
Hidden Markov Models:
All the Glorious Gory Details

Noah A. Smith
Department of Computer Science

Johns Hopkins University
nasmith@cs.jhu.edu

18 October 2004

1 Introduction

Hidden Markov models (HMMs, hereafter) are relatively simple to understand as a generative
process, and they are extremely useful in many applications. Unfortunately the algorithmic details
are notoriously hard to understand and tedious to work out. I have been taught these details at
least three or four times, by various people and in various ways. If I can get it, so can you. It
just takes some patience and working through some examples. This tutorial is intended to get you
to grasp the basics by going through an example. If it insults your intelligence, please don’t hold
it against me; I’m just going to try to explain to you what I wish I’d been told when I was first
grappling with this stuff.

2 The HMM

By now you should know that a HMM is a probabilistic model that assigns probabilities to sequences
of symbols. It is a generative model, meaning that the probability distribution is defined by taking
a series of steps that incrementally produce the sequence of symbols by making random choices.
Think of an HMM as a machine that generates sequences.

How do HMMs generate sequences? An HMM consists of a (finite) set of states, which we’ll
call S. In this discussion, there is a specific begin state B ∈ S and a specific end state E ∈ S.
The HMM always starts out in B and once it gets to E, it stops. In between, it makes random
choices, walking from state to state. The choice to go from one state S to another state T is made
randomly according to a specific distribution: S’s transition distribution Pr(• | S). The choice is
made independently of all other choices.

Where do the output symbols come from? Each time we take a step, we arrive in a state. If that
state is a silent state, we just decide (randomly, according to the state’s transition distribution)
where to go next. If the state is not silent, we pick an output symbol according to the state’s
emission distribution, output it as the next symbol in the sequence, and continue. B and E are
silent states.

That’s it; the generative process is very simple: Start in B. Pick the next state. Pick an output.
Pick the next state. Pick an output. And so on ... until you get to state E, where you stop.

The HMM we will be working with is shown in Figure 1. We will call it M (for “model”).

1

B

E

1 2
1

1/8

3/4

1/8

1/2

1/4

1/4

Pr(X | 1) =
7
8

Pr(Y | 1) =
1
8

Pr(X | 2) =
1
16

Pr(Y | 2) =
15
16

Figure 1: The transition distributions (above) and emission distributions (below) for our HMM,
M.

3 Probabilities of Paths

Suppose you knew everything in Figure 1 (the number and names of the states, the transition
probabilities, and the emission probabilities). Suppose I told you that the HMM had walked this
sequence of states:

!π = B, 1, 1, 2, E

What is the probability that M would follow that state sequence (path)? More precisely, what is
Pr(π | M)?

Well, we know the HMM started in B.1 I claim that M then stepped to state 1, then from 1 to
1 again, then from 1 to 2, then from 2 to E. Each of those steps involved a random choice being
made according to a probability distribution. Each step depends only on the state we are in when
we choose it. So we have:

Pr(π | M) =

known to be 1︷ ︸︸ ︷
Pr(π0 = B) ·Pr(π1 = 1 | π0 = B) · Pr(π2 = 1 | π1 = 1)

·Pr(π3 = 2 | π2 = 1) · Pr(π4 = E | π3 = 2)

= 1 · 1 · 1
8

· 3
4

· 1
4

=
3
27

1If !π had started with 1, what probability would we have assigned to !π? We would have had to assign zero,
because we know all paths that are generated by M start with B.

2

path computation of its probability with X, X, X,X Pr(path, !S)
B1111E aB(1) · e1(X) · a1(1) · e1(X) · a1(1) · e1(X) · a1(1) · e1(X) · a1(E) 2401/224

B1112E aB(1) · e1(X) · a1(1) · e1(X) · a1(1) · e1(X) · a1(2) · e2(X) · a2(E) 2058/224

B1121E aB(1) · e1(X) · a1(1) · e1(X) · a1(2) · e2(X) · a2(1) · e1(X) · a1(E) 4116/224

B1122E aB(1) · e1(X) · a1(1) · e1(X) · a1(2) · e2(X) · a2(2) · e2(X) · a2(E) 294/224

B1211E aB(1) · e1(X) · a1(2) · e2(X) · a2(1) · e1(X) · a1(1) · e1(X) · a1(E) 4116/224

B1212E aB(1) · e1(X) · a1(2) · e2(X) · a2(1) · e1(X) · a1(2) · e2(X) · a2(E) 3528/224

B1221E aB(1) · e1(X) · a1(2) · e2(X) · a2(2) · e2(X) · a2(1) · e1(X) · a1(E) 588/224

B1222E aB(1) · e1(X) · a1(2) · e2(X) · a2(2) · e2(X) · a2(2) · e2(X) · a2(E) 42/224

B2111E aB(2) · e2(X) · a2(1) · e1(X) · a1(1) · e1(X) · a1(1) · e1(X) · a1(E) 0
B2112E aB(2) · e2(X) · a2(1) · e1(X) · a1(1) · e1(X) · a1(2) · e2(X) · a2(E) 0
B2121E aB(2) · e2(X) · a2(1) · e1(X) · a1(2) · e2(X) · a2(1) · e1(X) · a1(E) 0
B2122E aB(2) · e2(X) · a2(1) · e1(X) · a1(2) · e2(X) · a2(2) · e2(X) · a2(E) 0
B2211E aB(2) · e2(X) · a2(2) · e2(X) · a2(1) · e1(X) · a1(1) · e1(X) · a1(E) 0
B2212E aB(2) · e2(X) · a2(2) · e2(X) · a2(1) · e1(X) · a1(2) · e2(X) · a2(E) 0
B2221E aB(2) · e2(X) · a2(2) · e2(X) · a2(2) · e2(X) · a2(1) · e1(X) · a1(E) 0
B2222E aB(2) · e2(X) · a2(2) · e2(X) · a2(2) · e2(X) · a2(2) · e2(X) · a2(E) 0

Table 1: Brute force: The 16 paths that could generate X, X, X,X and their probabilities.

From here on we will use shorthand for the transition probabilities. Let

Pr(πt = A | πt−1 = B) = aA(B) (1)

We will use this shorthand for emissions:

Pr(St = X | πt = A) = eA(X) (2)

It’s very easy to compute the probability of any given path through the HMM when we know
what the path is.

But suppose I gave you a sequence of symbols and told you it was generated by the HMM. Take

!S = X, X, X, X

I want to find the most probable path the HMM went through to generate that whole sequence.
Before we get to the elegant solution, let’s consider some näıve ways to find this path.

Brute force !S is only four symbols long. Since those symbols (all of which happen to be X)
could come out of either state 1 or state 2 (both states know how to generate X), we know there
are 24 = 16 possible paths. Table1 shows the probability of each of the paths, as computed by
brute force. Notice that half of them turn out to have zero probability, because the first symbol
can only come from state 1.2

We see from Table 1 that there are two most probable paths: B, 1, 1, 2, 1, E and B, 1, 2, 1, 1, E.
This was a painfully tedious computation, and if our sequence had been twice as long, it would
have taken sixteen times as long to solve the problem this way. The brute force method is correct,
but it is not efficient.

2Why? We have to start in B, and B can only transition to state 1.

3

Mistake here:
should read
a_B(A)

Greedy guessing You might look at the sequence !S and notice that it is all X. X is far more
likely to come out of state 1 than state 2, so you might be tempted to say that the most likely path
is B, 1, 1, 1, 1, E (all X emitted by state 1). Table 1 should convince you that this is incorrect, even
though it’s really quick.

3.1 Best path: Viterbi algorithm

What we want is a method to find the best path that is both efficient and correct. The solution is
the Viterbi algorithm.

Consider the following. I want to find the most probable path for the sequence S1, S2, ..., St

such that the path ends in some state s. I claim that if you can tell me the most probable path for
S1, S2, ..., St−1 up to each state that transitions into s, then I can solve the problem.3 Why?

To get to state s at time t, I must enter s from some other state k. I was at state k at time t−1.
If I know the best path that ends in k at time t−1, then I can compute the probability of that path
continuing to state s. I can then compare for the different states k (each one that transitions into
s, and then I know the answer. This is the optimal substructure trick that dynamic programming
gives us. Specifically, let V (state, time) be the probability of the most likely path that covers the
first time symbols in the emission sequence and ends in state state. Then:

V (s, t) =

s emits symbol St︷ ︸︸ ︷
es(St) max

k:k transitions into s

transition from k to s︷ ︸︸ ︷
ak(s) ·V (k, t− 1) (3)

To make this a well-formed dynamic program, we need to give a base case (so that our equations
ground out somewhere) and a goal value.

The base case is given by the fact that we know all productions of the HMM start in state B:

V (B, 0) = 1 (4)

For all other states s not equal to B, we set V (s, 0) = 0; it is impossible to start in those states.
Our goal is to compute the best path ending in E, at the end of the sequence !S, or t = n:

V (E,n). There’s one annoying little modification. If state s is silent, it won’t emit a symbol, so we
don’t want to have the es(St) term. Further, the emission sequence index won’t increment when
we move into a silent step, because nothing is emitted. So for silent states, we have:

V (s, t) = max
k:k transitions into s

ak(s) · V (k, t− 1) (5)

These recurrence relations give us everything we need to figure out the probability of the best
(most likely) path for !S. In order to actually get that path (which we’ll call π∗), we need to do
a little extra bookkeeping. Each time we pick a maximizing previous state (i.e., each time we
compute a V value), we keep a pointer back to that maximizing state, at the given index. That
way we can trace back the full path.

Let’s work through the Viterbi algorithm for our example HMM, M and the sequence X, X, X, X.
To help do this, we will set up a dynamic programming chart, just like you have seen for alignment
problems. We will work left-to-right across the chart, computing the probabilities as we go, using
the work we’ve already done to help us. Here is the initial chart, with the base cases (first column)
filled in. The table on the left will hold V values, and the table on the right will hold the best
preceding state for each cell.

3Ignore silent states for now.

4

0 1: X 2: X 3: X 4: X
B 1
1 0
2 0
E 0

1: X 2: X 3: X 4: X
B
1
2
E

We begin by computing V (B, 1). This must be zero; there is no way to transition from B to
any state other than 1. This means that V (2, 1) = 0 and also V (E, 1) = 0. Note also that we can
never get into B again, so we will go ahead and set all V (B, •) = 0.

0 1: X 2: X 3: X 4: X
B 1 0 0 0 0
1 0
2 0 0
E 0 0

1: X 2: X 3: X 4: X
B ∅ ∅ ∅ ∅
1
2 ∅
E ∅

Let’s consider V (1, 1). Looking in the 0 column, we see there is only one state with non-zero
probability that could have led into state 1 at time 1, state B. The maximum, then, will be trivial,
since there is only one option. Using the recurrence equation (3), we know that

V (1, 1) = e1(X) · aB(1) · V (B, 0) =
7
8

· 1 · 1 =
7
8

(6)

We fill this in and note that the predecessor must be B:

0 1: X 2: X 3: X 4: X
B 1 0 0 0 0
1 0 7/8
2 0 0
E 0 0

1: X 2: X 3: X 4: X
B ∅ ∅ ∅ ∅
1 B
2 ∅
E ∅

Now we move to column 2 and compute V (1, 2). Which states could transition into state 1 at
this point in the sequence? Only state 1, because M could only have been in state 1 at the previous
step. Again, things are simple and the maximum is trivial:

V (1, 2) = e1(X) · a1(1) · V (1, 1) =
7
8

· 1
8

· 7
8

=
49
29

(7)

Consider V (2, 2). Again, only state 1 could transition into state 2 at this point, because M
could have only been in state 1 at the previous step.

V (2, 2) = e2(X) · a1(2) · V (1, 1) =
1
16

· 3
4

· 7
8

=
21
29

(8)

0 1: X 2: X 3: X 4: X
B 1 0 0 0 0
1 0 7/8 49/29

2 0 0 21/29

E 0 0

1: X 2: X 3: X 4: X
B ∅ ∅ ∅ ∅
1 B 1
2 ∅ 1
E ∅

5

Consider V (E, 2). Because E is a silent state, we don’t look at the previous timestep (column);
we look in the cells for non-silent states 1 and 2, in the same column.4 If M had entered state E
at timestep 2, it came from either state 1 or state 2. We have to pick the best one:

V (E, 2) =

a1(E) · V (1, 2) =
1
8

· 49
29

=
49
212

a2(E) · V (2, 2) =
1
4

· 21
29

=
21
211

(9)

State 1 is the winner:

0 1: X 2: X 3: X 4: X
B 1 0 0 0 0
1 0 7/8 49/29

2 0 0 21/29

E 0 0 49/212

1: X 2: X 3: X 4: X
B ∅ ∅ ∅ ∅
1 B 1
2 ∅ 1
E ∅ 1

Continuing, we move to V (1, 3). Again we must make a choice: would it be better to get to
state 1 at timestep 2, then stay there for timestep 3, or to get to state 2 at timestep 2, then jump
to state 1 for timestep 3?

V (1, 3) =

e1(X)
︷︸︸︷
7
8

max

a1(1) · V (1, 2) =
1
8

· 49
29

a2(1) · V (2, 2) =
1
2

· 21
29
←

=
147
213

with the winner indicated by the arrow (preceding state 2). We update the chart:

0 1: X 2: X 3: X 4: X
B 1 0 0 0 0
1 0 7/8 49/29 147/213

2 0 0 21/29

E 0 0 49/212

1: X 2: X 3: X 4: X
B ∅ ∅ ∅ ∅
1 B 1 2
2 ∅ 1
E ∅ 1

The remaining steps should be clear. They are given below with arrows marking the winners
(I leave it to the reader to work through the arithmetic). Note that in one case we have a tie. The
formulae are followed by the completed chart.

V (2, 3) = e2(X) max
{

a1(2)V (1, 2) ←
a2(2)V (2, 2)

V (E, 3) = max
{

a1(E)V (1, 3) ←
a2(E)V (2, 3)

V (1, 4) = e1(X) max
{

a1(1)V (1, 3) ←
a2(1)V (2, 3) ←

4You may notice that it is pointless to compute V (E, 2), since we know that once we enter state E we are done. M
could not really have entered state E at timestep 2 when !S was being generated, because more symbols got generated
later. Bear with.

6

V (2, 4) = e2(X) max
{

a1(2)V (1, 3) ←
a2(2)V (2, 3)

V (E, 4) = max
{

a1(E)V (1, 4) ←
a2(E)V (2, 4)

0 1: X 2: X 3: X 4: X
B 1 0 0 0 0
1 0 7/8 49/29 147/213 1029/219

2 0 0 21/29 147/215 147/218

E 0 0 49/212 147/216 1029/222

1: X 2: X 3: X 4: X
B ∅ ∅ ∅ ∅
1 B 1 2 1, 2
2 ∅ 1 1 1
E ∅ 1 1 1

Note that the value we have for V (E, 4) is equivalent to the best value we saw in Table 1. The
above was tedious, true. But notice that if we double the length of !S, then the computation time
would just double; it wouldn’t go up exponentially. The run-time of Viterbi is O(|S|2n), and the
space requirement is O(|S|n).

Note also that the tie we saw in Table 1 is captured here, too. There are two best paths, with
the same probability, and we can recover both of them by walking back through the righthand
dynamic programming chart, starting in (E, 4). (E, 4) contains a 1, so we go to state 1 in the same
column (because E is silent). There we have two choices: go to 1 or 2 in the preceding column
(because 1 is not silent). Tracking each of those backward, we retrieve the same two paths that
were found to be the best by brute force: B, 1, 2, 1, 1, E and B, 2, 1, 2, 1, E.

3.2 Probability of a sequence: Forward algorithm

Now that you’ve been crunching numbers, you may have lost track of what’s going on. Let’s step
up a level. What did we just do? We computed both π∗, the best path for sequence !S, and
we computed Pr(π∗, !S | M). Another quantity that might be important is Pr(!S | M), the total
probability that M would generate !S. As with finding the probability of the best path, there is a
brute force way: compute the probability of every path that could generate !S, and sum them up,
because

Pr(!S | M) =
∑

π

Pr(π, !S | M) (10)

To do that, we could sum up the values in the righthand column of Table 1, and we’d get
17143/224 ≈ 0.001. This is of course inefficient.

It turns out that summing up over all possible paths doesn’t require any more work than
choosing the best among them (not surprising), even when we use dynamic programming (perhaps
surprising). The Forward algorithm is just like the Viterbi algorithm, except that (a.) we don’t
do extra bookkeeping for the “best” path and (b.) we sum instead of maximize. Our goal now is
to compute the forward probability F (E,n), which is the probability of generating the sequence
S1, ..., Sn and ending in E. The equations are:

F (s, t) = es(St)
∑

k:k transitions into s

ak(s) · F (k, t− 1) (11)

F (B, 0) = 1 (12)
F (s, 0) = 0,∀s '= B (13)

7

As before, there is a modified rule for silent states:

F (s, t) =
∑

k:k transitions into s

ak(s) · F (k, t− 1) (14)

I strongly urge you to compute Pr(X, X, X, X | S) using the Forward algorithm and convince
yourself that the following chart is correct:

0 1: X 2: X 3: X 4: X
B 1 0 0 0 0
1 0 7/8 49/29 931/215 11221/221

2 0 0 21/29 21/212 2961/221

E 0 0 91/212 1267/218 17143/224

3.3 Computing the same thing, another way: Backward algorithm

We could just as easily run a dynamic program in the opposite direction and get the same answer.
The form of the Backward algorithm is slightly different.

In the Backward algorithm, we compute Pr(Si+1, Si+2, ..., Sn | πi = k). That is, given that, at
timestep i we are in state k, what is the probability of generating the rest of the sequence? This
does not depend on the earlier part of the sequence at all. The dynamic program is given below.

B(s, t) =
∑

k:s transitions to k and k is not silent
ek(St+1)as(k)B(k, t + 1) (15)

+
∑

k:s transitions to s and k is silent
as(k)B(k, t)

We initialize by setting B(E,n) = 1. If we run the backward algorithm on our example, we have:

0 1: X 2: X 3: X 4: X
B 17143/224 0 0 0 0
1 33529/227 2449/221 181/215 13/29 1/8
2 37017/226 2731/220 197/214 15/28 1/4
E 0 0 0 0 1

Again, you are encouraged to work through this one by hand and check your answers.
Interestingly, it appears that:

B(B, 0) = F (E,n) = Pr(!S|M) (16)

You should not be shocked. Note that:

B(B, 0) = Pr(!S | π0 = B) (by definition)
= Pr(!S) (since we know M always starts in B)
= Pr(!S,π ends in E) (since we know M always ends in E)
= F (E,n) (by definition)

8

4 Posterior Decoding

An alternative to Viterbi decoding is to pick, for each symbol in !S, the most likely state to have
generated it, given the whole sequence. The model defines a distribution over paths that could have
generated !S (this distribution is called a posterior ; it defines Pr(π|!S,M) for all paths π). Given
that distribution over paths, we can compute the probability at timestep t that we were in state s.

Pr(πi = s | !S,M) a=
Pr(πi = s, !S,M)

Pr(!S | M)
b=

Pr(πi = s, S1, ..., Si | M) Pr(Si+1, ..., Sn | πi = s,M)
Pr(!S | M)

c=
F (s, i)B(s, i)

F (E,n)

In the above derivation, (a) follows from the definition of conditional probability. (b) follows
from the independence assumption inherent in all Markov models: everything that happens before
timestep i is independent of everything that happens after timestep i, given the state you are in at
timestep i. (c) follows from the definition of the Forward and Backward probabilities above.

The table below shows the posterior probability of being in each state at each timestep. It is
computed by multiplying the Forward and Backward tables, cell-wise, and normalizing by F (E,n):

0 1: X 2: X 3: X 4: X
B 1 0 0 0 0
1 0 1 0.517 0.706 0.655
2 0 0 0.483 0.294 0.345
E 0 0 0 0 1

Note that each column sums to one; each column is a distribution over states, and that’s just
how we defined it. The posterior decoding, then, would be B, 1, 1, 1, 1, E. Note that this is different
from the Viterbi result.

5 Training: Baum-Welch algorithm

If we had a bunch of sequences generated from a model and we knew the state sequences associated
with them, then training our HMM would be easy: count the emissions and transitions, and
normalize them into the proper distributions for each state.

But we can actually do training even when we do not have the state sequences. This is done
using the Baum-Welch algorithm, which uses the Forward and Backward algorithms.5

I will sketch the idea here briefly. Suppose we start with model parameters (probability values)
!θ(0). (The 0 signifies that these are the initial values.) Locking these parameters, we can run the
Forward-Backward to compute posteriors like we did in the last section.

The posteriors we are interested in are slightly different though. Rather than the probability of
being in state s at time t, we want to know the probability of either M transitioning from s to k
at time t, or of state s emitting symbol St at time t. Because we condition on M having generated

5When you run the Forward algorithm and then the Backward algorithm, we say that you have run the Forward-
Backward algorihtm.

9

!S, these are still posterior probabilities, but now we are interested in the posteriors of generative
model steps (transitions and emissions) rather than of M being in a state at time t.

It turns out that these probabilities are very easy to compute, too, using the Forward and
Backward probabilities. Consider emissions first:

Pr(s emits St | !S) = Pr(πt = s | !S) =
F (s, t)B(s, t)

F (E,n)
(17)

This follows because, if M was in state s at time t, we know it must have emitted St (the sequence
is given!). So the problem reduces to one we’ve already seen: the probability of being in state s at
time t, given the sequence. Forward-Backward to the rescue!

What about transitions?

Pr(s → k at time t) (18)
= Pr(πt = s,πt+1 = k | !S,M)

=
Pr(πt = s,πt+1 = k, !S | M)

Pr(!S | M)

=
Pr(S1, ..., St,πt = s | M) Pr(πt+1 = k | πt = s,M) Pr(St+1 | πt+1 = k, M) Pr(St+2, St+3, ..., Sn | πt+1 = k)

Pr(!S | M)

=
F (s, t)as(k)ek(St+1)B(k, t + 1)

F (E,n)

The Baum Welch algorithm will construct new parameters !θ(1) by taking these posteriors and
treating them like fractional counts. If we had fully state-labeled data, we could ask, at each
position, “did state s transition to state k here?” If it did, we would add a count of 1 for that
transition. If not, we would leave the count unchanged. With expected counting, we don’t deal
in ones and zeros; we deal in probabilities. So at each timestep, we ask, “what is the probability
that state s transitioned to state k here?” And we increment the count of the transition by that
probability. We do the same with emissions. Note that each of these involves summing up over all
timesteps in all sequences.

The expected counts for the emissions and transitions in M, given the sequence !S, are shown
in Table 2.

It should be clear that the total number of transitions we count (summing over all transition
types from any state to any other) will be the same under expected counting, no matter how the
probabilities come out, if the probabilities are well-formed.

Once we sum up the expected counts, we renormalize and get new probabilities !θ(1).
This process can be repeated. It is guaranteed that each time, the total probability of the data

will increase. Baum-Welch is a hill-climbing algorithm; although it finds a better solution on each
iteration, it can get stuck on a small hill. We are not guaranteed to find the best model, or one
that is “correct” in any sense of the word. This is an area of active research. One way to try to
avoid this problem is to run Baum-Welch many times, setting the initial parameters !θ(0) randomly
each time, and picking the best solution after many runs.

The Baum-Welch algorithm is an instance of a more general algorithm called Expectation-
Maximization (EM).

10

B → 1 1
1 → 1 0.517 + 0.260 + 0.380 = 1.157
1 → 2 0.483 + 0.257 + 0.326 = 1.066
1 → E 0.655
2 → 1 0 + 0.446 + 0.274 = 0.720
2 → 2 0 + 0.037 + 0.020 = 0.056
2 → E 0.345
1 emits X 2.878
1 emits Y 0
2 emits X 1.122
2 emits Y 0

Table 2: Expected counts of emissions and transitions in !S under model M. Note: These have not
been carefully checked; please let me know if you find an error.

11

