 2005
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Cache Evictions

Cache 
Eviction

Cache 
Eviction

Cache 
Eviction

Cache
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Cache issues

Cache 
Eviction

Cache 
Eviction

Cache 
Eviction

h

Cache misses per step = 2 W H/ (h B) 

Cache
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Analysis

lg n possible steps in bitonic sorting 
network

Step k is performed (lg n – k+1) times and 
h = 2k-1

Data fetched from memory = 2 n f(B)
where 
f(B)=(B-1) (lg n -1) + 0.5 (lg n –lg B)2
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Block Sizes on GPUs
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Cache-Efficient Algorithm

h

Cache

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
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Cache Sizes on GPUs
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Cache-Efficient Algorithm 
Performance
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Super-Moore’s Law Growth

50 GB/s on a 
single GPU

Peak Performance: 
Effectively hide 
memory latency 
with 15 GOP/s
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Frequency Estimation
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Applications: Frequency 
Estimation 
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Quantile Estimation

Window

Sort

Sample (error=ε/2)
Merge Operation

error ε1

merge with

error ε2error max(ε1, ε2)
Compress Operation

error ε

Uniformly sample

B elements
error <= ε+1/2B

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Applications: Quantile
Estimation 
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Applications: Sliding Windows
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Advantages

Sorting performed as stream 
operations entirely on GPUs

Uses specialized functionality of texture 
mapping and blending - high performance

Low bandwidth requirement
<10% of total computation time

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
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Outline

Graphics Processor Overview
Mapping Computation to GPUs
Database and data mining 
applications

Database queries
Quantile and frequency queries
External memory sorting
Scientific computations

Summary
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External Memory Sorting

Performed on Terabyte-scale databases

Two phases algorithm [Vitter01, Salzberg90, 
Nyberg94, Nyberg95]

Limited main memory
First phase – partitions input file into large data chunks 
and writes sorted chunks known as “Runs”
Second phase – Merge the “Runs” to generate the sorted 
file 

N. Govindaraju, J. Gray, R. Kumar, D. Manocha, 
Proc. Of ACM SIGMOD 06
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External Memory Sorting

Performance mainly governed by I/O 

Salzberg Analysis: Given the main 
memory size M and the file size N, if the 
I/O read size per run is T in phase 2, 
external memory sorting achieves efficient 
I/O performance if and only if the run size 
R in phase 1 is given by R ≈ √(TN)

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
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Salzberg Analysis

If N=100GB, T=2MB, then 
R ≈ 230MB 

Large data sorting is inefficient on 
CPUs

R » CPU cache sizes – memory latency



41

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

External memory sorting

External memory sorting on CPUs has 
low performance due to 

High memory latency
Or low I/O performance

Our algorithm 
Sorts large data arrays on GPUs
Perform I/O operations in parallel on CPUs

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
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GPUTeraSort

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
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I/O Performance

Salzberg Analysis: 
100 MB Run Size
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I/O Performance

Pentium IV: 
25MB  Run 
Size

Less work 
and only 75% 
IO efficient!

Salzberg Analysis: 
100 MB Run Size

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
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I/O Performance

Dual 3.6 GHz 
Xeons: 25MB 
Run size

More cores, 
less work but 
only 85% IO 
efficient!

Salzberg Analysis: 
100 MB Run Size

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
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I/O Performance

7800 GT: 
100MB run 
size

Ideal work, 
and 92% IO 
efficient with 
single CPU!

Salzberg Analysis: 
100 MB Run Size
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Task Parallelism 

Performance 
limited by IO 
and memory

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
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Overall Performance

Faster and more scalable than Dual Xeon processors (3.6 GHz)! 

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
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1.8x faster than 
current Terabyte 
sorter

World’s best 
performance/$ 
system

N. Govindaraju, J. Gray, R. Kumar, D. Manocha, 
Proc. Of ACM SIGMOD 06

http://research.microsoft.com/barc/SortBenchMark/

Performance/$
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Advantages

Exploit high memory bandwidth on 
GPUs

Higher memory performance than CPU-based 
algorithms

High I/O performance due to large 
run sizes

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
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Advantages

Offload work from CPUs
CPU cycles well-utilized for resource management

Scalable solution for large databases

Best performance/price solution for 
terabyte sorting

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
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Applications

Frequency estimation [Manku and Motwani 02]

Quantile estimation [Greenwald and Khanna 01, 04]

Sliding windows [Arasu and Manku 04]
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Outline

Graphics Processor Overview
Mapping Computation to GPUs
Database and data mining 
applications

Database queries
Quantile and frequency queries
External memory sorting
Scientific computations

Summary
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Scientific Computations

Applied extensively in data mining 
algorithms

Least square fits, dimensionality reduction, 
classification etc. 

We present mapping of LU-decomposition 
on GPUs

Extensions to QR-decomposition, singular value 
decomposition (GPU-LAPACK)

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
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LU decomposition

Sequence of row eliminations: 
Scale and add: A(i,j) = A(i,j) – A(i,k) A(k,j)
Input data mapping: 2 distinct memory areas
No data dependencies

Pivoting: row/column swap
Pointer-swap vs. data copy

k

k

k

N. Galoppo, N. Govindaraju, M. Henson, D. Manocha, 
Proc. Of ACM SuperComputing 05
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LU decomposition

Theoretical complexity: 2/3n3 + O(n2)

Performance <> Architecture
Order of operations
Data access (latency)
Memory bandwidth

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
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Commodity CPUs

LINPACK Benchmark:

Intel Pentium 4, 3.06 GHz: 2.88 GFLOPs/s 

(Dongarra, Oct’05)

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
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Motivation for LU-GPU

LU decomposition maps well:
Stream program
Few data dependencies

Pivoting
Parallel pivot search
Exploit large memory bandwidth
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GPU based algorithms

Data representation

Algorithm mapping

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
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Data representation

Matrix elements 
2D texture memory
One-to-one mapping

Texture memory = on-board memory
Exploit bandwidth
Avoid CPU-GPU data transfer

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
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Stream computation

Rasterize quadrilaterals
Generates computation stream
Invokes SIMD units
Rasterization simulates blocking

Rasterization pass = row elimination

Alternating memory regions
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Stream computation
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Benchmarks

Memory clockMemoryCore clockSIMD unitsGPU

430 MHz

425 MHz

350 MHz

24

16

12

1200 MHz256 Mb7800 Ultra

1100 MHz256 Mb6800 Ultra

900 MHz256 Mb6800 GT

3.4 GHz Pentium IV with Hyper-Threading
1 MB L2 cache
LAPACK getrf() (blocked algorithm, SSE-optimized ATLAS library)

Commodity CPU
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Results: No pivoting
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Results: Partial pivoting
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Results: Full Pivoting
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LUGPU Library

http://gamma.cs.unc.edu/LUGPULIB
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Outline

Graphics Processor Overview
Mapping Computation to GPUs
Database and data mining 
applications
Summary
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Conclusions

Novel algorithms to perform 
Database management on GPUs
• Evaluation of predicates, boolean combinations 

of predicates, aggregations and join queries

Data streaming on GPUs
• Quantile and Frequency estimation

Terabyte data management
Data mining applications
• LU decomposition, QR decomposition
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Conclusions

Algorithms take into account GPU 
limitations

No data rearrangements
No frame buffer readbacks

Preliminary comparisons with 
optimized CPU implementations is 
promising
GPU as a useful co-processor
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GPGP: GPU-based Algorithms

Spatial Database computations
Sun, Agrawal, Abbadi 2003
Bandi, Sun, Agrawal, Abbadi 2004

Data streaming
Buck et al. 04, McCool et al. 04 

Scientific computations
Bolz et al. 03, Kruger et al. 03

Compilers
Brook-GPU (Stanford), Sh (U. Waterloo), 
Accelerator (Microsoft Research)

…
More at http://www.gpgpu.org
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Advantages

Algorithms progress at GPU growth 
rate
Offload CPU work

Streaming processor parallel to CPU

Fast 
Massive parallelism on GPUs
High memory bandwidth

Commodity hardware!


