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CPU vs. GPU

System Memory

(2 GB)

AGP Memory
(512 MB)
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Query Processing on CPUs

@ Slow random memory accesses
& Small CPU caches (< 2MB)

© Random memory accesses slower than even sequential disk
accesses

@ High memory latency
© Huge memory to compute gap!
© CPUs are deeply pipelined
© Pentium 4 has 30 pipeline stages
< Do not hide latency - high cycles per instruction (CPI)
6 CPU is under-utilized for data intensive
applications
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GPU: Commodity Processor
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raphics Processing Units ( s)

& Commodity processor for graphics
applications

© Massively parallel vector processors
& 10x more operations per sec than CPUs

@
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Parallelism on GPUs

P

Graphics FLOPS

GPU - 1.3 TFLOPS
W CPU — 25.6 GFLOPS

LT
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Graphics Processing Units (GPUs)

© Commodity processor for graphics
applications

@ Massively parallel vector processors
& High memory bandwidth

< Low memory latency pipeline

& Programmable

& 10x more memory bandwidth than CPUs
]

(]
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Graphics Pipeline

"g_ polygon setup,

% culling, rasterization
Hides 2
latency!! £

=

3

. Z-buf, fp16 blending,

l 1mage anti-alias (MRT)
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NON-Graphics Pipeline
Abstraction
Courtesy:
David Kirk,
Chief Scientist,
NVIDIA
N programmable SIMD
data processing (fp32)
data
date predicated write, fp16
ata blend, multiple output
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Graphics Processing Units (GPUs)

® Commodity processor for graphics
applications

© Massively parallel vector processors

& High memory bandwidth

@ Low memory latency pipeline
@ Programmable

© High growth rate
@
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Graphics Processing Units (GPUs)

® Commodity processor for graphics
applications

& Massively parallel vector processors

& High memory bandwidth

& Low memory latency pipeline
@ Programmable

® High growth rate

< Power-efficient
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CPU vs. GPU

(Henry Moreton: NVIDIA, Aug. 2005)

PEE 840 7800GTX GPU/CPU

Graphics GFLOPs  25.6 1300 50.8
Power (W) 130 65 0.5
GFLOPS/W 0.2 20.0 101.6
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Outline

® Graphics Processor Overview
& Mapping Computation to GPUs
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applications
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@ Quantile and frequency queries
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The Importance of Data
Parallelism

= GPUs are designed for graphics
< Highly parallel tasks

@ GPUs process /independent vertices &
fragments
< Temporary registers are zeroed
& No shared or static data
< No read-modify-write buffers

< Data-parallel processing
& GPUs architecture is ALU-heavy
« Multiple vertex & pixel pipelines, multiple ALUs per
pipe
& Hide memory latency (with more computation)
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Arithmetic Intensity

© Arithmetic intensity

@ ops per word transferred

© Computation / bandwidth
© Best to have hijgh arithmetic intensity
& Ideal GPGPU apps have

@ Large data sets

& High parallelism

& Minimal dependencies between data elements
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@quesie Mellon The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL|

Data Streams & Kernels

& Streams
© Collection of records requiring similar
computation
* Vertex positions, Voxels, FEM cells, etc.
& Provide data parallelism
& Kernels
© Functions applied to each element in stream
 transforms, PDE, ...

© Few dependencies between stream elements
* Encourage high Arithmetic Intensity
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Example: Simulation Grid

& Common GPGPU computation style
< Textures represent computational grids = streams
€@ Many computations map to grids
& Matrix algebra et
< Image & Volume processing
< Physically-based simulation
& Non-grid streams can be
mapped to grids
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Stream Computation

Algorithm
_ - - - - advg‘:t
© Grid Simulation algorithm e
@ Made up of steps
© Each step updates entire grid w:_wmm
£ Must complete before next step can begin WIEE?;CE
obi
et
. . jacobi
© Grid is a stream, steps are kernels— 3
@ Kernel applied to each stream element 5
i u-grad(p) |
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Scatter vs. Gather

& Grid communication
€ Grid cells share information

Q Q
OIr0| Ok
) 3)

Scatter Gather

Databases

@Carnegie Mellon The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL




Computational Resources
Inventory

@ Programmable parallel processors
@ Vertex & Fragment pipelines
& Rasterizer

© Mostly useful for interpolating addresses
(texture coordinates) and per-vertex constants

& Texture unit
© Read-only memory interface
@ Render to texture
@ Write-only memory interface
Databases
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Vertex Processor

© Fully programmable (SIMD / MIMD)
< Processes 4-vectors (RGBA / XYZW)

@ Capable of scatter but not gather
& Can change the location of current vertex
< Cannot read info from other vertices
@ Can only read a small constant memory

@ Latest GPUs: Vertex Texture Fetch
© Random access memory for vertices
@ ~Gather (But not from the vertex stream itself)
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Fragment Processor

& Fully programmable (SIMD)

@ Processes 4-component vectors (RGBA /
XYZW)

& Random access memory read (textures)

@ Capable of gather but not scatter
& RAM read (texture fetch), but no RAM write
© Qutput address fixed to a specific pixel

@ Typically more useful than vertex processor
& More fragment pipelines than vertex pipelines

& Direct output (fragment processor is at end of pipeline)
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CPU-GPU Analogies

© CPU programming is familiar
© GPU programming is graphics-centric

& Analogies can aid understanding

Databases

@Camegie Mellon The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

CPU-GPU Analogies

GPU

Stream / Data Array
Memory Read

Texture
Texture Sample
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Kernels

[Tor Tt 3 = 17 3 Resme = 17 oea% froid advect ificat2 w1 MROS,
t out floatd aew : COLOR,
for (nt &= 17 &€ width - 1 ++d)
]
enifeen fleat dz, // tmastp
& valocity at this cell
LU Bt Al sniform flost dn, I} il cale
wnifors seplerRECT u. // velooity
#1 trace backwards along velocity field uniforn sawpisTRECT x] // state
Float x = (L= W= * tisestep / dx]}; t
float y = ¢ - Wy * tisestep / dyl) {f trace backwards along velscity fiald
floatd pos = &b - dt * StexFECT ki, wv) /[ dx
wrid .y) = grid bilewp . ¥
" sew = CALaxFECTD Llerp b, pos /
' C++ 3 P cg

Kernel / loop body / algorithm step =

Fragment Program
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Feedback

Algorithm
[*| advect
accelerate :
© Each algorithm step e
depends on the results of Trergence g
previous steps Y
e d
WS
© Each time step depends on : .:
the results of the previous i :|
time step
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@Cameg|e Mellon The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL
Feedback
CPU GPU
Grid[i] [j]= x; ||Texture [ |Fragment
unit Unit
L |
Array Write = Render to Texture
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GPU Simulation Overview

. i i Algorithm
© Analogies lead to implementation | .-
& Algorithm st?zps are fragment programs A RRIETE
« Computational kernels
© Current state is stored in textures water/thermo
@ Feedback via render to texture dvegenos
jacobi
acobi
. . jacobi
& One question: how do we invoke |[acbi
computation? :
[ Jacobi |
|_v-gradip) |
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Invoking Computation

© Must invoke computation at each
pixel
< Just draw geometry!
© Most common GPGPU invocation is a full-screen

quad

© Other Useful Analogies
@ Rasterization = Kernel Invocation
< Texture Coordinates = Computational Domain
@ Vertex Coordinates = Computational Range

Databases
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Typical “"Grid” Computation

© Initialize “view” (so that pixels:texels::1:1)
glMatrixMode (GL_MODELVIEW) ;
glLoadIdentity (7;
glMatrixMode (GL_PROJECTION) ;
glLoadIdentity () ;
glortho(0, 1, 0, 1, 0, 1);
glviewport (0, 0, outTexResX, outTexResY) ;

@ For each algorithm step:
& Activate render-to-texture

& Setup input textures, fragment program
& Draw a full-screen quad (1x1)

Databases
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Example: N-Body
Simulation

@ Brute force ®
€N = 8192 bodies
@ N2 gravity computations

@ 64M force comps. / frame
@ ~25 flops per force

€ 10.5 fpS Nyland, Harris, Prins,
. GP22004
© 17+ GFLOPs sustained poster
D atab;q(ég:sorce 7800 GTX
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Computing Gravitational
Forces

@ Each body attracts all other bodies
& N bodies, so M forces

< Draw into an A/ buffer
© Pixel (47) computes force between bodies /and
J
& Very simple fragment program

Databases
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Computing Gravitational
Forces

N-body force Texture Body Position Texture

Force is proportional to the inverse square
of the distance between bodies
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Computing Gravitational
Forces

float4 force(float2 ij : WPOS,
uniform sampler2D pos) : COLORO

// Pos texture is 2D, not 1D, so we need to

// convert body index into 2D coords for pos tex
float4 iCoords = getBodyCoords (ij);

float4 iPosMass = texture2D(pos, iCoords.xy);:
float4 jPosMass = texture2D(pos, iCoords.zw);
float3 dir = iPos.xyz - jPos.xyz;

float r2 = dot(dir, dir);

dir = normalize (dir);

return dir * g * iPosMass.w * jPosMass.w / r2;
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Computing Total Force

N-body force Texture

© Have: array of (i,j) N
forces
& Need: total force on

each particle i

< Sum of each column of the
force array

£ Can do all N columns

in parallel
0 i N
This is called a Parallel/ Reduction
Databases
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Parallel Reductions

< 1D parallel reduction:
@ sum N columns or rows in

parallel
© add two halves of texture
together
@ repeatedly... NxN
@ Until we're left with a
single row of texels + ;‘mﬁ
Nx1

| Requires log,N steps |

Databases
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Update Positions and
Velocities

& Now we have a 1-D array of total
forces
& One per body
© Update Velocity
© W(it+df) = w(iB) + Fpfi) * dt
© Simple pixel shader reads previous velocity and
force textures, creates new velocity texture
© Update Position
X, tradf) = X(j0) + (i) * dt
© Simple pixel shader reads previous position and

Database sveIOC|ty textures, creates new position texture
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Summary

© Presented mappings of basic
computational concepts to GPUs
< Basic concepts and terminology

© For introductory “Hello GPGPU” sample code,
see http://www.gpgpu.org/developer

© Only the beginning:
& Rest of course presents advanced techniques,
strategies, and specific algorithms.
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@Carnegie Mellon The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Outline

@ Graphics Processor Overview
€ Mapping Computation to GPUs
@ Applications

© Database queries

& Quantile and frequency queries

& External memory sorting

& Scientific computations

& Summary
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N. Govindaraju, B. Lloyd, W. Wang, M. Lin and D. Manocha ,
Proc. of ACM SIGMOD 04

Basic DB Operations

Basic SQL query
Select A
FromT
Where C
A= attributes or aggregations (SUM, COUNT,
MAX etc)

=relational table

C= Boolean Combination of Predicates (using
operators AND, OR, NOT)

Databases
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Database Operations

& Predicates

© g, op constant or g, 0p a;

eop: <,>,<=,>=,1=, =, TRUE, FALSE
& Boolean combinations

& Conjunctive Normal Form (CNF)
< Aggregations

@ COUNT, SUM, MAX, MEDIAN, AVG

Databases
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Data Representation

© Attribute values a; are stored in 2D
textures on the GPU

© A fragment program is used to copy
attributes to the depth buffer

Databases
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Copy Time to the Depth
Buffer
- Copy Time on GPU
g 2 | NV35
E 15-
g ]
o 1 i
'E 0.5 ‘ NV40
0+ g = — - - - T V
90K 160K 250K 360K 490K 640K 810K 1M
Number of Records
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Predicate Evaluation

© 3, op constant (d)
© Copy the attribute values a; into depth buffer

© Specify the comparison operation used in the
depth test

< Draw a screen filling quad at depth d and
perform the depth test
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a,opd
" (€ o @pass et
"y

Else

reject fragment

B4
\
\ .
Screen o d
a7
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Predicate Evaluation

CPU implementation — Intel compiler 7.1 with SIMD optimizations

[Cnvao i

el |BNVeS Relational Query
2 | mCPU Time |

]
£4
£
=2

-] EI EI

nl =l ,-—EI = r = i

90K 160K 250K 360K 490K 640K 810K 1M
Number of Records

GPU is nearly 20 times faster than 2.8 GHz Xeon
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Predicate Evaluation

©a,0p 3
& Equivalent to (a;— a;) op 0
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Boolean Combination

& CNF:
< (A, AND A, AND ... AND A,) where
A = (B, OR B, OR ... OR Bi;,;)
& Performed using stencil test recursively
& C, = (TRUEAND A,) = A,
< C= (A, AND A, AND ... AND A) = (C; AND A)
@ Different stencil values are used to code
the outcome of G
© Positive stencil values — pass predicate evaluation
© Zero — fail predicate evaluation

Databases
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A, AND A,

A, = (B2, OR B2, OR B?;)
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A, AND A,
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Stencil value = 1
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A, AND A,

TRUE AND A;
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A, AND A,
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A, AND A,
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A, AND A,
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Multi-Attribute Query

CIGPUTIme1|
||F1GPUTIme2 Multi-attribute Query
| [1GPUTIme3
FGPUTImed

EE-

14
12
1

Time (in msec)

160K 360K B40K
Number of Records
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Range Query

© Compute a, within [low, high]
© Evaluated as (@, >= low ) AND ( a; <= high )
& Use NVIDIA depth bounds test to
evaluate both conditionals in a single
clock cycle
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Range Query

16 1NV40
14 { |ENV3S

12 mcPuTime, Range Query

10 -

e EI EI
L 1]l

160K 250K 360K 490K 640K 810K
Number of Records

Time {in msec)
- =]

(=0 )

GPU is nearly 20 times faster than 2.8 GHz Xeon
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Aggregations

& COUNT, MAX, MIN, SUM, AVG
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COUNT

@ Use occlusion queries to get the number of
pixels passing the tests
& Syntax:
& Begin occlusion query
= Perform database operation
& End occlusion query

& Get count of number of attributes that passed database
operation

& Involves no additional overhead!
< Efficient selectivity computation

Databases
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MAX, MIN, MEDIAN

© Kth-largest number
€ Traditional algorithms require data
rearrangements

& We perform
< no data rearrangements
© no frame buffer readbacks
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K-th Largest Number

& Given a set S of values
© ¢(m) —number of values > m
@ v, — the k-th largest number
& We have
©If ¢(m) > k-1, then m < v,
©If ¢(m) < k-1, then m > v,
© Evaluate one bit at a time

Databases
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2nd | argest in 9 Values
0011 | 1011 | 1101 \'2:23‘1’2
0111 | 0101 | 0001
0111 | 1010 | 0010
Databases e UNIVERSITY of NORTH CAROLINA af CHAPEL HILL

Draw a Quad at Depth 8

Compute ¢(1000)
m = 1000
0011 | 1011 | 1101 v, = 1011
0111 | 0101 | 0001
0111 | 1010 | 0010
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1stbit=1
m = 1000
0011 | 1011 | 1101 v, = 1011
c(m)=3

0111 | 0101 | 0001

0111 | 1010 | 0010

Databases
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Draw a Quad at Depth 12

Compute ¢(1100)
m =1100
0011 | 1011 | 1101 v, = 1011
0111 | 0101 | 0001
0111 | 1010 | 0010
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2 bit =0
m = 1100
0011 | 1011 | 1101 v,=1011
c(m)=1
0111 | 0101 | 0001 (m)
0111 | 1010 | 0010
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Draw a Quad at Depth 10
Compute ¢(1010)

m=1010

0011 | 1011 | 1101 v, = 1011

0111 | 0101 | 0001

0111 | 1010 | 0010

Databases
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3rdbit=1

m=1010
0011 | 1011 | 1101 v, = 1011

c(m)=3
0111 | 0101 | 0001

0111 | 1010 | 0010

Databases
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Draw a Quad at Depth 11
Compute ¢(1011)
m=1011
0011 | 1011 | 1101 v, = 1011
0111 | 0101 | 0001
0111 | 1010 | 0010
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4th bit = 1
m =1011
0011 | 1011 | 1101 v, = 1011
c(m)=2

0111 | 0101 | 0001

0111 | 1010 | 0010

Databases

@Cqmegie Mellon The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL




Our algorithm

& Initialize mto 0

& Start with the MSB and scan all bits
till LSB

& At each bit, put 1 in the
corresponding bit-position of m

& If ¢(m) < k, make that bit 0

< Proceed to the next bit

Databases
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Median
16+ [ONvao |
i K-th Largest Number
o 14 1 |mNv3s 9
E 12 | |mCPU Time
< 10
@
E 61
- 4
| oa ol ol ol Ml
o lrmill M T EY HEY et .
90K 160K 250K 360K 490K 640K 810K 1M
Number of Records
GPU is nearly 6 times faster than 2.8 GHz Xeon!
Databases
@ngggg ME"Q" The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL|
Outline

® Graphics Processor Overview
& Mapping Computation to GPUs

© Database and data mining
applications
@ Database queries
© Quantile and frequency queries
@ External memory sorting
@ Scientific computations
& Summary
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N. Govindaraju, N. Raghuvanshi, D. Manocha

Strea m i ng Proc. Of ACM SIGMOD 05

@ Stream is a continuous sequence of data
values arriving at a port

& Many real world applications process data
streams
& Networking data,
& Stock marketing and financial data,
@ Data collected from sensors
© Data logs from web trackers
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@Carnegie Mellon The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Stream Queries

& Applications perform continuous queries and usually
collect statistics on streams
@ Frequencies of elements
© Quantiles in a sequence
© And many more (SUM, MEAN, VARIANCE, etc.)

© Widely studied in databases, networking,
computational geometry, theory of algorithms, etc.
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Stream Queries

© Massive amounts of data is processed in
real-time!

& Memory limitations — estimate the query
results instead of exact results
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Approximate Queries

24

Stream Stream history
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Approximate Queries

24

Sliding Window Discarded Information
Stream
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e-Approximate Queries

o-quantile : element with rank[¢ N[, 0 < ¢ < 1

g-approximate ¢-guantile : Any element with rank
[(pte)N] O0<e<1

Frequency : Number of occurrences of an element f
g-approximate frequency : Any element with frequency
f=f=(f-sN),0<s<1

Databases
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¢=-Approximate Queries

Queries computed using a s-approximate
summary data structure

& Performed by batch insertion a subset of
window elements

© Ref: [Manku and Motwani 2002, Greenwald and
Khanna 2004, Arasu and Manku 2004]
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e-Approximate Summary
Construction

Window of elements  g-Approximate Summary

Histogram Compress
Computation Operation

1

g-Approximate Summary
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e=-Approximate Summary
Construction

Window of elements

Histogram
Computation

Computes histogram by
sorting the elements
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e-Approximate Summary
Construction

g-Approximate Summary

Inserts a subset of the
histogram into the summary
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¢-Approximate Summary
Construction

Deletes elements
from the summary

Compress
Operation

l

g-Approximate Summary
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e=-Approximate Summary
Construction

Window of elements

Histogram Compress
Computation Operation

l

g-Approximate Summary
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¢-Approximate Summary
Construction

Window of elements

Merge Compress
Operation Operation
70 - 95% of the 1
entire time! e-Approximate Summary
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Timing Breakup:
Frequency Estimation

M Sorting

O Merge +
Compress

Computational Performance

Time (secs)
N
8

0.3814 01907 009536  0.04768 002384  0.01192
Epsilon*10°®

. o 4
DOMEgstakes nearly 90% time on CPUs
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Sorting on CPUs

& Well studied

© Optimized Quicksort performs better
[LaMarca and Ladner 1997]

& Performance mainly governed by cache sizes

@ Large overhead per cache miss — nearly 100 clock
cycles

Databases
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Sorting on CPUs

@ Sorting incurs cache misses
@ Irregular data access patterns in sorting
© Small cache sizes (few KB)

& Additional stalls - branch mispredictions

© Degrading performance in new CPUs!
[LaMarca and Ladner 97]
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Sorting on GPUs

@ Use the high data parallelism, and memory
bandwidth on GPUs for fast sorting

@ Many sorting algorithms require writes to
arbitrary locations
© Not supported on GPUs

© Map algorithms with deterministic access pattern
to GPUs (e.qg., periodic balanced sorting network
[Dowd 89])

© Represent data in 2D images

Databases
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Sorting Networks

@ Multi-stage algorithm
© Each stage involves multiple steps

@ In each step
1. Compare one pixel against exactly one other pixel

2. Perform a conditional assignment (MIN or MAX) at
each pixel

Databases
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2D Memory Addressing

& GPUs optimized for 2D representations
© Map 1D arrays to 2D arrays

& Minimum and maximum regions mapped to row-
aligned or column-aligned quads

Databases
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1D — 2D Mapping

MIN MAX

. N N N
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1D — 2D Mapping

Effectively reduce instructions
per element
MIN
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Sorting on GPU: Pipelining and
Parallelism

Texturing, Caching
and 2D Quad

Comparisons

Sequential Writes
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Sorting Analysis

& Performed entirely on GPU
© O(log?n) steps
© Each step performs n comparisons
@ Total comparisons: O(n log2n)

& Data sent and readback from GPU

© Bandwidth: O(n) — low bandwidth requirement
from CPU to GPU

Databases
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Comparison with GPU-Based
Algorithms
6 BitonicSart 3-6x faster th
{Purcell et al. 2003} -ox taster than
5 prior GPU-based
algorithms!
T 4 _—
g BitonicSort
£ 3 (Kipfe, at al. 2005)
g e
-z <. PBEN
. (Govindaraju et al. 2005)
PUTeraSort
[
[ 1000000 2000000 3000000 4000000 5000000
Number of Records
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GPU vs. High-End Multi-Core
CPUs

Intel P4 Extreme Edition with HT
-
0.2 Intel Pefitium D 2-2.5x .faSter than
B4D- Intel high-end

7 processors
_oas R
F .~
: MD Athlon X2 4800+ i e G
£ o e performance

VIDIA 7900 GTX comparable to
high-end dual core|
Athlon

.08

oM Number of Records "

Hand-optimized CPU code from Intel Corporation!
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N. Govindaraju, J. Gray, D. Manocha

G PU Cache MO del Microsoft Research TR 2005

& Small data caches
& Low memory latency

© Vendors do not disclose cache information —
critical for scientific computing on GPUs

& We design simple model
© Determine cache parameters (block and cache
sizes)
© Improve sorting performance
Databases
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Cache Evictions

Cache

Cache Cache Cache
DafeiBiggelviction Eviction
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Cache issues

h
Cache misses per step =2 W H/ (h B)
Cache
Cache Cache Cache
Dafeibsiagelsviction Eviction
rnegie Mellon The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Analysis

& /g n possible steps in bitonic sorting
network

@ Step k is performed (/g n — k+1) times and
h = 2k1

@ Data fetched from memory = 2 n f(B)
where

f(B)=(B-1) (/gn -1) + 0.5 (/g n —/g B)2

Databases
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Time (in sec)

[

Block Sizes on GPUs

M
Numbaer of Data Values

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Cache-Efficient Algorithm

Cache
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Time (in sec)
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Cache Sizes on GPUs

B4n64

200 400 &00

Tile Size

a00 1000 1200
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Cache-Efficient Algorithm
Performance

Time (in sec)

m 2

M Im
Number of Data Values
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Super-Moore’s Law Growth

50 Super-Moore's Law

A . iastisond 59 GB/sona

0 Ban o) single GPU

35

30

3.2xh

:: " Peak Performance:
1 1axlyr Effectively hide

" memory latency

. suye | with 15 GOP/s

-

Time (in sec) GBisec GOP/sec
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Frequency Estimation

. bl
Histogram 2
24 :
-
o
('
Stream Window=1/ ¢ 2 457
Element
. Merge
a ~
© >‘°ﬁ
T ¥ Compress ER
g o p T
w o~ e <
- uw
Element Element
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Applications: Frequency

-
“Performance Comparison of GPU and CPU-Based Frequency
50 - Y - & (10oMm
"~ =~ — _ Total CPU Time
I - =
40 -
T
30
°
E
Fag - l\_“‘_—_‘___
Total GPU Time
0
Total Transfer Time
o - - - - -
9 1 " ’ Ep-un#(ln m‘;"' / % '
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Quantile Estimation

6425724 " 2244567

Window Sample (error=g/2)
Merge Operation

35¢€3/456789101112/13 144619213 1619

error g, error max(g,, &) error g,
Compress Operation

Uniformly sample

356791114 36 911
B elements
error € error <= g+1/2B
Databases
@Carnegie Mellon The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL|

Applications: Quantile

Estimation
B0 !'. Performance Comparisen of GPU and CPU-Based Quantile
\ Comp (100M
B0 - ]
N
19 = Total CPU Time
=% B
HES
£
F ¥
30
-
20 - Total GPU Time 2
101 Total Transfer Time
e
o 1 2 3 4 55 L] T E
Epsilon (in 107
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Applications: Sliding Windows
L for freq 3 aver Sliding Wi
(window size = 10M)
L s i i T o
Total CPU Time
500 |
gauu |
£ 200 - Total GPU Time
[
200
100
o + =
y o Epullu;{ln 10%) i y
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Advantages

© Sorting performed as stream
operations entirely on GPUs

@ Uses specialized functionality of texture
mapping and blending - high performance

& Low bandwidth requirement
© <10% of total computation time

Databases
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Outline

® Graphics Processor Overview
& Mapping Computation to GPUs
@ Database and data mining

applications

@ Database queries

@ Quantile and frequency queries

© External memory sorting
@ Scientific computations

& Summary

Databases

@quneg]e Mellon The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL




N. Govindaraju, J. Gray, R. Kumar, D. Manocha,
Proc. Of ACM SIGMOD 06

External Memory Sorting

© Performed on Terabyte-scale databases

€Two phases algorithm [Vitter01, Salzberg90,

Nyberg94, Nyberg95]

< Limited main memory

& First phase — partitions input file into large data chunks
and writes sorted chunks known as “Runs”

@ Second phase — Merge the “Runs” to generate the sorted
file

Databases
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External Memory Sorting

© Performance mainly governed by I/0

Salzberg Analysis: Given the main
memory size Mand the file size W, if the
I/0 read size per run is 7'in phase 2,
external memory sorting achieves efficient
I/0 performance if and only if the run size
Rin phase 1 is given by R = v{(TN)

Databases
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Salzberg Analysis

& If N=100GB, T=2MB, then
R ~ 230MB

© Large data sorting is inefficient on
CPUs

& R » CPU cache sizes — memory latency

Databases
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External memory sorting

& External memory sorting on CPUs has
low performance due to
< High memory latency
© Or low I/O performance

& Our algorithm
© Sorts large data arrays on GPUs
© Perform I/O operations in parallel on CPUs

Databases
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GPUTeraSort

Pisks.

= Eme—5-8
t .

High Bandwidth

— { (4068PS)

1
[ ] (B9 +— ey
H 1

| [Reorder — [Fav]
i *

Disks
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I/0 Performance

Salzberg Analysis:
100 MB Run Size

|

g

Thecughpet (in MB#)
g 8 § §

e

22 3 axa
RAID Configuration (in x tmp)
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I/0 Performance

Salzberg Analysis:

100 MB Run Size Pentium IV:
30 - 25MB Run
. [E= Size
g
! 150
H
§ 00
£

2

Less work
and only 75%
|:' 10 efficient!
o
2x2 3x3 ax4

RAID Configuration (in x tmp)
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I/0 Performance

Salzberg Analysis:

100 MB Run Size Dual 3.6 GHz
il Xeons: 25MB
o | MBS - Run size

More cores,
less work but
only 85% IO

Throughpat (in ME/)
- &8 E B

efficient!
2x2 3x3 4x4
RAID Configuration {in x tmp)
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I/0 Performance
Salzberg Analysis:
100 MB Run Size 7800 GT:
= 100MB run
S| ER=E. - size
9 Er
£1% | Ideal work,
fw M and 92% 10
i efficient with
® single CPU!
¢ 2x2 o 3x3 o ax4 ;

RAID Configuration (in x tmp)
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Task Parallelism

o8 PP —— Performance|
P ———

b s limited by 10
and memory

6800 GBliéplﬂtra 7800 GT
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Overall Performance

Time (in seconds)
2 2 2
a8 8 8

=
s
1

206G

wNG Data Size 583G E0G

Faster and more scalable than Dual Xeon processors (3.6 GHz)!
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Performance/$
&0
- T800 GT (5250)
g% 1.8x faster than
E40 current Terabyte
s
2 -—-'-_-_-_-_-_-_-_______----_-_-""--.
& Dual 3.6 GHz sorter
5% Xaon (51500
E 20
€
£ 10 World’s best
o performance/$
b 3 File Sl:eotln [=1:) 0 0 | SyStem
N. Govindaraju, J. Gray, R. Kumar, D. Manocha,
Proc. Of ACM SIGMOD 06
http://research.mi i barc/SortB k
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Advantages

& Exploit high memory bandwidth on
GPUs

< Higher memory performance than CPU-based
algorithms

@ High I/O performance due to large

run sizes

Databases
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Advantages

© Offload work from CPUs

@ CPU cycles well-utilized for resource management

& Scalable solution for large databases

& Best performance/price solution for
terabyte sorting

Databases
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Applications

© Frequency estimation [Manku and Motwani 02]
@ Quantile estimation [Greenwald and Khanna 01, 04]

@ Sliding windows [Arasu and Manku 04]

Databases
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Outline

@ Graphics Processor Overview
& Mapping Computation to GPUs

& Database and data mining
applications
@ Database queries
@ Quantile and frequency queries
@ External memory sorting
& Scientific computations

& Summary

Databases
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Scientific Computations

& Applied extensively in data mining
algorithms
© Least square fits, dimensionality reduction,
classification etc.
& We present mapping of LU-decomposition
on GPUs

& Extensions to QR-decomposition, singular value
decomposition (GPU-LAPACK)
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N. Galoppo, N. Govindaraju, M. Henson, D. Manocha,
Proc. Of ACM SuperComputing 05

LU decomposition

& Sequence of row eliminations:
© Scale and add: A(i,j) = A(i,j) — AGi,k) Ackj)
& Input data mapping: 2 distinct memory areas
@ No data dependencies k

k
© Pivoting: row/column swap
© Pointer-swap vs. data copy

Databases
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LU decomposition

& Theoretical complexity: 2/3n3 + O(n?)

& Performance <> Architecture
© Order of operations
< Data access (latency)
© Memory bandwidth
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Commodity CPUs

& LINPACK Benchmark:
& Intel Pentium 4, 3.06 GHz: 2.88 GFLOPs/s

(Dongarra, Oct'05)
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Motivation for LU-GPU

& LU decomposition maps well:
& Stream program
© Few data dependencies

& Pivoting
© Parallel pivot search
& Exploit large memory bandwidth
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GPU based algorithms

& Data representation

< Algorithm mapping

Databases
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Data representation

© Matrix elements
@ 2D texture memory
© One-to-one mapping

& Texture memory = on-board memory
& Exploit bandwidth
© Avoid CPU-GPU data transfer
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Stream computation

& Rasterize quadrilaterals
© Generates computation stream
© Invokes SIMD units
& Rasterization simulates blocking

© Rasterization pass = row elimination

& Alternating memory regions

Databases
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Stream computation

Input Qutput

[JTobe updated
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Benchmarks

Commodity CPU

3.4 GHz Pentium IV with Hyper-Threading
1 MB L2 cache

LAPACK getrf() (blocked algorithm, SSE-optimized ATLAS library)

6800 GT 350MHz  256Mb 900 MHz
6800 Ultra 16 425MHz  256Mb 1100 MHz
7800 Ultra 24 430MHz  256Mb 1200 MHz
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Results: No pivoting

o —® - ATLAS GETRF (Partial Pivot)

- & -Ultra 6800 LU (no pivoting) /‘
7 ——GT 6800 LU (no pivoting)
o —4— 7800 LU (no pivoting) .’

1000 1500 2000 2500 3000 3500
Matrix size N
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Results: Partial pivoting

- = 'ATLAS GETRF (Partial Pivot) Vd
10 {—| —* - GT 6800 Partial Pivot /
—&—Ultra 6800 Partial Pivot /
& || —+—7800 Partial Pivot 4
@
g 6
£
4
2
0
500 1000 1500 2000 2500 3000 3500
Matrix size N
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- -
.
Results: Full Pivoting
250
—=—Ultra 6800 Full Pivot
200 —— -e LAPACK sgetc2 (IMKL) ' d
—4—7800 Full Pivot L
B 150 X . o
5 .
E .
£ .
100 L
.o :
50 e
.o’
L
0 e
500 1000 1500 2000 2500 3000 3500
Matrix size N
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LUGPU Library

http://gamma.cs.unc.edu/LUGPULIB
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Outline

& Graphics Processor Overview
& Mapping Computation to GPUs

& Database and data mining
applications

& Summary
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Conclusions

Novel algorithms to perform

& Database management on GPUs

« Evaluation of predicates, boolean combinations
of predicates, aggregations and join queries

© Data streaming on GPUs

* Quantile and Frequency estimation
Terabyte data management

Data mining applications

¢ LU decomposition, QR decomposition

[
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Conclusions

& Algorithms take into account GPU
limitations
@ No data rearrangements
© No frame buffer readbacks

& Preliminary comparisons with
optimized CPU implementations is
promising

& GPU as a useful co-processor

Databases

@Cqmegie Mellon The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL




GPGP: GPU-based Algorithms

@ Spatial Database computations
& Sun, Agrawal, Abbadi 2003
< Bandi, Sun, Agrawal, Abbadi 2004
@ Data streaming
& Buck et al. 04, McCool et al. 04
@ Scientific computations
& Bolz et al. 03, Kruger et al. 03
& Compilers

& Brook-GPU (Stanford), Sh (U. Waterloo),
Accelerator (Microsoft Research)

More at http://www.gpgpu.org
Databases
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Advantages

© Algorithms progress at GPU growth
rate
6 Offload CPU work
@ Streaming processor parallel to CPU
& Fast
© Massive parallelism on GPUs
© High memory bandwidth

& Commodity hardware!
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