
Model Checking Software via Abstraction of
Loop Transitions

Natasha Sharygina1 and James C. Browne2

1 Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA, USA 15213
nys@sei.cmu.edu

2 The University of Texas, Austin, TX, USA 78712
browne@cs.utexas.edu

Abstract. This paper reports a data abstraction algorithm that is tar-
geted to minimize the contribution of the loop executions to the program
state space. The loop abstraction is defined as the syntactic program
transformation that results in the sound representation of the concrete
program. The abstraction algorithm is defined and implemented in the
context of the integrated software design, testing and model checking.
The loop abstraction technique was applied to verification of NASA robot
control software. The abstraction enabled model checking for realistic
robot configurations where all other state space reduction approaches,
including BDD-based verification, predicate abstraction and partial or-
der reduction, failed.

1 Introduction

Formal verification by model checking has the potential to produce a major
enhancement in software reliability and robustness for software systems. The
applicability of model-checking to software systems is severely constrained by
”state space explosion”. Data abstraction is a principal method for state space
reduction [1, 4, 6, 13, 14, 16]. Predicate abstraction [7] is one of the most popular
and widely applied methods for systematic abstraction of programs. Predicate
abstraction is based upon abstract interpretation [5]. It maps concrete data
types to abstract data types through predicates over the concrete data. However,
complete predicate abstraction may be intractable due to its computational cost.
Generation of a full set of predicates is typically infeasible for large programs.

All forms of abstraction may introduce unrealistic behaviors (behaviors not
found in the concrete program) into the abstract program. Error traces from
model checking of the abstract program are often used to rule out unrealistic
behaviors. Excessive abstraction may introduce additional behaviors which re-
sult in state space explosion when attempting model checking for the abstract
program. These drawbacks for general abstraction methods coupled with the po-
tential effectiveness of abstraction, motivate research into targeted abstractions
which can be applied selectively.

This paper formulates and evaluates an abstraction algorithm that mini-
mizes the contribution of the loop executions to program state space. The loop

abstraction generates an abstract program with the same static task graph as
the concrete program from which it is derived but which specifies a minimum
(or nearly minimum) number of traversals of the loops of the static task graph.
These abstract programs have orders of magnitude smaller state spaces that
the concrete programs from which they are derived. We demonstrate that the
algorithm is correct in that the ”abstract” program is a conservative approxi-
mation of the ”concrete” program with respect to the control specifications of

Fairness
Constraints SR MODEL

xUML MODEL

)(textual file

Source Code

(C, C++)

CONTROL

PROPERTY
Refinement
Constraints

Model−Checker

(COSPAN)

Testing Tool

(OB Simulator)

SES/Code Genesis

Code Generation

Transformation

Syntactic

Analysis

AUTOMATA

Abstraction Tool

(Loop_Abstraction)

xUML MODEL

(graphical designs)

Labeling

Translation

GOB_to_TOB

Formalization and

Translation

TOB_to_SR

Redesign

TRUE

FALSE NEGATIVE

REAL ERROR

Loop Detection

Refinement

Consistency Check

Fig. 1. The Integrated Design and Model-Checking Software Development Environ-
ment

the program. The correctness result implies that a control specification holds for
the original program if it holds for the abstract program. Some loss of precision
of data computations introduced by the abstraction is traded for the ability to
conduct practical verification of behavioral specifications of control algorithms.
The potential usefulness of loop abstraction is enhanced by the facts that con-

trol software are the obvious candidate systems for model checking to improve
reliability and that almost all control systems implement feedback loops.

The properties of the loop abstraction algorithm are:
- It is computationally simple and requires storage linear in the size of the

program since it is a source to source transformation based on static analysis of
the program.

- It is based on syntactic manipulation of expressions, and produces a reduced
program and therefore, it can be applied without change to the verification tool
or the verification algorithm.

- It produces a syntactic representation of the abstract program and thus
other model-checking state space reduction techniques, such as symbolic model-
checking and partial order reduction, can be applied to the abstract program.

The loop abstraction algorithm has been implemented in the integrated high-
level design (xUML) and automata-based model checking software development
framework (Figure 1) and has been evaluated during verification of a NASA
robot controller. It has been found to give order of magnitude reduction in the
complexity and computational resource requirements for model-checking of con-
trol properties of a robot control system. Most importantly, the loop abstraction
enabled completion of model checking for realistic robot configurations where all
other approaches, including predicate abstraction [1, 15], failed.

Contents of Paper. Sections 2 defines a framework for the project. Section
3 defines the program syntax and semantics. Section 4 presents the loop abstrac-
tion algorithm. The effectiveness of loop abstraction is demonstrated in Section 5
that shows the verification results of the NASA robot controller system. Section
6 summarizes the paper and gives an overview of related work.

2 Integrated Design and Verification Framework

The loop abstraction algorithm has been defined in the context of the software
development framework that integrates xUML modeling3, testing and automata-
based model-checking as shown in Figure 1. We refer the reader to [19, 22] for
a detailed description of the integrated environment.

The framework consists of the following components:
1. The xUML graphical specification and validation environment as it is im-

plemented in the commercial tool, SES/ObjectBench (OB) [17].
An xUML program is a set of interacting objects. The behavior of each object

is implemented as a Moore state machine with a bounded FIFO input queue for
events. The objects interact by sending and receiving events. Each state of the
state machine which can receive an event is given a unique label. A sequential
action is associated with each labeled state. Each action assigns values to state

3 xUML is a dialect of UML with executable semantics. Programs written in xUML are
design level representations which can be executed directly through discrete event
simulation or interpretation and/or compiled to procedural source code. xUML is
fairly widely used for development of control systems [11, 17]. A complete specifica-
tion of the xUML notation can be found in [20, 21].

BLOCK E

//actions are ommitted

 Generate e2(CONSUMER);

 }

{else

{if(j==0) y:=0;

else {

{if(i==0) x:=0; }

{if((in_stock_i!=0)&&(in_stock_j!=0))

//actions are ommitted }

//actions are ommitted }

 Generate e1(CONSUMER);

//actions are ommitted }

else { //actions are ommitted }

 Generate e6(PRODUCER);

e5(PRODUCER,i,j)

e6(PRODUCER)e3(CONSUMER)

e2(CONSUMER)

e4(CONSUMER)

BLOCK A

SERVING CONSUMER

IDLESELLING

IDLE

STORING

BLOCK C

CONSUMER State Machine

BLOCK B

//actions are ommitted

PRODUCER State Machine

//actions are ommitted

 Generate e4(CONSUMER);

}

 Generate e5(PRODUCER,i,j);

 Generate e3(CONSUMER);

else {

if((i<limit_i) && (j<limit_j))

{if((i>=limit_i)&&((j>=limit_j))

} Generate e3(CONSUMER);
else {

if(i>=limit_i) {

}

{

 Generate e5(PRODUCER,i,j:=0);

}}

//Loop Label

else

BLOCK D

{

}
e1(CONSUMER)

 Generate e5(PRODUCER,i:=0,j);

Fig. 2. The Consumer-Producer xUML Program

variables and generates events to be posted to its own input queue or the input
queues of other state machines. The actions execute in run to completion mode.
The action language for the implementation of xUML is a C-based language
extended by the event generation and state machines manipulation commands.
The execution model for an xUML system is asynchronous interleaved execution
of the action language programs associated with the labeled states of the state
machines. An example of the xUML system is given using a Consumer-Producer
xUML program (Figure 2). The sample program is modeled by xUML state
machines, representing behavioral specifications of the Consumer and Producer
xUML objects.

Each state machine is represented as a collection of blocks that are activated
by events. For example, Block D of the Consumer state machine represents a
block of actions that can be activated by an input event e4 or e2 and labeled by
the update of a variable status := IDLE (the label variables update statements
are implicitly implemented by the xUML graphical development environment.)
The activation of the block is followed by the execution of local statements for
variables update and generation of output events Generate e3(CONSUMER),
Generate e5(PRODUCER,i,j), Generate e5(PRODUCER,i:=0,j) and Generate
e5 (PRODUCER,i,j:=0). Note, the distinction between fields of the event e5:
different data is passed by the event depending on the satisfaction of the specified

conditions. For example, if at some point during the program execution a variable
i is larger or equal to some predefined value, limit i, than the event e5 will pass
a zero value to the Producer process, using the first supplemental data field of
the event command.

2. The loop abstraction program. This component of the integrated en-
vironment is the subject of the paper. The loop abstraction program im-
plements the loop abstraction algorithm which is outlined in Section 4. The
loop abstraction program takes as an input results of the program behavioral
analysis conducted using the discrete event simulator. The event simulator is a
part of the xUML specification and validation environment. During the simula-
tion the program is executed by traversing possible event sequences which can
arise from the execution of interacting xUML state machines. The set of actions
that are repeatedly initiated by some event are manually annotated with a Loop
Label in the xUML specification environment. An example of the annotation is
shown in Figure 2, block D.

The loop abstraction algorithm results in the syntactic program transforma-
tion of the original program that maps all traversals of a loop in the program
control flow defined by different values of the program variables to traversals
with values of path selection variables (see Section 4.2) which abstract values
uniquely specify each distinct event sequence within the loop.

3. The automata-based model-checking tool, COSPAN4. Consistency check
is performed over the abstract SR model (SR is the input language of COSPAN)
automatically derived from the abstract xUML program with respect to the
specified control property, the set of fairness constraints and the approximation
restrictions5. The following features provided by COSPAN are used to support
the loop abstraction procedure:

- the assume/guarantee mechanism of COSPAN is used to add fairness con-
straints and refinement assumptions to the model-checking process.

- the localization reduction algorithm, automatically invoked by COSPAN
during model-checking, is used to eliminate from consideration variables that do
not effect the verification property.

3 Background

3.1 Program Syntax

Control software systems are often constructed as compositions of sequential pro-
grams which interact through sending of events, S = p1 ‖ ... ‖ pn. Each program,
p = (X,E,I,B) is defined as a set of variables, X, a set of events, E, an initial

4 A detailed description of COSPAN and its features can be found in [8, 13].
5 The abstraction procedure uses a translator [22] that automatically transforms the

xUML programs from the Graphical OB representation into SR, an input language
of the model-checker, COSPAN. Specifically, the loop abstraction program is
applied to the intermediate representation of the translation result, the textual rep-
resentation of the xUML programs.

condition, I, and a set of basic blocks (defined next), B, that contain commands
that modify the program variables, and send and receive events. For example,
an assignment command, x := any{ exp1,...,expn } is a non-deterministic as-
signment, after which a program variable, x, will contain the value of one of the
expressions exp1,..., expn; ’Generate e(ID,exp)’ is a communication command
that sends an event, e with some data, exp, to the destination program identified
by its name, ID6.

Definition 1 [Basic Block] (cf. [9]): A basic block is a sequence of state-
ments for which execution can be initiated only through the statement at the
head of the block and which, once initiated, executes to completion. Execution of
a basic block is initiated by arrival of an event.

Events are distributed via FIFO queues, one queue for each sequential pro-
gram. The execution model for a sequential program is: a) An event arrives in
the input queue of a sequential program and some basic block of the program is
enabled for execution in ”run to completion” mode. b) The enabled basic block
is executed. c) Execution of a basic block may result in events being sent to the
program containing the executing basic block or to other programs. d) At the
end of the execution of a basic block the program halts and awaits arrival of its
next event.

Definition 2 [Output of a Basic Block]: The output of a basic block is
an event or sequence of events. The output from an instance of the execution
of a basic block is determined by the control structure within the block. Each
instance of the execution of a basic block is a traversal of the tree determined
by the control structure. The control statements which generate the tree will be
referred to as the block output guard. The outputs of a basic block are determined
by the leaves which are reached in the execution of the block. Thus, each branch
of the block output guard controls one output of a block.

Figure 3 illustrates the concept of the basic block. The control flow graph

if((i<limit_i)&&(j<limit_j)) {

if((i>=limit_i)&&(j>=limit_j)) {

Output Guard

else {

 }

 }

else {

if(i>=limit_i) {

else {
 }

 }

 } }

 Generate e5(PRODUCER,i,j);

Generate e3(CONSUMER);

 Generate e3(CONSUMER);

 Generate e5(PRODUCER,i:=0,j);

 Generate e5(PRODUCER,i,j:=0);

output3: e3

Receive e2(CONSUMER);

int i, j, limit_i, limit_j;

Basic Block D:

Basic Block D
input

output1: e5(i:=0,j)

e5(i:=0,j) e5(i,j:=0)
e3

e5(i,j)

e3

output2: e5(i,j:=0) output4: e5(i,j), e3

Fig. 3. Demonstration of a Basic Block Concept

6 For the complete list of the commands see [17]

(at the command level) illustrates the control flow paths that determine the
outputs of the basic block.

The execution model for the system is asynchronous interleaved execution
of the basic blocks of the sequential programs. a) One program from among
those which are enabled for execution (those programs with events in their input
queues) is non-deterministically selected for execution. b) The basic block in the
selected program which consumes the event at the head of the event queue is
executed and step a is repeated.

Definition 3 [Basic Block Control Flow Graph]: The nodes of the
basic block control flow graph of the system are basic blocks of the composing
sequential programs. The arcs of the basic block control flow graph of the system
connect basic blocks which are the sources and targets for events. Therefore a
control flow graph can also be specified as generation and consumption of a
sequence of events.

The control flow properties of the system behavior can be stated in terms of
control at the basic block level by referring to events that initiate execution of
basic blocks.

This works exploits the atomicity of the program executions to identify loops
of the program execution (loops across basic blocks).

Definition 4 [Loop]: A loop in a basic block control flow graph of a system
is defined by a repeated execution of a path which begins with the generation of a
unique event by a basic block and ends at that same basic block (loop basic block,
Bloop).

Each loop is guarded by a set of the basic block output guards of the loop
basic block, Bloop, and their dependence set, Bdepend. The dependence set is the
set of basic blocks which output guards operate on variables that are dependent
on the output guard variables of the loop basic blocks. Let us call the variables
of the basic block output guards that define the loop, loop control variables.

3.2 Program Semantics

The syntax of the program defined above can be given an execution semantics as
an asynchronous transition system (ATS) [10] composed of finite state machine
interacting through finite, non-blocking FIFO queues.

Definition 5 [Event Queue]:(cf. [10]) An event queue, Qi = (V,N,E,L) is
defined by the the queue vocabulary, V, by the size of the queue, N, by the vector
of events stored in the queue, E, and the content of the stored events, L, defined
as a finite set of the values. The values are expressions on the system variables,
or constants. For a set of queues, Q, the queues vocabularies are disjoint.

Definition 6 [Finite State Machine]:(cf. [10]) A state machine, M, is
defined as a tuple, M = (X,S,s0,I,O,Q,T), where

- X is the finite set of variables;
- S is the finite set of possible binding of values to X;
- s0 is an element of S, the initial state;
- I is the set of input events;
- O is the set of output events;

- Q is a set of event queues;
- T is the transition relation specifying the allowed transitions among S.
Definition 7 [Trace of a State Machine]: An infinite sequence of states

tr = s0s1...sn, is a trace of FSM if (1) s0 is an initial state and (2) for all
0 ≤ i < n, the state si+1 is a successor of si.

Definition 8 [Asynchronous Transition System (ATS)]:(cf. [10]) An
ATS is a composition of finite state machines which interact by sending and
receiving events. The global state space is the product of the local state spaces
of the composed state machines, the system event queue is the union of the sets
of the queues of the separate machines, and the global transition relation is the
union of the local transition relations.

Definition 9 [Trace of an ATS]: The trace of an ATS is an interleaving
of states from the traces of the state machines which compose the system. The
ATS may be constrained by fairness constraints that determines which traces
of the model are confronted with the specification during model checking. If a
fairness constraint is defined as set of states, then a fair trace must contain an
element of each fairness constraint infinitely often.

Definition 10 [Refinement]: Let A and C be two ATS instances. Let L(A)
and L(C) be the language of all traces from execution of A and C.

If XC ⊆ XA, and L(C) ⊆ L(A) then C weakly refines A, C ≤ A.

Definition 11 [Control Refinement]: Let us define an operator R which
projects from L(C) and L(A) all states which do not receive events. Call R.L(C)
and R.L(A) control traces of an ATS.

If XC ⊆ XA and R.L(C) ⊆ R.L(A) then C weakly refines control of A.

Control refinement is defined to show behavioral correspondence between the
control (event) sequences of the abstract and concrete programs. The program
actions are grouped into basic blocks (as defined earlier) and execute in run to
completion mode. Therefore R.L(C) and R.L(A) correspond to the basic block
control flow graphs of systems C and A and L(C) and L(A) correspond to the
traces of systems C and A.

Definition 12 [Control Property]: A control property is a linear temporal
logic specification defined over states that input events. For example, in Fig.2 an
event e1(CONSUMER) accepted by the CONSUMER program defines a control
state of the program ATS.

4 Loop Abstraction

The execution behaviors of control software systems are typically dominated
by cycles implementing feedback loops. The structure of the control flow graph
is usually determined by a small set of variables (control flow variables). The
paths in the control flow graph of a program with loops are usually determined
by conditional statements (guards) which depend on a subset of the control flow
variables (loop control variables). Model checking of such systems generates a

traversal of the loops in the control flow graph for each possible value of each
loop variable. Each traversal of the loop with different values of the loop control
variables is distinct in the state graph of the program. Additionally each traversal
of a loop will typically involve many variables (”don’t care” variables) which do
not participate in determination of the paths through the control flow graph.
But each execution of a loop with different values for the ”don’t care” variables
is also distinct in the state graph generated by the model checker.

Control flow properties (such as guarantee that the program components
will never execute an unsafe sequence of control actions) are dependent only
on the control flow graph of the system and are independent of the number of
traversals of the loops of the control flow graph. Therefore the control properties
of the concrete program can be model checked by model checking of an abstract
program with the same control flow graph.

The abstraction presented in this paper generates an abstract program with
the same static task graph as the concrete program from which it is derived
but which specifies a minimum (or nearly minimum) number of traversals of the
loops of the static task graph. The values of the ”don’t care” variables can also
be freed in the abstract program. These abstract programs typically have orders
of magnitude smaller state spaces than the concrete programs from which they
are derived.

4.1 Sketch of the Loop Abstraction Algorithm

The algorithm iteratively analyzes and transforms basic blocks that define con-
trol flow within a loop7. The algorithm computes a number of outputs for each
block that is executed in the control loop and uses the computed data to abstract
the events generation within the basic blocks from the actual data. The steps in
the loop abstraction algorithm are defined below. Each step is accompanied by
a narrative description of the performed actions. The detailed description of the
algorithm can be found in [18].

a) Identify each control flow statement (simple or compound) which partici-
pates in determining a path of a loop.

This step is implemented by identifying the output guards of the basic blocks
that are repeatedly activated. The loop abstraction algorithm starts from a loop
basic block annotated by ’Loop Label’ during simulation of the program execu-
tions (see section 2 for details).

b) Determine the number of exit paths from each control flow statement that
determines the loop.

The algorithm conducts a trivial syntactic analysis of the basic block code
and determines the number of branches of the block output guards that control
output events. For example, there exist four outputs controlled by an output
guard of basic block D of the Consumer-Producer example (see Figure 3.).
7 The basic block structure of the xUML programs is explicitly preserved by special

words ’state’ and ’endstate’ in the textual representation of xUML programs for
the beginning and the end of the basic block respectively. This allows syntactic
identification of the code that corresponds to each xUML basic block.

c) Replace each block output guard with a control flow statement with
the same set of exit paths where exit path selection is determined by a vari-
able (path selection variable) whose range is defined by the number of outputs
(computed in step b) controlled by each block output guard. The values of the
path selection variables are non-deterministically chosen. The transformation al-
gorithm is trivial and is performed by copying statements and replacing the con-
ditions of the block output guard by equality comparison of the path selection
variable to one value in its range. There are several patterns of the possible con-
figurations of the control tree defined by the block output guard. The transfor-
mation algorithm resolves each pattern accordingly such that each transformed
output guard truly represents the original program structure. An example of an
output guard transformation for the basic block D from the Consumer-Producer
example is given below. The right side represents the original text of the basic
block and the left side demonstrates the result of the syntactic transformation.

Abstract Basic Block | Concrete Basic Block

path_selection := any(1,2,3); |if((i<limit_i)&&(j<limit_j)) {

if(path_selection == 1) { | Generate e5(PRODUCER,i,j);

Generate e5(PRODUCER,i,j); | Generate e3(CONSUMER); }

Generate e3(CONSUMER); } |else {

else { | if((i>=limit_i)&&(j>=limit_j)){

if(path_selection == 2){ | Generate e3(CONSUMER); }

Generate e3(CONSUMER); } | else {

else { | if(i>=limit_i){

if(path_selection == 3){ | Generate e5(PRODUCER,i:=0,j);}

Generate e5(PRODUCER,i:=0,j);} | else {

else { | Generate e5(PRODUCER,i,j:=0);}

Generate e5(PRODUCER,i,j:=0);} | } }

} } |

d) Identify all of the variables which depend on the variables which appeared
in the control statements that determine the loop. For example, local variables
i and j of the PRODUCER program used in the block A are the dependent
variables of the abstracted variables of the CONSUMER program’s block D.

e) Identify all of the control flow statements which are defined over the vari-
ables detected in step d. For example, if control statements defined over the local
variables i, j of the basic Block A are such control statements.

f) Replace these control flow statements following steps b) and c).
The algorithm terminates when all control flow statements defined over the

loop control flow variables and their dependency set are detected.
In addition to the program analysis and transformation, the loop abstrac-

tion algorithm automatically creates a file that is used to store the fairness
assumptions specified as one of the results of the program transformation. Fair-
ness constraints are specified for each value of each path selection variable. For
example, during transformation of the Block D of the Consumer-Producer pro-
gram, the following set of the fairness constraints is created8 Assume Eventually

8 The assumptions are encoded in a query language of COSPAN.

path selection:= 1; Assume Eventually path selection:= 2; Assume Eventually
path selection := 3. The file containing the fairness constraints is passed to the
model checker and used to specify assumptions (using the assume-guarantee fea-
tures of the model checker, COSPAN) that assure that all outputs defined in the
concrete system are explored during the model-checking of the abstract program.

The abstraction is enforced by the syntactic transformation of the basic
blocks that are executed in the control loop. The formal definition of the ab-
stract program is P a = (Xa,Ea,Ia,Ba), where Ea,Ia are defined as for the
concrete program, Xa = X ∪ Xnew, where X is the set of variables defined in
the concrete program and Xnew is the set of the path selection variables; Ba =
B \ Bloop/depend ∪ Bnew, where B, Bloop/depend are the sets of concrete basic
blocks such that Bloop is the loop basic block and Bdepend is its dependency set
(as defined in section 3.1); and Bnew is the set of the transformed Bloop and
Bdepend basic blocks.

4.2 Soundness of the Loop Abstraction

We demonstrate that the loop abstraction is sound with respect to the control
flow representation of the concrete program. The soundness result implies that
a control specification holds for the original program if it holds for the abstract
program.

Let C be an ATS instance associated with the concrete program. Let A be
an ATS instance associated with a program that was constructed from C by
applying the loop abstraction algorithm.

Theorem 1:

Given a control property ϕ, the abstract ATS (A) is equivalent with respect
to ϕ to the original ATS (C).

Proof Sketch:

The claim is proved by a trace containment test. We demonstrate that a
control trace which conforms to the specification of the control property (see
def. 12) of C is contained in the language of control traces, R.L(A).

1. XC ⊆ XA. This follows the definition of the abstract program (see Section
4.1): (during program transformation new variables, the path selection variables,
are added to the program).

2. EC = EA. This follows the definition of the abstract program (see Section
4.1): (during program transformation no new events are added to list of the
program events nor are any events of the concrete program are omitted).

3. Generation of events is controlled by the output guards. Call the variables
that are used in the output guards of the concrete program, control variables,
Xcontrol. Call the rest of the variables of the concrete program, data variables,
Xdata. Therefore, X = Xcontrol ∪ Xdata.

The path selection variables are the control variables of the abstract program
since they are used in the guard statements to control generation of events.
Therefore, from 1 it follows that XC

control ⊆ XA
control.

4. Assume that the language of control traces is defined by a set of control
traces each of which is initiated by valuation of a different control variable. Let’s
call these control traces elementary control traces.

From 2 and 3 it follows that any elementary control trace of C is a subset of
R.L(A).

5. From definition of traces (def. 7), every prefix of a trace is a trace. Since
the set of initial states is not empty, and the transition relation is serial, every
trace can be extended. Therefore, a control property (def. 12) is a specification
that is defined over a set of elementary traces. Thus, from 4, any control trace
conforming to a control property specified for C is contained in R.L(A).

Therefore, A is equivalent to C with respect to the control property.
It can be shown in the manner above that R.L(C) ⊆ R.L(A) which implies

(see def. 11) that C weakly refines control of A and preserves all control prop-
erties. This means that the same abstraction can be used to check all control
properties.

5 Evaluation of the Loop Abstraction Technique

The loop abstraction technique has been evaluated during verification of a NASA
Robot Controller System (RCS) formulated as xUML programs. Due to the
space limitations we present partial results of the RCS verification and refer the
reader to [12, 18, 19] for the detailed description of the RCS and its properties.

Table 1. Verification properties

N Property Robotic Description Formal Description

1 EventuallyAl-
ways(p=1)

Eventually the robot control
terminates

Eventually permanently
p=1

2 NeverUn-
til(r=1,fk=1)

No command to move the robot
arm is scheduled before an initial
position of the arm is computed

It is never the case that
r=1 holds until fk=1 holds

Sample properties (both safety and liveness) are given in Table 1. The prop-
erties are encoded in a query language of COSPAN and refer to variables of the
RCS xUML programs. For example, declaration p refers to the abort var vari-
able of the Controller RCS xUML program, fk refers to the forward kinematics
variable of the EndEffector RCS xUML program, and r refers to the ee reference
variable of the Trajectory RCS xUML program.

We considered several variants of the RCS of different complexity defined by
the number of joints i of a robot arm (i defines degrees of freedom (DOF) of the
robot arm). We used two types of programs to check the properties. The first
type is the complete (concrete) program. The second type is the abstract version
of the concrete program to which the loop abstraction method has been applied.

Table 2. Comparison of Verification of the Concrete and Abstract Robotic Systems

i P1: Concrete
(states/m:s/MB)

P1: Abstract
(states/m:s/MB)

P2: Concrete
(states/m:s/MB)

P2: Abstract
(states/m:s/MB)

2 2.2e+12/350:4/735 26K/0:28/4.03 2.3e+11/344:4/713 17K/0:17/3.38

3 3e+18/415:4/1,246 63K/3:10/4.9 2e+17/410:3/1,190 63K/3:10/4.9

4 6e+23/592:4/1,802 145K/11:28/8.4 6e+24/662:3/2,190 116K/7:03/7.1

5 M/T exhaustion 688K/28:10/23.9 M/T exhaustion 554K/13:40/19.1

6 M/T exhaustion 1.1M/42:17/96.5 M/T exhaustion 715K/33:17/36.2

Table 2 compares the run-time and memory usage for properties from Ta-
ble 1. The results are given for the concrete and the abstract RCS with a total
number of 7 xUML programs. They exclude the i programs corresponding to the
number of instances of the Joint object. Each entry in the table has the form
x/y/z where x is the number of the states reached, y is the run-time in cpu min-
utes and seconds (m:s) and z is the memory usage in Mbytes (MB). The results
of the verification demonstrate significant reduction in both time and space for
the abstract program compared to the concrete program. The results are given
for the explicit state space exploration experiments and demonstrate that the re-
duction becomes more pronounced for larger values of i. Verification for the robot
configurations consisting more than 4 joints (4 DOF) could not be completed
for the concrete program due to the memory/time exhaustion (denoted as M/T
exhaustion in Table 2), but COSPAN succeeded for the abstracted model. It is no-
table that application of the state space reduction techniques such as BDD-based
verification and partial order reduction to verification of the concrete program
also resulted in the state space explosion for programs implementing control of
robots with more than 4 DOF. Our efforts on the predicate abstraction of the
concrete program also failed. Specifically, the predicate abstraction technique
supported by COSPAN [15] did not succeed due to the memory exhaustion
during computation of the abstraction predicates. The boolean abstraction ap-
proach [1] resulted in over-approximation of the program executions that led to
the state space explosion during verification of the abstracted program even for
programs with less than 5 DOF. Thus, the loop abstraction technique became
the only approach that enabled verification of robot configurations higher than
4 DOF.

6 Conclusions, Future and Related Work

Conclusions. The paper presented an approach for practical model checking
of large-scale software. A loop abstraction technique has been defined and im-
plemented in the context of the integrated design and model checking software
development. The abstraction algorithm is computationally simple and requires
storage linear in the size of the program since it is a source to source transfor-
mation. It proved to be highly effective in state space reduction for the test-case

control-intensive program, the large-scale robot controller system. Most impor-
tantly, the loop abstraction enabled completion of model checking for realistic
robot configurations where all other approaches, including predicate abstraction
[1, 15], failed.

It would be expected that a selective and limited scope abstraction such
as the loop abstraction would introduce fewer unrealistic behaviors into the
abstract program than more comprehensive abstractions. This proved to be the
case for the robot control system. Only a few refinements were needed. These
were identified as false negatives in model checking the abstract program and
were manually implemented. Propagation of the abstraction across basic blocks,
planned as a future work, will further reduce the number of unrealistic behaviors
introduced by the abstraction and hence the requirement for refinement.

A limitation of the loop abstraction is that it can only be applied when the
properties to be model checked are control properties. Control properties are,
however, typically the safety-critical properties of control systems.

Related Work. Loop abstraction is similar to predicate abstraction in that
it requires specification of an abstraction function as predicates over concrete
data. Loop abstraction differs from predicate abstraction in that it does not
require computation of the abstraction predicates. Instead it operates on the
conditional predicates which implement program control. The result of the loop
abstraction is the construction of a control skeleton which makes our work similar
to construction of boolean programs as defined in [1]. However, our work is
different from [1] in that it is concerned with the abstraction of only the loops.
Loop abstraction introduces a limited number of unrealistic behaviors compared
to [1] and also preserves some original data valuations compared to the complete
data abstraction provided by predicate abstraction methods. Loop abstraction
can be a useful complement to predicate abstraction. It abstracts control while
predicate abstraction abstracts statements not effected by the loop abstraction.

The implementation of the loop abstraction algorithm is similar to [15] in
that the loop abstraction algorithm does not construct the explicit state graph of
either the original or of the abstract program. Instead a syntactic analysis of the
original program is used to produce an abstract program. However, our approach
is different from other abstraction algorithms dealing with the source code in that
the abstraction is applied to a design-level specification (xUML programs). To
our knowledge, there has been no previous reports on data abstraction algorithms
specifically targeting design level specifications.

The work presented in this paper is also related to path coverage (also known
as predicate coverage) testing [2, 3]. Path coverage reports whether each of the
possible paths in each function of the program has been followed. (A path in test-
ing is a unique sequence of branches from a function entry to exit). Loop abstrac-
tion provides complete coverage of all possible execution paths within a loop.
One of the major obstacles to successful path coverage is looping during program
execution. Since loops may contain an unbounded number of paths, path cover-
age only considers a limited number of looping possibilities. Our method solves
this problem. Path coverage has the problem that many potential paths are

impossible to reach because of data relationship constraints. Loop abstraction
algorithm solves this problem by adding fairness constraints to force exploration
of all abstracted paths.

References

1. T. Ball, R. Majumdar, T. Millstein and S. Rajamani, Automatic Predicate Abstrac-
tion of C Programs, In Proc. of PLDI 2001, SIGPLAN Notices, Vol. 39 (2001)

2. B. Beizer, Software Testing Techniques, New York: Van Nostrand Reinold, (1990)
3. J. J. Chilenski and S. P. Miller, Applicability of modified conditional coverage to

software testing, Software Engineering Journal, (1994) 193 - 200
4. E. M. Clarke, O. Grumberg, and D. Long. Model checking and abstraction. In

Proceedings POPL 92: Principles of Programming Languages, (1992) 343 - 354
5. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for the

static analysis of programs by construction of approximation of fixpoints. In Proc.
of POPL’77, (1977) 238 - 252

6. D. Dams, O. Grumberg, and R. Gerth. Abstract interpretation of reactive systems:
abstractions preserving ACTL*, ECTL*, and CTL*. In Proceedings of PROCOMET
94: Programming Concepts, Methods, and Calculi, (1994) 561-581

7. S. Graf and H. Saidi, Construction of abstract state graphs with PVS. In Proceedings
of CAV 1997, LNCS 1254 (1997) 72 - 83

8. R. Hardin, Z. Har’EL, and R. P. Kurshan, COSPAN, In Proceedings of CAV 1996,
LNCS 1102, (1996) 423 - 427

9. M. S. Hecht, Flow Analysis of Computer Programs, NY: Elsevier-N. Holland (1977)
10. J. Holzmann, Design and Validation of Computer Protocols, Pr. Hall, NJ (1991)
11. Kennedy Carter Inc., www.kc.com
12. Kapoor, C., and Tesar, D.: A Reusable Operational Software Architecture for Ad-

vanced Robotics (OSCAR), The University of Texas at Austin, DOE Grant No.
DE-FG01 94EW37966 (1998)

13. Kurshan, R., Computer-Aided Verification of Coordinating Processes - The Au-
tomata Theoretic Approach, Princeton University Press, Princeton, NJ (1994)

14. C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property preserving
abstractions for the verification of concurrent systems. Formal Methods in System
Design, Vol. 6(1), (1995) 11-44

15. K. S. Namjoshi and R. P. Kurshan, Syntactic Program Transformations for Auto-
matic Abstraction, In Proc. of CAV’00, LNCS 1855, (2000), 435-449

16. Y. Kesten and A. Pnueli, Control and Data Abstraction: Cornerstones of the Prac-
tical Formal Verification, Software Tools and Technology Transfer, Vol. 2(4) (2000)

17. SES Inc., ObjectBench Technical Reference, SES Inc. (1998)
18. N. Sharygina, Model Checking of Software Control Systems, Ph.D. Dissertation,

The University of Texas at Austin (2002)
19. N. Sharygina, J. C. Browne and R. Kurshan, A Formal Object-Oriented Analysis

for Software Reliability: Design for Verification, In Proc. of FASE’01, LNCS 2029,
(2001), 318-332

20. S. Shlaer, S. Mellor, Object Lifecycles: Modeling the World in States, Pr. Hall
(1992)

21. L. Starr, Executable UML: The Models that Are the Code, M. Integration, LLC
(2001)

22. F. Xie, V. Levin, and J. C. Browne, Model Checking of an Executable Subset of
UML, In Proceedings of ASE2001: Automated Software Engineering (2001)

