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Abstract

We present an arc-factored statistical model
for semantic dependency parsing, as de-
fined by the SemEval 2014 Shared Task 8
on Broad-Coverage Semantic Dependency
Parsing. Our entry in the open track placed
second in the competition.

1 Introduction

The task of broad coverage semantic dependency
parsing aims to provide a shallow semantic analysis
of text not limited to a specific domain. As distinct
from deeper semantic analysis (e.g., parsing to a
full lambda-calculus logical form), shallow seman-
tic parsing captures relationships between pairs
of words or concepts in a sentence, and has wide
application for information extraction, knowledge
base population, and question answering (among
others).

We present here two systems that produce seman-
tic dependency parses in the three formalisms of the
SemEval 2014 Shared Task 8 on Broad-Coverage
Semantic Dependency Parsing (Oepen et al., 2014).
These systems generate parses by extracting fea-
tures for each potential dependency arc and learn-
ing a statistical model to discriminate between good
arcs and bad; the first treats each labeled edge de-
cision as an independent multiclass logistic regres-
sion (§3.2.1), while the second predicts arcs as part
of a graph-based structured support vector machine
(§3.2.2). Common to both models is a rich set of
features on arcs, described in §3.2.3. We include a
discussion of features found to have no discernable
effect, or negative effect, during development (§4).

Our system placed second in the open track of
the Broad-Coverage Semantic Dependency Parsing
task (in which output from syntactic parsers and
other outside resources can be used). We present
our results in §5.

Figure 1: Example annotations for DM (top), PAS (middle),
and PCEDT (bottom).

2 Formalisms

The Shared Task 8 dataset consists of annota-
tions of the WSJ Corpus in three different se-
mantic dependency formalisms. DM is derived
from LinGO English Resource Grammar (ERG)
annotations in DeepBank (Flickinger et al., 2012).
PAS is derived from the Enju HPSG treebank us-
ing the conversion rules of Miyao et al. (2004).
PCEDT is derived from the tectogrammatical layer
of the Prague Czech-English Dependency Treebank
(Hajič, 1998). See Figure 1 for an example.

The three formalisms come from very different
linguistic theories, but all are represented as labeled
directed graphs, with words as vertices, and all
have “top” annotations, corresponding roughly to
the semantic focus of the sentence. (A “top” need
not be a root of the graph.) This allows us to use
the same machinery (§3) for training and testing
statistical models for the three formalisms.

3 Models

We treat the problem as a three-stage pipeline. The
first stage prunes words by predicting whether they
have any incoming or outgoing edges at all (§3.1);
if a word does not, then it is not considered for
any attachments in later stages. The second stage
predicts where edges are present, and their labels
(§3.2). The third stage predicts whether a predicate
word is a top or not (§3.3). Formalisms sometimes



annotate more than one “top” per sentence, but we
found that we achieve the best performance on all
formalisms by predicting only the one best-scoring
“top” under the model.

3.1 Singleton Classification

For each formalism, we train a classifier to rec-
ognize singletons, nodes that have no parents or
children. (For example, punctuation tokens are of-
ten singletons.) This makes the system faster with-
out affecting accuracy. For singleton prediction,
we use a token-level logistic regression classifier,
with features including the word, its lemma, and
its part-of-speech tag. If the classifier predicts a
probability of 99% or higher the token is pruned;
this removes around 10% of tokens. (The classi-
fier performs differently on different formalisms;
on PAS it has perfect accuracy, while on DM and
PCEDT accuracy is in the mid-90’s.)

3.2 Edge Prediction

In the second stage of the pipeline, we predict the
set of labeled directed edges in the graph. We use
the same set of edge-factored features (§3.2.3) in
two alternative models: an edge-independent mul-
ticlass logistic regression model (LOGISTICEDGE,
§3.2.1); and a structured SVM (Taskar et al., 2003;
Tsochantaridis et al., 2004) that enforces a deter-
minism constraint for certain labels, which allows
each word to have at most one outgoing edge with
that label (SVMEDGE, §3.2.2). For each formalism,
we trained both models with varying features en-
abled and hyperparameter settings and submitted
the configuration that produced the best labeled F1

on the development set. For DM and PCEDT, this
was LOGISTICEDGE; for PAS, this was SVMEDGE.
We report results only for the submitted configu-
rations, with different features enabled. Due to
time constraints, full hyperparameter sweeps and
comparable feature sweeps were not possible.

3.2.1 LOGISTICEDGE Parser
The LOGISTICEDGE model considers only token
index pairs (i, j) where |i − j| ≤ 10, i 6= j,
and both ti and tj have been predicted to be non-
singletons by the first stage. Although this prunes
some gold edges, among the formalisms, 95%–97%
of all gold edges are between tokens of distance
10 or less. Both directions i → j and j → i are
considered between every pair.

Let L be the set of K + 1 possible output labels:
the formalism’s original K edge labels, plus the

additional label NOEDGE, which indicates that no
edge exists from i to j. The model treats every pair
of token indices (i, j) as an independent multiclass
logistic regression over output space L. Let x be
an input sentence. For candidate parent index i,
child index j, and edge label `, we extract a feature
vector f(x, i, j, `), where ` is conjoined with every
feature described in §3.2.3. The multiclass logis-
tic regression model defines a distribution over L,
parametrized by weights φ:

P (` | φ, x, i, j) = exp{φ · f(x, i, j, `)}∑
`′∈L exp{φ · f(x, i, j, `′)}

.

φ is learned by minimizing total negative log-
likelihood of the above (with weighting; see be-
low), plus `2 regularization. AdaGrad (Duchi et al.,
2011) is used for optimization. This seemed to opti-
mize faster than L-BFGS (Liu and Nocedal, 1989),
at least for earlier iterations, though we did no sys-
tematic comparison. Stochastic gradient steps are
applied one at a time from individual examples,
and a gradient step for the regularizer is applied
once per epoch.

The output labels have a class imbalance; in all
three formalisms, there are many more NOEDGE

examples than true edge examples. We improved
F1 performance by downweighting NOEDGE

examples through a weighted log-likelihood
objective,

∑
i,j

∑
`w` logP (` |φ, x, i, j), with

wNOEDGE = 0.3 (selected on development set) and
w` = 1 otherwise.

Decoding: To predict a graph structure at test-time
for a new sentence, the most likely edge label is pre-
dicted for every candidate (i, j) pair of unpruned
tokens. If an edge is predicted for both directions
for a single (i, j) pair, only the edge with the higher
score is chosen. (There are no such bidirectional
edges in the training data.) This post-processing ac-
tually did not improve accuracy on DM or PCEDT;
it did improve PAS by ≈0.2% absolute F1, but we
did not submit LOGISTICEDGE for PAS.

3.2.2 SVMEDGE Parser

In the SVMEDGE model, we use a structured SVM
with a determinism constraint. This constraint en-
sures that each word token has at most one outgoing
edge for each label in a set of deterministic labels
Ld. For example, in DM a predicate never has more
than one child with edge label “ARG1.” Ld was
chosen to be the set of edges that were > 99.9%



deterministic in the training data.1

Consider the fully dense graph of all edges be-
tween all words predicted as not singletons by the
singleton classifier §3.1 (in all directions with all
possible labels). Unlike LOGISTICEDGE, the la-
bel set L does not include an explicit NOEDGE

label. If ψ denotes the model weights, and f de-
notes the features, then an edge from i to j with
label ` in the dense graph has a weight c(i, j, `)
assigned to it using the linear scoring function
c(i, j, `) = ψ · f(x, i, j, `).
Decoding: For each node and each label `, if ` ∈
Ld, the decoder adds the highest scoring outgoing
edge, if its weight is positive. For ` 6∈ Ld, every
outgoing edge with positive weight is added. This
procedure is guaranteed to find the highest scoring
subgraph (largest sum of edge weights) of the dense
graph subject to the determinism constraints. Its
runtime is O(n2).

The model weights are trained using the struc-
tured SVM loss. If x is a sentence and y is a
graph over that sentence, let the features be de-
noted f(x, y) =

∑
(i,j,`)∈y f(x, i, j, `). The SVM

loss for each training example (xi, yi) is:

−ψ>f(xi, yi)+max
y
ψ>f(xi, y)+cost(y, yi)

where cost(y, yi) = α|y \ yi| + β|yi \ y|. α and
β trade off between precision and recall for the
edges (Gimpel and Smith, 2010). The loss is min-
imized with AdaGrad using early-stopping on a
development set.

3.2.3 Edge Features
Table 1 describes the features we used for predict-
ing edges. These features were computed over an
edge e with parent token s at index i and child
token t at index j. Unless otherwise stated, each
feature template listed has an indicator feature that
fires for each value it can take on. For the sub-
mitted results, LOGISTICEDGE uses all features
except Dependency Path v2, POS Path, and Dis-
tance Thresholds, and SVMEDGE uses all features
except Dependency Path v1. This was due to
SVMEDGE being faster to train than LOGISTIC-
EDGE when including POS Path features, and due
to time constraints for the submission we were un-
able to retrain LOGISTICEDGE with these features.

1 By this we mean that of the nodes that have at least
one outgoing ` edge, 99.9% of them have only one outgo-
ing ` edge. For DM, Ld = L\{“ and c,” “ or c,” “ then c,”
“loc,” “mwe,” “subord”}; for PAS, Ld = L; and for PCEDT,
Ld ={“DPHR,” “INTF,” “VOCAT”}.

Tokens: The tokens s and t themselves.
Lemmas: Lemmas of s and t.
POS tags: Part of speech tags of s and t.
Linear Order: Fires if i < j.
Linear Distance: i− j.
Dependency Path v1 (LOGISTICEDGE only): The
concatenation of all POS tags, arc labels and up/down
directions on the path in the syntactic dependency tree
from s to t. Conjoined with s, with t, and without either.
Dependency Path v2 (SVMEDGE only): Same as De-
pendency Path v1, but with the lemma of s or t instead
of the word, and substituting the token for any “IN” POS
tag.
Up/Down Dependency Path: The sequence of upward
and downward moves needed to get from s to t in the
syntactic dependency tree.
Up/Down/Left/Right Dependency Path: The unla-
beled path through the syntactic dependency tree from s
to t, annotated with whether each step through the tree
was up or down, and whether it was to the right or left in
the sentence.
Is Parent: Fires if s is the parent of t in the syntactic
dependency parse.
Dependency Path Length: Distance between s and t in
the syntactic dependency parse.
POS Context: Concatenated POS tags of tokens at i−1,
i, i+ 1, j − 1, j, and j + 1. Concatenated POS tags of
tokens at i− 1, i, j − 1, and j. Concatenated POS tags
of tokens at i, i+ 1, j, and j + 1.
Subcategorization Sequence: The sequence of depen-
dency arc labels out of s, ordered by the index of the
child. Distinguish left children from right children. If t
is a direct child of s, distinguish its arc label with a “+”.
Conjoin this sequence with the POS tag of s.
Subcategorization Sequence with POS: As above, but
add the POS tag of each child to its arc label.
POS Path (SVMEDGE only): Concatenated POS tags
between and including i and j. Conjoined with head
lemma, with dependent lemma, and without either.
Distance Thresholds (SVMEDGE only): Fires for ev-
ery integer between 1 and blog(|i− j|+1)/ log(1.39)c
inclusive.

Table 1: Features used in edge prediction

3.2.4 Feature Hashing

The biggest memory usage was in the map from
feature names to integer indices during feature
extraction. For experimental expedience, we im-
plemented multitask feature hashing (Weinberger
et al., 2009), which hashes feature names to indices,
under the theory that errors due to collisions tend
to cancel. No drop in accuracy was observed.

3.3 Top Prediction

We trained a separate token-level binary logistic
regression model to classify whether a token’s node
had the “top” attribute or not. At decoding time, all
predicted predicates (i.e., nodes where there is at
least one outbound edge) are possible candidates
to be “top”; the classifier probabilities are evalu-



Word vectors: Features derived from 64-dimensional
vectors from (Faruqui and Dyer, 2014), including the
concatenation, difference, inner product, and element-
wise multiplication of the two vectors associated with
a parent-child edge. We also trained a Random Forest
on the word vectors using Liaw and Wiener’s (2002) R
implementation. The predicted labels were then used as
features in LOGISTICEDGE.
Brown clusters Features derived from Brown clusters
(Brown et al., 1992) trained on a large corpus of web data.
Parent, child, and conjoined parent-child edge features
from cluster prefixes of length 2, 4, 6, 8, 10, and 12.
Conjunctions of those features with the POS tags of the
parent and child tokens.
Active/passive: Active/passive voice feature (as in Jo-
hansson and Nugues (2008)) conjoined with both the
Linear Distance features and the Subcategorization Se-
quence features. Voice information may already be cap-
tured by features from the Stanford dependency–style
parses, which include passivization information in arc
labels such as nsubjpass and auxpass (de Marneffe and
Manning, 2008).
Connectivity constraint: Enforcing that the graph is
connected (ignoring singletons), similar to Flanigan et al.
(2014). Almost all semantic dependency graphs in the
training data are connected (ignoring singletons), but
we found that enforcing this constraint significantly hurt
precision.
Tree constraint: Enforces that the graph is a tree. Un-
surprisingly, we found that enforcing a tree constraint
hurt performance.

Table 2: Features and constraints giving negative results.

ated, and the highest-scoring node is chosen to be
“top.” This is suboptimal, since some graphs have
multiple tops (in PCEDT this is more common);
but selection rules based on probability thresholds
gave worse F1 performance on the dev set. For a
given token t at index i, the top classifier’s features
included t’s POS tag, i, those two conjoined, and
the depth of t in the syntactic dependency tree.

4 Negative Results

We followed a forward-selection process during
feature engineering. For each potential feature,
we tested the current feature set versus the current
feature set plus the new potential feature. If the
new feature did not improve performance, we did
not add it. We list in table 2 some of the features
which we tested but did not improve performance.

In order to save time, we ran these feature se-
lection experiments on a subsample of the training
data, for a reduced number of iterations. These re-
sults thus have a strong caveat that the experiments
were not exhaustive. It may be that some of these
features could help under more careful study.

LP LR LF LM
DM 0.8446 0.8348 0.8397 0.0875
PAS 0.9078 0.8851 0.8963 0.2604

PCEDT 0.7681 0.7072 0.7364 0.0712
Average 0.8402 0.8090 0.8241 0.1397

Table 3: Labeled precision (LP), recall (LR), F1 (LF), and
whole-sentence match (LM) on the held-out test data.

5 Experimental Setup

We participated in the Open Track, and used the
syntactic dependency parses supplied by the orga-
nizers. Feature engineering was performed on a
development set (§20), training on §§00–19. We
evaluate labeled precision (LP), labeled recall (LR),
labeled F1 (LF), and labeled whole-sentence match
(LM) on the held-out test data using the evaluation
script provided by the organizers. LF was aver-
aged over the formalisms to determine the winning
system. Table 3 shows our scores.

6 Conclusion and Future Work

We found that feature-rich discriminative models
perform well at the task of mapping from sentences
to semantic dependency parses. While our final
approach is fairly standard for work in parsing,
we note here additional features and constraints
which did not appear to help (contrary to expecta-
tion). There are a number of clear extensions to
this work that could improve performance. While
an edge-factored model allows for efficient infer-
ence, there is much to be gained from higher-order
features (McDonald and Pereira, 2006; Martins
et al., 2013). The amount of information shared
between the three formalisms suggests that a multi-
task learning (Evgeniou and Pontil, 2004) frame-
work could lead to gains. And finally, there is
additional structure in the formalisms which could
be exploited (such as the deterministic processes
by which an original PCEDT tree annotation was
converted into a graph); formulating more subtle
graph constraints that are able to capture this a
priori knowledge of the graph structure could lead
to improved performance. We leave such explo-
rations to future work.
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