
Storage Device Performance Prediction with CART Models

Mengzhi Wang, Kinman Au, Anastassia Ailamaki,
Anthony Brockwell, Christos Faloutsos, and Gregory R. Ganger

Carnegie Mellon University, Pittsburgh, PA 15213 USA

Abstract

Storage device performance prediction is a key element
of self-managed storage systems and application plan-
ning tasks, such as data assignment. This work explores
the application of a machine learning tool, CART mod-
els, to storage device modeling. Our approach predicts
a device’s performance as a function of input workloads,
requiring no knowledge of the device internals. We pro-
pose two uses of CART models: one that predicts per-
request response times (and then derives aggregate val-
ues) and one that predicts aggregate values directly from
workload characteristics. After being trained on the de-
vice in question, both provide accurate black-box mod-
els across a range of test traces from real environments.
Experiments show that these models predict the average
and 90th percentile response time with an relative error
as low as 19%, when the training workloads are simi-
lar to the testing workloads, and interpolate well across
different workloads.

1 Introduction

The costs and complexity of system administration make
automation of administration tasks a critical research
challenge in storage systems [15, 5]. One important
aspect of self-managed storage systems, particularly for
large storage infrastructures, is deciding which data sets
to store on which devices. To find the optimal or a near
optimal solution requires the ability to predict how well
each device will serve each workload, so that load can
be balanced and particularly good matches can be ex-
ploited.

Researchers have long utilized performance models for
such prediction to compare alternative designs. Given
sufficient effort and expertise, an accurate simulation
(e.g., [3, 9]) or analytic models(e.g., [7, 10, 11]) can be
generated to explore design questions for a particular de-
vice. Unfortunately, in practice, such time and expertise
is not available for deployed infrastructures. Deployed
infrastructures are often comprised of numerous and dis-
tinct device types, and their administrators have neither
the time nor the expertise needed to configure device
models.

This paper attacks this obstacle by providing a black-
box model generation algorithm. By “black box,” we
mean that the model (and model generation system) has
no information about the internal components or algo-
rithms of the storage device. Given access to a device
for some “training period,” the model generation system
learns its behavior as a function of input workloads. The

resulting device model approximates this function. Our
approach takes advantage of an existing machine learn-
ing tool, Classification And Regression Trees (CART),
to approximate the function because of its efficiency and
accuracy. CART models, in a nutshell, approximate
functions on a multi-dimensional Cartesian space using
piece-wise constant functions.

Such learning-based black box modeling is difficult for
two reasons. First, all the machine learning tools we
have examined use vectors of scalars as input. Existing
workload characterization models, however, involve pa-
rameters of empirical distributions. Compressing these
distributions into a set of scalars is not straightforward.
Second, the quality of the generated models highly de-
pends on the quality of the training workloads. The
training workloads should be diverse enough to provide
high coverage of the input space.

This work develops two ways of encoding workloads
as vectors: a vector per request or a vector per work-
load. The two encoding schemes lead to two types of
device models, operating at the per-request and per-
workload granularities, respectively. The request-level
device models predict each request’s response time based
on its per-request vector, or “request description.” The
workload-level device models, on the other hand, pre-
dicte aggregate performance directly from per-workload
vectors, or “workload descriptions.” Our experiments on
a variety of real world workloads have shown that these
descriptions are reasonably good in capturing workload
performance on both a single disk and a disk array. The
two CART-based models have a median relative error
of 19% and 47%, respectively, for average response time
prediction, and 19% and 50% respectively for the 90th
percentile, when the training and testing traces come
from the same workload. The CART-based models also
interpolate well across workloads.

2 Related Work

Performance modeling has a long and successful history.
Almost always, however, thorough knowledge of the sys-
tem being modeled is assumed. Disk simulators, such as
Pantheon [14] and DiskSim [3], simulate storage device
behavior by software and produce accurate per-request
response times. Developing such simulators is challeng-
ing, especially when disk parameters are not publicly
available. Predicting performance using simulators is
also resource intensive. Analytical models [4, 7, 8, 10, 11]

are more computationally efficient because these models
describe device behavior with a set of formulae. Find-
ing the formula set requires deep understanding of the
interaction between storage devices and workloads. In
addition, both disk simulators and analytical models are
tightly coupled with the modeled device. Therefore, new
device technologies may invalidate existing models and
require a new round of model building.

Our approach treats storage devices as black boxes.
As a result, the model construction algorithm is fully
automated and should be general enough to handle any
type of storage device. The degenerate form of “black-
box models” is performance specifications published by
device manufacturers, such as the maximum throughput
of the devices. The actual performance, however, could
be nowhere near these numbers under some workloads.
Anderson’s “table-based” approach [1] includes workload
characteristics in the model input. The table-based mod-
els remember the device behavior for a wide range of
workload and device pairs and interploates among ta-
bles entries in predicting. Our approach improves on
the table-based models by employing machine learning
tools to capture device behavior. Because of the good
scalability of the tools to high dimensional datasets, we
are able to use more sophisticated workload character-
istics as the model input. As a result, the models are
more efficient in both computation and storage.

3 Background: CART Models

This section gives a brief introduction of the CART mod-
els and justifies our choice of the tool. A detailed dis-
cussion of CART is available in [2].

3.1 CART Models

CART models are machine learning tool that can ap-
proximate real functions on multi-dimensional Cartesian
space. Such tools are also known as regression tools.
Given a function Y = f(X) + ε, where X ∈ <d, Y ∈ <,
and ε is zero-mean noise, a CART model approximates Y

using a piece-wise constant function, Ŷ = f̂(X). We re-
fer to the dimensions of X as features. The term, ε, cap-
tures the intrinsic randomness of the data and the vari-
ability contributed by the unobservable variables. The
variance of the noise could be dependent on X . For ex-
ample, the variance of response time often depends on
the arrival rates.

The piece-wise constant function f̂(X) can be visual-
ized as a binary tree. Figure 1(a) shows a CART model
constructed on the sample one-dimensional data set in
(b). The sample data set is generated using

yi = x2

i + εi, i = 1, 2, . . . , 100.

where xi is uniformly distributed within (0,10), and εi

follows a Guassian distribution of N(0, 10). The leaf
nodes correspond to disjoint hyper-rectangles in the fea-
ture vector space. The hyper-rectangles are degenerated
into intervals for one-dimensional data sets. Each leaf
is associated with a value, f̂(X), which is the predic-
tion for all Xs within the corresponding hyper-rectangle.
The internal nodes contain split points, and a path from

|x<
5.

94
85

1

x<
3.

23
18

4

x<
1.

92
03

3

x<
1.

69
09

8

x<
0.

88
9

x<
5.

00
35

2

x<
3.

60
13

7

x<
4.

45
43

9

x<
7.

71
23

9

x<
7.

05
47

3

x<
9.

00
08

2

 6
.0

55

 -1
.9

25

 1
6.

64
0

 2
.5

76

 2
6.

85
0

 8
.9

42

 2
1.

67
0

 3
0.

83
0

 4
8.

68
0

 5
6.

33
0

 7
2.

06
0

 8
8.

01
0

(a) Fitted tree

-20

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

y

x

sample
f(x) = x * x

CART

(b) Data points and regression line

Figure 1: CART model for a simple one-dimensional
data set. The data set contains 100 data points gen-
erated using f(x) = x2 + ε, where ε follows a Guassian
distribution with mean 0 and standard deviation 10.

the root to a leaf defines the hyper-rectangle of the leaf
node. The tree, therefore, represents a piece-wise con-
stant function on the feature vector space. Figure 1(b)
shows the regression line of the sample CART model.

3.2 CART Model Properties

Constructing CART models is efficient. The algorithm
starts with an empty tree and grows the tree by greedily
selecting the split point that yields the maximum reduc-
tion in mean squared error. Each prediction involves
one tree traversal and is computationally efficient.

Good interpretability is another desired property pro-
vided by CART, because we are interested in the impor-
tance of various workload characteristics in predicting
workload performance. First, a CART model is a binary
tree, making it easy to plot on paper as in Figure 1(a).
Second, and more importantly, one can evaluate the im-
portance of a feature by its contribution in error reduc-
tion. Intuitively, more important feature should con-
tribute more to the error reduction; thus, leaving it out
of the feature vector would significantly raise the pre-
diction error. In a CART model, we can measure the
contribution of a feature by summing its contribution
in error reduction for all its appearances in the CART
model.

4 Predicting Performance with CART

This section presents two ways of constructing device
models based on CART models.

. . .

Storage device

Training
Workloads

. .
 .

. .
 .

. . .

Training
Workloads

. .
 .

. .

Device
model

r3

r 2

r 1

2

3

1

3r

r 2

r 1

2

3

1

r3

r 2

r 1

r3

r 2

r 1 Trace replay

Model
Construction

RT

RT

RT

RT

RT

RT

Figure 2: Model construction through training. RTi is the response time of request ri.

4.1 Overview

The goal is to build a model for a given storage device
to predict device performance as a function of I/O work-
load. The device model receives a workload as input and
predicts its aggregate performance. We define a work-
load as a sequence of disk requests, with each request,
ri, uniquely described by four attributes: arrival time
(ArrivalT imei), logical block number (LBNi), request
size in number of disk blocks (Sizei), and read/write
type (RWi). The storage device could be a single disk,
a disk array, or some other like-interfaced component.
The aggregate performance can be the average and 90-
th percentile response time.

Our approach uses CART to approximate the func-
tion. We assume that the model construction algorithm
can feed any workloads into the device to observe its be-
havior for a certain period of time, also known as “train-
ing.” The algorithm then builds the device model based
on the observed response times, as illustrated in Fig-
ure 2. Model construction does not require any informa-
tion about the internals of the modeled device, therefore,
is general enough to model any devices.

Regression tools are a natural choice to model device
behavior. Such tools are designed to model functions
on multi-dimensional space given a set of samples with
known output. The difficulty is to transform workloads
into data points in a multi-dimensional feature space.
We explore two ways to achieve the transformation as
illustrated in Figure 3. A request-level model represents
request ri as a vector Ri, also known as the “request de-
scription,” and uses CART models to predict per-request
response times. The aggregate performance is then cal-
culated by aggregating the response times. A workload-
level model, on the other hand, represents the entire
workload as a single vector W , or the “workload descrip-
tion,” and predicts the aggregate performance directly
from the workload description. In both approaches, the
quality of the input vectors is critical to the model ac-
curacy. The next two sections present the request and
workload descriptions in detail.

4.2 Request-Level Predictor

This section describes the CART-based request-level de-
vice model. This model uses a CART to predict the
response times of individual requests based on request
descriptions. The model, therefore, is able to generate
the entire response time distribution and output any ag-
gregate performance measures.

Our request description Ri for request ri contains the

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

1R = (TimeDiff, ..., RW)

2R = (TimeDiff, ..., RW)

nR = (TimeDiff, ..., RW)

. . .

W = (ArrivalRate, ..., Seq)

r 1

r 2

r n

. .
 .

CART

CART

P

Aggregate
Performance P

RT1

RT2

RTn

Aggregate

Request−level predictor

Workload−level predictor

Figure 3: Two types of CART-based device models.

following features.

Ri = { T imeDiffi(1), . . . , T imeDiffi(k),

LBNi, LBNDiffi(1), . . . , LBNDiffi(l),

Sizei, RWi,

Seq(i) },

where T imeDiffi(k) = ArrivalT imei −
ArrivalT imei−2k and LBNDiffi(l) = LBNi−LBNi−l.
The four groups of features capture three components of
the response time, and sequentiality of the request. The
first (k + 1) features measure the temporal burstiness
of the workload when ri arrives, and support prediction
of the queuing time. We allow T imeDiff features to
look exponentially back to accommodate large bursts.
The next (l + 1) features measure the spatial locality,
supporting prediction of the seek time. The last three
support prediction of the data transfer time. The last
group has one feature, Seq(i), indicating whether the
current request is sequential access.

The two parameters, k and l, determines how far we
look back for request bursts and locality. Small values
do not adequately capture these characteristics, leading
to inferior device models. Large values, on the other
hand, leads to a higher dimensionality, meaning a longer
training time and larger training set. Our experiments
indicate that model accuracy is more sensitive to k than
to l, especially for busy workloads, because the queuing
time dominates the response time for such workloads.

4.3 Workload-Level Device Models

The workload-level model represents the entire workload
as a single workload description and predicts aggregate
performance based on the description parameters. The
workload description W contains the following features.

W = { Average arrival rate,

Read ratio,

Average request size,

Percentage of sequential requests,

Temporal burstiness,

Spatial burstiness,

Correlations between pairs of attributes }.

The workload description uses the entropy plot [12] to
quantify temporal and spatial burstiness and correla-
tions between attributes. The entropy plot plots entropy
value on one or two attributes against entropy calcula-
tion granularity. The slope of an entropy plot charac-
terizes the degree of burstiness and correlation changes
at different granularities. Because of the self-similarity
of I/O workloads [6], the entropy plot is usually linear,
allowing us to use the slope to characterize the bursti-
ness and correlation. Please refer to [13] for a detailed
description of the entropy plot.

Workload-level device models offer fast predictions.
The model compresses a workload into a workload de-
scription and feeds the description into a CART model
to produce the desired performance measure. Both the
feature extraction and prediction are fast. To predict
both the average and 90th percentile response time, the
model must have two separate trees, one for each perfor-
mance metric.

Workload modeling introduces a parameter called
“window size.” The window size is the unit of per-
formance prediction and, thus, the workload length for
workload description generation. For example, we can
divide a long trace into one-minute fragments and use the
workload-level models to predict the average response
time over one-minute intervals. A short window size
has several advantages. First, performance problems are
usually transient. A “problem” appears when a large
burst of requests arrive and disappears quickly after all
the requests in the burst are served. A large window
size, on the other hand, fails to indentify such transient
bottlenecks. Second, fragmenting a training workload
produces more samples for training and reduces the re-
quired training time, which is determined by the trace
replay time. Windows that are too small, however, con-
tain too few requests for the entropy plot to be effective.
We use one minute windows in all of our experiments.

4.4 Comparison of Two Types of Models

There is a clear tradeoff between the request-level and
workload-level device models. The former are fast in
training and slow in prediction, and the latter are the
opposite (slow in training and fast in prediction).

One item for future research is to explore the possibil-
ity of combining the two types of models to deliver ones
that are efficient in both training and predictions.

5 Experimental Results
This section evaluates the CART-based device models
presented in the previous section using a range of work-
load traces. We conduct experiments to evaluate the
model accuracy in modeling both a single disk and a
disk array.

Trace Length Requests Average %
name (×106) Size of reads

cello92 4 weeks 7.8 12.9 KB 35.4%

cello99a 4 weeks 43.7 7.1 KB 20.9%
cello99b 4 weeks 13.9 118.0 KB 41.6%
cello99c 4 weeks 24.0 8.5 KB 26.4%

SAP 15 minutes 1.1 15.1 KB 99.9%

Table 1: Trace summary.

Traces. We use three sets of real-world traces in this
study. Table 1 lists the summary statistics of the edited
traces. The first two, cello92 and cello99 capture typical
computer system research I/O workloads, collected at
HP Labs in 1992 and 1999 respectively. We preprocess
cello92 to concatenate the LBNs of the three most active
devices from the trace to fill the modeled device. For
cello99, we pick the three most active devices, among
the 23 devices, and label them cello99a, cello99b, and
cello99c. The cello99 traces fit in a 9GB disk perfectly,
so no trace editing is necessary. As these traces are long
(two months for cello92 and one year for cello99), we
report data for a four-week snapshot (5/1/92 to 5/28/92
and 2/1/99 to 2/28/99).

The SAP trace was collected on an Oracle database
server running SAP ISUCCS 2.5B in a power utility
company. The server has more than 3,000 users and
the disk accesses reflect retrieving customer’s bills for
updating and reviewing. Sequential reads dominate the
SAP trace.

Devices. We model two types of devices: a single disk
and a disk array. The single disk is a 9GB Atlas 10K disk
with an average rotational latency of 3 milliseconds. The
disk array is a RAID 5 disk array consisting of 8 Atlas
10K disks with stripe unit size of 32KB. We replay all the
traces on the two devices except the SAP traces, which
were collected on devices with a larger capacity than the
single disk we are modeling.

Evaluation methodology. The evaluation uses the
device models to predict the average and 90th percentile
response time for one-minute workload fragments. We
report the prediction errors using two metrics: absolute
error defined as the difference between the predicted and
the actual value, |Ŷ − Y |, and relative error defined as
|Ŷ −Y |

Y
.

In aggregate performance prediction, we use the first
two weeks of cello99a in training because of the trace’s
relatively rich access patterns. The training workloads
yield 19,583 data points for the workload-level device
models. Because of the large number of requests, we use
uniform sampling of rate 0.01 to reduce the number of
training data points for the request-level models. The
final training set contains 218,942 requests.

Predictors in comparison. We evaluate our two
CART-based device models, denoted as CART-request

and CART-workload in the remaining text, against three
predictors.

• constant makes predictions using the average or
quantile response time of the training trace.

• periodic divides a week into 24× 7 × 60 one-minute
intervals and remembers the aggregate performance
of the training workload for each interval. Prediction
uses the corresponding value of the interval with the
same offset within the week.

• linear does linear regression on the workload descrip-
tions.

Note that the constant and periodic predictors model
workloads rather than devices, because they do not take
workload characteristics as input. Both predictors rely
on the similarity between the training and testing work-
loads to produce accurate predictions. The difference
between linear and CART-workload, on the other hand,
shows the importance of using non-linear models, such
as the CART models, in device modeling.

5.1 Calibrating Request-Level Models

We evaluate the prediction accuracy of request-level
models in this section.

Figure 4 shows the relative importance of the parame-
ters of the request description in determining per-request
response time. The relative importance of a parameter
is measured by its contribution in error reduction. We
show the importance measured on two traces, cello99a
and cello99c. Because of the large number of the re-
quests, we use only the first day of the traces and reduce
the data set size by 90% with uniform sampling.

First, we observe that the relative importance is work-
load dependent. As we expected, for busy traffic such as
cello99a, the queuing time dominates the response time,
and thereby, the T imeDiff parameters are more im-
portant. cello99c, on the other hand, has small response
times, and parameters that characterize the data trans-
fer time, such as Size and RW , have good predictive
power.

Second, the most imporant parameter shifts from
T imeDiff8 to T imeDiff7 from the single disk to the
disk array for cello99a because the queuing time becomes
less significant for the disk array. The distinction be-
tween the two traces, however, persists.

We select to use a history length of 10 for T imeDiff
and 3 for LBNDiff in the subsequent experiments so
that we can model device behavior under both types of
workloads.

Figure 5 compares the predicted response time dis-
tribution against the actual one. The long tail of the
actual response time distribution is well captured by the
request-level model. The model has a median absolute
error of 4.28 milliseconds, close to the average rotational
latency (3 milliseconds) of the modeled disk. The high
prediction accuracy indicates that the request descrip-
tion is effective in characterizing request characteristics
needed to predict response times.

Importance measured on cello99a

0%

20%

40%

60%

T
im

e
D

if
f1

T
im

e
D

if
f2

T
im

e
D

if
f3

T
im

e
D

if
f4

T
im

e
D

if
f5

T
im

e
D

if
f6

T
im

e
D

if
f7

T
im

e
D

if
f8

T
im

e
D

if
f9

T
im

e
D

if
f1

0

L
B

N
0

L
B

N
D

if
f1

L
B

N
D

if
f2

L
B

N
D

if
f3

L
B

N
D

if
f4

L
B

N
D

if
f5

S
iz

e

S
e

q

R
W

R
e
la

ti
v

e
 im

p
o

rt
a
n

c
e

Importance measured on cello99c

0%

20%

40%

60%

T
im

e
D

if
f1

T
im

e
D

if
f2

T
im

e
D

if
f3

T
im

e
D

if
f4

T
im

e
D

if
f5

T
im

e
D

if
f6

T
im

e
D

if
f7

T
im

e
D

if
f8

T
im

e
D

if
f9

T
im

e
D

if
f1

0

L
B

N
0

L
B

N
D

if
f1

L
B

N
D

if
f2

L
B

N
D

if
f3

L
B

N
D

if
f4

L
B

N
D

if
f5

S
iz

e

S
e

q

R
W

R
e
la

ti
v

e
 im

p
o

rt
a
n

c
e

Figure 4: Relative importance of parameters in the re-
quest description for the Atlas 10K disk.

In summary, the request description effectively cap-
tures important per-request characteristics, leading to
accurate request-level device models.

0 %

20 %

40 %

60 %

80 %

100 %

 0 1000 2000 3000 4000

%
 o

f r
eq

ue
st

s

Response time (ms)

Actual
Predicted

Figure 5: Prediction accurary of the request-level model.
The actual and predicted average response times are
137.96 ms and 133.01 ms respectively. The correspond-
ing demerit, defined in [9] as the root mean square of hor-
izontal distance between the actual and predicted curves
in (b), is 46.06 milliseconds (33.4%).

5.2 Modeling A Single Disk

Figure 6 compares the accuracy of all the predictors in
modeling an Atlas 10K 9GB disk. As mentioned earlier,
all the predictors are trained using the first two weeks
of cello99a. Overall, the two CART-based device models
provide good prediction accuracies in predicting both the
average and 90th percentile response times, compared to
other predictors. Several more detailed observations can

(a) Prediction error for average response time

(b) Prediction error for 90th percentile response time

Figure 6: Comparison of predictors for a single 9GB Atlas 10K disk.

be made.

First, all of the models perform the best when the
training and testing workloads are from the same trace,
cello99a, because the models have seen how the de-
vice behaves under such workloads. The periodic

predictor also cuts the median prediction error of the
constant predictor by more than a half because the
strong periodicity of the workload. CART-request and
CART-workload further reduce the error to 4.81 millisec-
onds (19%) and 14.83 milliseconds (47%) respectively for
the average response time prediction, and 15.38 millisec-
onds (19%) and 42.63 milliseconds (50%) respectively
for the 90th percentile. The performance difference be-
tween linear and CART-workload roughly measures the
benefit of using a non-linear model, such as CART, be-
cause both take the same input. We observe a significant
improvement from the former to the latter, suggesting
non-linear device behavior.

Second, both CART-based device models provide bet-
ter interpolation across workloads than the other mod-
els. constant and periodic rely blindly on similar-
ity between the training and testing workloads to make
good predictions. Consequently, it is not surprising to
see huge prediction errors when the training and testing
workloads differ. The CART-based predictors, on the
other hand, distinguish workloads of different character-
istics, thereby, providing better interpolation. The large
relative error for cello99c is due to the small average
response time of the trace.

Third, model accuracy is highly dependent on the

training workload quality for the CART-based models.
The prediction error increases for workloads other than
cello99a, because of the access pattern differences among
these traces. The CART-based models learn device be-
havior through training; therefore, they can not predict
workload performance for ones that have totally different
characteristics from the training workloads. For exam-
ple, CART-request constantly over-predicts for cello99c
because the model was never trained wth the small se-
quential accesses that are popular in cello99c. Sec-
tion 5.4 gives an informal error analysis and identifies in-
adequate training being the most significant error source.

Fourth, high quantile response times are more difficult
to predict. We observe larger prediction errors from all
the predictors for 90th percentile response time predic-
tions than for average response tmie predictions. The
accuracy advantage of the two CART-based models is
higher for 90th percentile predictions.

In summary, the two CART-based models give accu-
rate predictions when the training and testing workloads
share the same characteristics and provide better in-
terpolation otherwise. The good accuracy suggests the
effectiveness of the request and workload descriptions
in capturing important workload characteristics. The
training workload quality plays an important role in the
model accuracy for CART-based models.

5.3 Modeling A Disk Array

Figure 7 compares the accuracy of the five predictors
in modeling a disk array except periodic because the

Figure 7: Comparison of predictors for a RAID 5 disk array of 8 Atlas 10K disks in predicting average response time.

SAP traces do not provide enough information on arrival
time for us to know the offset within a week. The overall
results are similar to those for the single disk. The two
CART-based models are the most accurate predictors
when the training and testing workloads are from the
same trace. Also, due to the decreased response time
from the single disk to the disk array, the absolute errors
become smaller, and the relative errors become larger.
The relative accuracy among the predictors, however,
stays the same. In particular, the CART-based models
perform better on all the workloads in general. Overall,
the CART-based device modeling approach works well
for the disk array.

5.4 Error Analysis

We conduct an experiment to identify error sources of the
CART-based device models. A model’s error consists of
two parts. The first part comes from intrinsic random-
ness of the input data, such as measurement error, and
this error can not be captured by any model. The rest of
the error comes from the modeling approach itself. The
CART-based models incur error at three places. First,
the transformation from workloads to vectors introduces
information loss. Second, the CART-based models use
piece-wise constant functions, which could be different
from the true functions. Third, a low-quality training
trace yields inaccurate models because CART relies on
the information from the training data to make predic-
tions. We usually find that the last one, inadequate
training data, causes the most trouble. An inadequate
training set has only a limited range of workloads and
leads to large prediction errors for workloads outside of
this range.

We conduct a small experiment to verify our hypoth-
esis. Figure 8 (a) compares the difference in sequen-
tiality between cello99a and cello99b. The spectrum of
sequentiality (from 0% to 100% of requests in the work-
load being sequential) is divided into 20 buckets, and
the graphs shows the number of one-minute workload
fragments in each bucket for both traces. We observe
a significant number of high sequentiality fragments in
cello99b, but no fragment goes beyond 0.5 sequential-
ity in cello99a. This difference leads to large prediction
errors for high sequentiality fragments when we build
the model on cello99a and predict the performance of

cello99b, as shown in (b). The errors are reduced sig-
nificantly when we include the first half of cello99b in
training. The dramatic error reduction suggests that
prediction errors from the other sources are negligible
when compared with the ones introduced by inadequate
training. Figure 8 (c) further shows the absolute error
histogram with 1 millisecond buckets. The spike shift to
0 milliseconds when using the combined training trace,
indicates that it is reasonable to assume a zero-mean
noise term. We conclude from these results that con-
tributing efforts in black-box device modeling should be
directed to generate a good training set that covers a
broad range of workload types.

6 Conclusions

Storage device performance modeling is an important
element in self-managed storage systems and other ap-
plication planning tasks. Our target model takes a work-
load as input and predicts its aggregate performance on
the modeled device efficiently and accurately. This paper
presents our initial results in exploring machine learning
tools to build device models. A black box predictive
tool, CART, makes device models independent of the
storage devices being modeled, and thus, general enough
to handle any type of devices. This paper presents two
ways of applying CART models, yielding request-level
and workload-level device models. Our experiments on
real-world traces have shown that both types of models
are accurate and efficient. The error analysis suggests
that the quality of the training workloads plays a crit-
ical role in model accuracy. Continuing research can
improve model prediction accuracies and the efficiency
of workload description.

7 Acknowledgments

We thank the members and companies of the PDL
Consortium (including EMC, Hewlett-Packard, Hitachi,
Hitachi Global Storage Technologies, IBM, Intel, LSI
Logic, Microsoft, Network Appliance, Oracle, Panasas,
Seagate, Sun, and Veritas) for their interest, insights,
feedback, and support. We thank IBM for partly funding
this work through a CAS student fellowship and a fac-
ulty partnership award. This work is funded in part by
NSF grants CCR-0205544, IIS-0133686, BES-0329549,

Sequentiality

0

50

100

150

200

0% 25% 50% 75%
% of sequential requests

#
 o

f
in

te
rv

a
ls

cello99a

cello99b

Error comparison

0

50

100

150

200

250

0% 25% 50% 75%
% of sequential requests

A
v

g
. a

b
s

o
lu

te
 e

rr
o

r
(m

s
)

Train: cello99a

Train: cello99a+cello99b

Absolute error distribution

0%

20%

40%

60%

80%

100%

-10 -5 0 5

Absolute error (ms)

%
 o

f
in

te
rv

a
ls

Train: cello99a
Train: cello99a+cello99b

(a) Histograms on sequentiality (b) Average absolute error (c) Histograms on absolute error

Figure 8: Effects of different training workloads.

IIS-0083148, IIS-0113089, IIS-0209107, and IIS-0205224.
We would also like to thank Eno Thereska, Mike Mesnier,
and John Strunk for their participation and discussion
in the early stage of this project.

References

[1] Eric Anderson. Simple table-based modeling of stor-
age devices. Technical Report HPL-SSP-2001-4, HP
Labs, 2001.

[2] L. Brieman, J. H. Friedman, R. A. Olshen, and
C. J. Stone. Classification and Regression Trees.
Wadsworth, 1984.

[3] John Bucy, Greg Ganger, and contributors. The
DiskSim simulation environment version 3.0 refer-
ence manual. Technical Report CMU-CS-03-102,
Carnegie Mellon University, 2003.

[4] Shenze Chen and Don Towsley. A performance eval-
uation of RAID architectures. IEEE Transactions
on Computers, 45(10):1116–1130, 1996.

[5] Gregory R. Ganger, John D. Strunk, and Andrew J.
Klosterman. Self-* storage: Brick-based storage
with automated administration. Technical Report
CMU-CS-03-178, Carnegie Mellon University, 2003.

[6] Maŕia E. Gómez and Vicente Santonja. Analysis
of self-similarity in I/O workload using structureal
modeling. In 7th International Symposium on Mod-
eling, Analysis and Simulation of Computer and
Telecommunication Systems, pages 234–243, 1999.

[7] Edward K. Lee and Randy H. Katz. An analytic
performance model of disk arrays. In Proceedings of
the 1993 ACM SIGMETRICS, pages 98–109, 1993.

[8] Arif Merchant and Guillermo A. Alvarez. Disk array
models in Minerva. Technical Report HPL-2001-
118, HP Laboratories, 2001.

[9] Chris Ruemmler and John Wilkes. An introduction
to disk drive modeling. IEEE Computer, 27(3):17–
28, 1994.

[10] Elizabeth Shriver, Arif Merchant, and John Wilkes.
An analytical behavior model for disk drives with
readahead caches and request reordering. In Pro-
ceedings of International Conference on Measure-
ment and Modeling of Computer Systems, pages
182–191, 1998.

[11] Mustafa Uysal, Guillermo A. Alvarez, and Arif Mer-
chant. A modular, analytical throughput model for
modern disk arrays. In Proceedings of 9th Interna-
tional Symposium on Modeling, Analysis and Sim-
ulation of Computer and Telecommunication Sys-
tems, pages 183–192, 2001.

[12] Mengzhi Wang, Anastassia Ailamaki, and Christos
Faloutsos. Capturing the spatio-temporal behav-
ior of real traffic data. Performance Evaluation,
49(1/4):147–163, 2002.

[13] Mengzhi Wang, Kinman Au, Anastassia Ailamaki,
Anthony Brockwell, Christos Faloutsos, and Gre-
gory R. Ganger. Storage device performance predic-
tion with CART models. Technical Report CMU-
PDL-04-103, Carnegie Mellon University, 2004.

[14] J. Wilkes. The Pantheon storage-system simula-
tor. Technical Report HPL–SSP–95–14, Hewlett-
Packard Laboratories, 1995.

[15] John Wilkes. Data services – from data to contain-
ers. Keynote address at File and Storage Technolo-
gies Conference (FAST’03), March – April 2003.

