
Compiling Comp Ling:
Practical Weighted Dynamic Programming and the Dyna Language∗

Jason Eisner and Eric Goldlust and Noah A. Smith
Department of Computer Science / Center for Language and Speech Processing

Johns Hopkins University, Baltimore, MD 21218 USA
{jason,goldlust,nasmith }@cs.jhu.edu

Abstract
Weighted deduction with aggregation is a powerful theoretical
formalism that encompasses many NLP algorithms. This pa-
per proposes a declarative specification language, Dyna; gives
generalagenda-basedalgorithms for computing weights and
gradients; briefly discusses Dyna-to-Dyna program transforma-
tions; and shows that a first implementation of a Dyna-to-C++
compiler produces code that is efficient enough for real NLP re-
search, though still several times slower than hand-crafted code.

1 Introduction

In this paper, we generalize some modern prob-
abilistic parsing techniques to a broader class of
weighted deductive algorithms. Our implemented
system encapsulates these implementation tech-
niques behind a clean interface—a small high-level
specification language, Dyna, which compiles into
C++ classes. This system should help the HLT com-
munity to experiment more easily with new models
and algorithms.

1.1 Dynamic programming as deduction

The “parsing as deduction” framework (Pereira and
Warren, 1983) is now over 20 years old. It provides
an elegant notation for specifying a variety of pars-
ing algorithms (Shieber et al., 1995), including algo-
rithms for probabilistic or other semiring-weighted
parsing (Goodman, 1999). In the parsing commu-
nity, new algorithms are often stated simply as a set
of deductive inference rules (Sikkel, 1997; Eisner
and Satta, 1999).

It is also straightforward to specify other NLP al-
gorithms this way. Syntactic MT models, language
models, and stack decoders can be easily described
using deductive rules. So can operations on finite-
state and infinite-state machines.

∗We thank Joshua Goodman, David McAllester, and Paul
Ruhlen for useful early discussions; pioneer users Markus
Dreyer, David Smith, and Roy Tromble for their feedback and
input; John Blatz for discussion of program transformations;
and several reviewers for useful criticism. This work was
supported by NSF ITR grant IIS-0313193, ONR MURI grant
N00014-01-1-0685, and a Hertz Foundation fellowship to the
third author. The views expressed are not necessarily endorsed
by the sponsors.

1.2 The role of toolkits

One might regard deductive inference as merely a
helpful perspective for teaching old algorithms and
thinking about new ones, linking NLP to logic and
classical AI. Real implementations would then be
carefully hand-coded in a traditional language.

That was the view ten years ago of finite-state
machines—that FSMs were part of the theoretical
backbone of CL, linking the field to the theory
of computation. Starting in the mid-1990’s, how-
ever, finite-state methods came to the center ofap-
plied NLP as researchers at Xerox, AT&T, Gronin-
gen and elsewhere improved the expressive power
of FSMs by moving from automata to transduc-
ers, adding semiring weights, and developing pow-
erful new regular-expression operators and algo-
rithms for these cases. They also developed soft-
ware. Karttunen et al. (1996) built an FSM toolkit
that allowed construction of morphological ana-
lyzers for many languages. Mohri et al. (1998)
built a weighted toolkit that implemented novel
algorithms (e.g., weighted minimization, on-the-
fly composition) and scaled up to handle large-
vocabulary continuous ASR. At the same time, re-
newed community-wide interest in shallow methods
for information extraction, chunking, MT, and di-
alogue processing meant that such off-the-shelf FS
toolkits became the core of diverse systems used in
cutting-edge research.

The weakness of FSMs, of course, is that they
are only finite-state. One would like something like
AT&T’s FSM toolkit that also handles the various
formalisms now under consideration for lexicalized
grammars, non-context-free grammars, and syntax-
based MT—and hold the promise of extending to
other formalisms and applications not yet imagined.

We believe that deductive inference should play
the role of regular expressions and FSMs, providing
the theoretical foundation for such an effort. Many
engineering ideas in the field can be regarded, we

1. :- double item=0. % declares that all item values are doubles, default is 0
2. constit(X,I,K) += rewrite(X,W) * word(W,I,K). % a constituent is either a word . . .
3. constit(X,I,K) += rewrite(X,Y,Z) * constit(Y,I,J) * constit(Z,J,K). % . . . or a combination of two adjacent subconstituents
4. goal += constit(“s”,0,N) whenever ?ends at(N). % a parse is anys constituent that covers the input string

Figure 1: A probabilistic CKY parser written in Dyna. Axioms are in boldface.

believe, as ideas for how to specify, transform, or
compile systems of inference rules.

2 A Language for Deductive Systems

Any toolkit needs an interface. For example, FS
toolkits offer a regular expression language. We
propose a simple but Turing-complete language,
Dyna, for specifying weighted deductive-inference
algorithms. We illustrate it here by example; see
http://dyna.org for more details and a tutorial.

The short Dyna program in Fig. 1 expresses the
inside algorithm for PCFGs (i.e., the probabilistic
generalization of CKY recognition). Its 3inference
rules schematically specify manyequations, over
an arbitrary number of unknowns. This is possible
bcause the unknowns (items) havestructured names
(terms) such asconstit(“s”,0,3). They resemble typed
variables in a C program, but we usevariable in-
stead to refer to the capitalized identifiersX, I, K,
. . . in lines 2–4. Each rule gives aconsequenton
the left-hand side of the+=, which can be built by
combining theantecedentson the right-hand side.1

Lines 2–4 are equational schemas that spec-
ify how to compute the value of items such as
constit(“s”,0,3) from the values of other items.
Using the summation operator+=, lines 2–
3 say that for anyX, I, and K, constit(X,I,K)

is defined by summing over the remaining
variables, as

∑
W rewrite(X,W)*word(W,I,K) +∑

Y,Z,J rewrite(X,Y,Z)*constit(Y,I,J)*constit(Z,J,K). For
example,constit(“s”,0,3) is a sum of quantities such as
rewrite(“s”, “np”, “vp”)*constit(“np”,0,1)*constit(“vp”,1,3).
The whenever operator in line 4 specifies aside
condition that restricts the set of expressions in the
sum (i.e., only whenN is the sentence length).

To fully define the system of equations, non-
default values (in this case, non-zero values) should
beassertedfor someaxiomsat runtime. (Axioms,
shown in bold in Fig. 1, are items that never appear

1Much of our notation and terminology comes from
logic programming: term, variable, inference rule, an-
tecedent/consequent, assert/retract, axiom/theorem.

as a consequent.) If the PCFG contains a rewrite rule
np → Mary with probability p(Mary | np)=0.005,
the user should assert thatrewrite(“np”, “Mary”) has
value 0.005. If the input isJohn loves Mary, val-
ues of 1 should be asserted forword(“John”,0,1),
word(“loves”,1,2), word(“Mary”,2,3), andends at(3).

Given the axioms as base cases, the equations in
Fig. 1 enable deduction of values for other items.
The value of thetheorem constit(“s”,0,3) will be the
inside probabilityβs(0, 3),2 and the value ofgoal

will be the total probability of all parses.
If one replaces+= by max= throughout, thencon-

stit(“s”,0,3) will accumulate the maximum rather than
the sum of these quantities, andgoal will accumulate
the probability of thebestparse.

With different input, the same program car-
ries out lattice parsing. Simply assert axioms
that correspond to (weighted) lattice arcs, such as
word(“John”,17,50), where 17 and 50 are arbitrary
terms denoting states in the lattice. It is also quite
straightforward to lexicalize the nonterminals or ex-
tend to synchronous grammars.

A related context-free parsing strategy, shown in
Fig. 2, is Earley’s algorithm. These equations illus-
trate nested terms such as lists. The side condition
in line 2 prevents building any constituent until one
has built a left context that calls for it.

3 Relation to Previous Work

There is a large relevant literature. Some of the well-
known CL papers, notably Goodman (1999), were
already mentioned in section 1.1. Our project has
three main points of difference from these.

First, we provide an efficient, scalable, open-
source implementation, in the form of a compiler
from Dyna to C++ classes. (Related work is in§7.2.)
The C++ classes are efficient and easy to use, with
statements such asc[rewrite(“np”,2,3)]=0.005 to assert
axiom values into a chart namedc (i.e., a deduc-

2That is, the probability thats would stochastically rewrite
to the first three words of the input. If this can happen in more
than one way, the probability sums over multiple derivations.

1. need(‘‘s’’,0) = 1. % begin by looking for ans that starts at position 0
2. constit(Nonterm/Needed,I,I) += rewrite(Nonterm,Needed) whenever ?need(Nonterm, I). % traditionalpredict step
3. constit(Nonterm/Needed,I,K) += constit(Nonterm/cons(W,Needed),I,J) * word(W,J,K). % traditionalscanstep
4. constit(Nonterm/Needed,I,K) += constit(Nonterm,cons(X,Needed),I,J) * constit(X/nil,J,K). % traditionalcompletestep
5. goal += constit(“s”/nil,0,N) whenever ?ends at(N). % we want a completes constituent covering the sentence
6. need(Nonterm,J) += constit(/cons(Nonterm,), ,J). % Note: underscore matches anything (anonymous wildcard)

Figure 2: An Earley parser that recovers inside probabilities (Earley, 1970; Stolcke, 1995). The rulenp → det n should be encoded
as the axiomrewrite(“np”,cons(“det”,cons(“n”,nil))), a nested term.“np”/Needed is the label of a partialnp constituent that is
still missing thelist of subconstituents inNeeded. need(“np”,3) is derived if some partial constituent seeks annp subconstituent
starting at position 3. As in Fig. 1, lattice parsing comes for free, as does training.

tive database) and expressions likec[goal] to extract
the values of the resulting theorems, which are com-
puted as needed. The C++ classes also give access to
the proof forest (e.g., the forest of parse trees), and
integrate with parameter optimization code.

Second, we fully generalize the agenda-based
strategy of Shieber et al. (1995) to the weighted
case—in particular supporting aprioritized agenda.
That allows probabilities to guide the search for
the best parse(s), a crucial technique in state-of-the-
art context-free parsers.3 We also give a “reverse”
agenda algorithm to compute gradients or outside
probabilities for parameter estimation.

Third, regarding weights, the Dyna language is
designed to express systems of arbitrary, hetero-
geneous equations over item values. In previous
work such as (Goodman, 1999; Nederhof, 2003),
one only specifies the inference rules as unweighted
Horn clauses, and then weights are added automat-
ically in a standard way: all values have the same
typeW, and all rules transform to equations of the
form c ⊕= a1 ⊗ a2 ⊗ · · · ⊗ ak, where⊕ and⊗
give W the structure of a semiring.4 In Dyna one
writes these equations explicitly in place of Horn
clauses (Fig. 1). Accordingly,heterogeneousDyna
programs, to be supported soon by our compiler,
will allow items of different types to have values
of different types, computed by different aggrega-
tion operations over arbitrary right-hand-side ex-

3Previous treatments of weighted deduction have used an
agenda only for an unweighted parsing phase (Goodman, 1999)
or for finding the single best parse (Nederhof, 2003). Our algo-
rithm works in arbitrary semirings, including non-idempotent
ones, taking care to avoid double-counting of weights and to
handle side conditions.

4E.g., the inside algorithm in Fig. 1 falls into Goodman’s
framework, with〈W,⊕,⊗〉 = 〈R≥0, +, ∗〉—the PLUSTIMES
semiring. Because⊗ distributes over⊕ in a semiring, com-
puting goal is equivalent to an aggregation over many separate
parse trees. That is not the case for heterogeneous programs.

pressions. This allows specification of a wider class
of algorithms from NLP and elsewhere (e.g., mini-
mum expected loss decoding, smoothing formulas,
neural networks, game tree analysis, and constraint
programming). Although§4 and§5 have space to
present only techniques for the semiring case, these
can be generalized.

Our approach may be most closely related to de-
ductive databases, which even in their heyday were
apparently ignored by the CL community (except for
Minnen, 1996). Deductive database systems per-
mit inference rules that can derive new database
facts from old ones.5 They are essentially declara-
tive logic programming languages (with restrictions
or extensions) that are—or could be—implemented
using efficient database techniques. Some imple-
mented deductive databases such asCORAL (Ra-
makrishnan et al., 1994) andLOLA (Zukowski and
Freitag, 1997) support aggregation (as in Dyna’s
+=, log+=, max=, . . .), although only “stratified”
forms of it that exclude unary CFG rule cycles.6

Ross and Sagiv (1992) (and in a more restricted
way, Kifer and Subrahmanian, 1992) come closest to
our notion of attaching aggregable values to terms.

Among deductive or other database systems,
Dyna is perhaps unusual in that its goal is not to sup-
port transactional databases orad hocqueries, but
rather to serve as an abstract layer for specifying an
algorithm, such as a dynamic programming (DP) al-
gorithm. Thus, the Dyna program already implicitly
or explicitly specifies all queries that will be needed.
This allows compilation into a hard-coded C++ im-
plementation. The compiler’s job is to support these
queries by laying out and indexing the database re-

5Often they use some variant of theunweightedagenda-
based algorithm, which is known in that community as “semi-
naive bottom-up evaluation.”

6An unweighted parser was implemented in an earlier ver-
sion ofLOLA (Specht and Freitag, 1995).

lations in memory7 in a way that resembles hand-
designed data structures for the algorithm in ques-
tion. The compiler has many choices to make here;
we ultimately hope to implement feedback-directed
optimization, using profiled sample runs on typical
data. For example, a sparse grammar should lead to
different strategies than a dense one.

4 Computing Theorem Values

Fig. 1 specifies a set of equations but not how to
solve them. Any declarative specification language
must be backed up by a solver for the class of speci-
fiable problems. In our continuing work to develop a
range of compiler strategies for arbitrary Dyna pro-
grams, we have been inspired by the CL commu-
nity’s experience in building efficient parsers.

In this paper and in our current implementa-
tion, we give only the algorithms for what we call
weighted dynamic programs, in which all axioms
and theorems are variable-free. This means that
a consequent may only contain variables that al-
ready appear elsewhere in the rule. We further re-
strict to semiring-weighted programs as in (Good-
man, 1999). But with a few more tricks not given
here, the algorithms can be generalized to a wider
class of heterogeneous weighted logic programs.8

4.1 Desired properties

Computation is triggered when the user requests the
value of one or more particular items, such asgoal.
Our algorithm must have several properties in order
to substitute for manually written code.

Soundness.The algorithm cannot be guaranteed
to terminate (since it is possible to write arbitrary
Turing machines in Dyna). However, if it does ter-
minate, it should return values from a valid model of
the program, i.e., values that simultaneously satisfy
all the equations expressed by the program.

Reasonable completeness. The computation
should indeed terminate for programs of interest
to the NLP community, such as parsing under a
probabilistic grammar—even if the grammar has

7Some relations might be left unmaterialized and computed
on demand, with optional memoization and flushing of memos.

8Heterogeneous programs may propagate non-additive up-
dates, which arbitrarily modify one of the inputs to an aggrega-
tion. Non-dynamic programs require non-ground items in the
chart, complicating both storage and queries against the chart.

1. for each axioma, setagenda[a] := value of axioma
2. while there is an itema with agenda[a] 6= 0
3. (* remove an item from the agenda and move its value to the chart *)
4. choose such ana
5. ∆ := agenda[a]; agenda[a] := 0
6. old := chart[a]; chart[a] := chart[a]⊕∆
7. if chart[a] 6= old (* only propagate actual changes *)
8. (* compute new resulting updates and place them on the agenda *)
9. for each inference rule “c ⊕= a1 ⊗ a2 ⊗ · · · ⊗ ak”
10. for i from 1 tok
11. for each way of instantiating the rule’s variables

such thatai = a

12. agenda[c] ⊕=
k⊗

j=1

old if j < i and

aj = a
∆ if j = i
chart[aj] otherwise

(* can skip this line if any multiplicand is 0 *)

Figure 3: Weighted agenda-based deduction in a semiring, with-
out side conditions (see text).

left recursion, unary rule cycles, orε-productions.
This appears to rule out pure top-down (“backward-
chaining”) approaches.

Efficiency. Returning the value ofgoal should
do only as much computation as necessary. To re-
turn goal, one may not need to compute the values
of all items.9 In particular, finding the best parse
should not require finding all parses (in contrast to
Goodman (1999) and Zhou and Sato (2003)). Ap-
proximation techniques such as pruning and best-
first search must also be supported for practicality.

4.2 The agenda algorithm

Our basic algorithm (Fig. 3) is a weighted agenda-
based algorithm that works only with rules of the
form c ⊕= a1⊗a2⊗· · ·⊗ak. ⊗ must distribute over⊕.
Further, the default value for items (line 1 of Fig. 1)
must be the semiring’s zero element, denoted0.10

Agenda-based deduction maintains two indexed
data structures: theagendaand thechart. chart[a]
stores the current value of itema. The agenda holds
future work that arises from assertions or from pre-
vious changes to the chart:agenda[a] stores an in-
cremental update to be added (using⊕) to chart[a]
in future. If chart[a] or agenda[a] is not stored, it is

9This also affects completeness, as it sometimes enables the
computation ofgoal to terminate even if the program as a whole
contains some irrelevant non-terminating computation. Even
in practical cases, the runtime of computing all items is often
prohibitive, e.g., proportional ton6 or worse for a dense tree-
adjoining grammar or synchronous grammar.

10It satisfiesx ⊕ 0 = x, x ⊗ 0 = 0 for all x. Also, this
algorithm requires⊗ to distribute over⊕. Dyna’s semantics
requires⊕ to be associative and commutative.

taken to be the default0.
When itema is removed from the agenda, its

chart weight is updated by the increment value. This
change is then propagated to other itemsc, via rules
of the formc ⊕= · · · with a on the right-hand-side.
The resulting changes toc are placed back on the
agenda and carried out only later.

The unweighted agenda-based algorithm (Shieber
et al., 1995) may be regarded as the case where
〈W,⊕,⊗〉 = 〈{T, F},∨,∧〉. It has previously
been generalized (Nederhof, 2003) to the case
〈W,⊕,⊗〉 = 〈R≥0,max,+〉. In Fig. 3, we make
the natural further generalization to any semiring.

How is this a further generalization? Since⊕ (un-
like ∨ andmax) might not be idempotent, we must
take care to avoid erroneous double-counting if the
antecedenta combines with, or produces, another
copy of itself.11 For instance, if the input containsε
words, line 2 of Fig. 1 may get instantiated ascon-

stit(“np”,5,5) += rewrite(“np”,“np”,“np”) * constit(“np”,5,5) *

constit(“np”,5,5). This is why we save the old values
of agenda[a] and chart[a] as ∆ and old, and why
line 12 is complex.

4.3 Side conditions

We now extend Fig. 3 to handle Dyna’s
side conditions, i.e., rules of the form
c ⊕= expression whenever boolean-expression.
We discuss only the simple side conditions
treated in previous literature, which we write as
c ⊕= a1⊗a2⊗· · ·⊗ak′ whenever ?bk′+1 & · · · & ?bk.
Here,?bj is true or false according to whether there
exists anunweightedproof of bj .

Again, what is new here? Nederhof (2003) con-
siders onlymax= with a uniform-cost agenda disci-
pline (see§4.5), which guarantees that no item will
be removed more than once from the agenda. We
wish to support other cases, so we must take care
that a second update toai will not retrigger rules of
whichai is a side condition.

For simplicity, let us reformulate the above rule
asc ⊕= a1 ⊗ a2 ⊗ · · · ⊗ ak′ ⊗ ?bk′+1 ⊗ · · · ⊗ ?bk,
where?bi is now treated as having value0 or 1 (the
identity for⊗) rather than false or true respectively.

11An agenda update that increasesx by 0.3 will increaser ∗
x ∗ x by r ∗ (0.6x + 0.09). Hence, the rulex += r ∗ x ∗ x must
propagate a new increase of that size tox, via the agenda.

We may now use Fig. 3, but now anyaj might
have the form?bj . Then in line 12,chart[aj] will be
chart[?bj], which is defined as1 or 0 according to
whetherchart[bj] is stored (i.e., whetherbj has been
derived). Also, ifai = ?a at line 11 (rather than
ai = a), then∆ in line 12 is replaced by∆?, where
we have set∆? := chart[?a] at line 5.

4.4 Convergence

Whether the agenda algorithm halts depends on the
Dyna program and the input. Like any other Turing-
complete language, Dyna gives you enough freedom
to write undesirable programs.

Most NLP algorithms do terminate, of course,
and this remains true under the agenda algorithm.
For typical algorithms, only finitely many differ-
ent items (theorems) can be derived from a given
finite input (set of axioms).12 This ensures termi-
nation if one is doing unweighted deduction with
〈W,⊕,⊗〉 = 〈{T, F},∨,∧〉, since the test at line 7
ensures that no item is processed more than once.13

The same test ensures termination if one is
searching for the best proof or parse with (say)
〈W,⊕,⊗〉 = 〈R≥0,min,+〉, where values are
negated log probabilities. Positive-weight cycles
will not affect themin. (Negative-weight cycles,
however, would correctly cause the computation to
diverge; these do not arise with probabilities.)

If one is using〈W,⊕,⊗〉 = 〈R≥0,+, ∗〉 to com-
pute the total weight of all proofs or parses, as in
the inside algorithm, then Dyna must solve a sys-
tem of nonlinear equations. The agenda algorithm
does this by iterative approximation (propagating
updates around any cycles in the proof graph until
numerical convergence), essentially as suggested by
Stolcke (1995) for the case of Earley’s algorithm.14

Again, the computation may diverge.
12This holds for all Datalog programs, for instance.
13This argument does not hold if Dyna is used to express

programs outside the semiring. In particular, one can write in-
stances of SAT and other NP-hard constraint satisfaction prob-
lems by using cyclic ruleswith negationover finitely many
boolean-valued items (Niemelä, 1998). Here the agenda algo-
rithm can end up flipping values forever between false and true;
a more general solver would have to be called in order to find a
stable model of a SAT problem’s equations.

14Still assuming the number of items is finite, one could in
principle materialize the system of equations and call a ded-
icated numerical solver. In some special cases only a linear
solver is needed: e.g., for unary rule cycles (Stolcke, 1995), or
ε-cycles in FSMs (Eisner, 2002).

One can declare the conditions under which items
of a particular type (constit or goal) should be treated
as having converged. Then asking for the value
of goal will run the agenda algorithm not until the
agenda is empty, but only untilchart[goal] has con-
verged by this criterion.

4.5 Prioritization

The order in which items are chosen at line 4 does
not affect the soundness of the agenda algorithm,
but can greatly affect its speed. We implement the
agenda as a priority queue whose priority function
may be specified by the user.15

Charniak et al. (1998) and Caraballo and Char-
niak (1998) showed that, when seeking the best
parse (usingmin= or max=), best-firstparsing can
be extremely effective. Klein and Manning (2003a)
went on to describe admissible heuristics and an A*
framework for parsing. For A* in our general frame-
work, the priority of itema should be an estimate of
the value of the best proof ofgoal that usesa. (This
non-standard formulation is carefully chosen.16) If
so,goal is guaranteed to converge the very first time
it is selected from the priority-queue agenda.

Prioritizing “good” items first can also be useful
in other circumstances. The inside-outside training
algorithm requires one to find all parses, but finding
the high-probability parses first allows one to ignore
the rest by “early stopping.”

In all these schemes (even A*), processing
promising items as soon as possible risks having to
reprocess them if their values change later. Thus,
this strategy should be balanced against the “topo-
logical sort” strategy of waiting to process an item
until its value has (probably) converged.17 Ulti-

15At present by writing a C++ function; ultimately within
Dyna, by defining items such aspriority(constit(“s”,0,3)).

16It is correct for proofs that incorporate two copies ofa’s
value, or—more important—no copies ofa’s value becausea is
a side condition. Thus, it recognizes that a low-probability item
must havehigh priority if it could be used as a side condition
in a higher-probability parse (though this cannot happen for the
side conditions derived by the magic templates transformation
(§6)). Note also thata’s own value (Nederhof, 2003) might not
be an optimistic estimate, if negative weights are present.

17In parsing, for example, one often processes narrower con-
stituents before wider ones. But such strategies do not always
exist, or break down in the presence of unary rule cycles, or
cannot be automatically found. Goodman’s (1999) strategy
of building all items and sorting them before computing any
weights is wise only if one genuinely wants to build all items.

mately we hope tolearn priority functions that ef-
fectively balance these two strategies (especially in
the context of early stopping).

4.6 Matching, indexing, and interning

The crucial work in Fig. 3 occurs in the iteration over
instantiated rules at lines 9–11. In practice, we re-
structure this triply nested loop as follows, where
each line retains the variable bindings that result
from the unification in the previous line:

9. for each antecedent patternai that appears in some
program ruler and unifies witha

10. for each way of simultaneously unifyingr’s remain-
ing antecedent patternsa1, . . . ai−1, ai+1, . . . ak

with items that may have non-0 value in the chart
11. constructr’s consequentc (* all vars are bound *)

Our implementation of line 9 testsa against all of the
antecedent patterns at once, using a tree of simple
“if” tests (generated by the Dyna-to-C++ compiler)
to share work across patterns. As an example,a =
constit(“np”,3,8) will match two antecedents at line 3
of Fig. 1, but will fail to match in line 4. Becausea is
variable-free (for DPs), a full unification algorithm
is not necessary, even though an antecedent pattern
can contain repeated variables and nested subterms.

Line 10 rapidly looks up the rule’s other an-
tecedents usingindicesthat are automatically main-
tained on the chart. For example, oncecon-

stit(“np”,4,8) has matched antecedent 2 of line 3 of
Fig. 1, the compiled code consults a maintained
list of the chart constituents that start at position 8
(i.e., items of the formconstit(Z,8,K) that have al-
ready been derived). Suppose one of these iscon-

stit(“vp”,8,15): then the code finds the rule’s remain-
ing antecedent by consulting a list of items of the
form rewrite(X,“np”,“vp”). That leads it to construct
consequents such asconstit(“s”,4,15) at line 11.

By default, equal terms are represented by equal
pointers. While this means terms must be “interned”
when constructed (requiring hash lookup), it en-
forces structure-sharing and allows any term to be
rapidly copied, hashed, or equality-tested without
dereferencing the pointer.18

Each of the above paragraphs conceals many deci-
sions that affect runtime. This presents future oppor-
tunities for feedback-directed optimization, where
profiled runs on typical data influence the compiler.

18The compiled code provides garbage collection on the
terms; this is important when running over large datasets.

5 Computing Gradients

The value ofgoal is afunctionof the axioms’ values.
If the function is differentiable, we may want to get
its gradient with respect to its parameters (the axiom
values), to aid in numerically optimizing it.

5.1 Gradients by symbolic differentiation

The gradient computation can be derived from the
original by a program transformation. For each item
a in the original program—in particular, for each
axiom—the new program will also compute a new
item g(a), whose value is∂goal/∂a.

Thus, given weighted axioms, the new program
computes bothgoal and∇goal. An optimization al-
gorithm such as conjugate gradient can use this in-
formation to tune the axiom weights to maximize
goal. An alternative is the EM algorithm (Dempster
et al., 1977) for probabilistic generative models such
as PCFGs. Luckily the same program serves, since
for such models, the E count (expected count) of an
itema can be found asa · g(a)/goal. In other words,
the inside-outside algorithm has the same structure
as computing the function and its gradient.

The GRADIENT transformation is simple. For
example,19 given a rule c += a1 ∗ a2 ∗ · · · ∗
ak′ whenever ?bk′+1 & · · · & ?bk, we add a new rule
g(ai) += g(c) ∗ a1 ∗ · · · ∗ ai−1 ∗ ai+1 ∗ · · · ∗
ak′ whenever ?ai, for eachi = 1, 2, ..., k′. (The orig-
inal rule remains, since we need inside values to
compute outside values.) This strategy for comput-
ing the gradient∂goal/∂a via the chain rule is an
example of automatic differentiation in the reverse
mode (Griewank and Corliss, 1991), known in the
neural network community as back-propagation.

5.2 Gradients by back-propagation

However, what ifgoal might be computed only ap-
proximately, by early stopping before convergence
(§4.5)? To avoid confusing the optimizer, we want
theexactgradient of theapproximatefunction.

To do this, we “unwind” the computation of
goal, undoing the value updates while building up
the gradient values. The idea is to differentiate
an “unrolled” version of the original computation
(Williams and Zipser, 1989), in which an item at

19More generally,g(ai) = ∂goal/∂ai =
∑

c ∂goal/∂c ·
∂c/∂ai =

∑
c g(c) · ∂c/∂ai by the chain rule.

1. for eacha, gchart[a] := 0 andgagenda[a] := 0
(* respectively hold ∂goal/∂chart[a] and ∂goal/∂agenda[a] *)

2. gchart[goal] := 1
3. for each〈a, ∆, old〉 triple that was considered at line 8

of Fig. 3, but in thereverse order (* ∆ is agenda[a] *)
4. Γ := gchart[a] (* will accumulate gagenda[a] here *)
5. for each inference rule “c += a1 ∗ a2 ∗ · · · ∗ ak”
6. for i from 1 tok
7. for each way of instantiating the rule’s variables

such thatai = a
8. for h from 1 tok such thatah is not a side cond.

(* find ∂goal/∂agenda[c] · ∂agenda[c]/∂(ah factor) *)

9. γ :=

k∏
j=1

gagenda[c] if j = h
old if j 6= h andj < i

andaj = a
∆ if j 6= h andj = i
chart[aj] otherwise

10. if h 6= i then gchart[ah] += γ
11. if h ≤ i andah = a then Γ += γ
12. gagenda[a] := Γ
13. chart[a] := old
14.return gagenda[a] for each axioma

Figure 4: An efficient algorithm for computing∇goal (even
whengoal is an early-stopping approximation), specialized to
the case〈W,⊕,⊗〉 = 〈R, +, ∗〉. The proof is suppressed for
lack of space.

time t is considered to be a different variable (possi-
bly with different value) than the same item at time
t + 1. The reverse pass must recover earlier values.
Our somewhat tricky algorithm is shown in Fig. 4.

At line 3, a stack is needed to remember the se-
quence of〈a, old,∆〉 triples from the original com-
putation.20 It is a more efficient version of the “tape”
usually used in automatic differentiation. For exam-
ple, it usesO(n2) rather thanO(n3) space for the
CKY algorithm. The trick is that Fig. 3 does not
record all its computations, but only its sequence of
items. Fig. 4 then re-runs the inference rules to re-
construct the computations in an acceptable order.

This method is a generalization of Eisner’s (2001)
prioritized forward-backward algorithm for infinite-
state machines. As Eisner (2001) pointed out, the
tape created on the first forward pass can also be
used to speed up later passes (i.e., after the numeri-
cal optimizer has adjusted the axiom weights).21

20If one is willing to risk floating-point error, then one can
store only〈a, old〉 on the stack and recover∆ aschart[a]−old.
Also, agenda[a] andgagenda[a] can be stored in the same loca-
tion, as they are only used during the forward and the backward
pass, respectively.

21In brief, a later forward pass that choosesa at Fig. 3, line 4
according to the recorded tape order (1) is faster than using a
priority queue, (2) avoids ordering-related discontinuities in the
objective function as the axiom weights change, (3) can prune
by skipping useless updatesa that scarcely affectedgoal (e.g.,

5.3 Parameter estimation

To support parameter training using these gradi-
ents, our implementation of Dyna includes a train-
ing module, DynaMITE. DynaMITE supports the
EM algorithm (and many variants), supervised and
unsupervised training of log-linear (“maximum en-
tropy”) models using quasi-Newton methods, and
smoothing-parameter tuning on development data.
As an object-oriented C++ library, it also facilitates
rapid implementation of new estimation techniques
(Smith and Eisner, 2004; Smith and Eisner, 2005).

6 Program Transformations

Another interest of Dyna is that its high-level speci-
fications can be manipulated by mechanical source-
to-source program transformations. This makes it
possible to derive new algorithms from old ones.
§5.1 already sketched thegradient transformation
for finding∇goal. We note a few other examples.

Bounding transformations generate a new pro-
gram that computes upper or lower bounds ongoal,
via generic bounding techniques (Prieditis, 1993;
Culberson and Schaeffer, 1998). The A* heuristics
explored by Klein and Manning (2003a) can be seen
as resulting from bounding transformations.

With John Blatz, we are also exploring trans-
formations that can result in asymptotically more
efficient computations ofgoal. Their unweighted
versions are well-known in the logic programming
community (Tamaki and Sato, 1984; Ramakrish-
nan, 1991). Folding introduces new intermediate
items, perhaps exploiting the distributive law; ap-
plications include parsing speedups such as (Eisner
and Satta, 1999), as well as well-known techniques
for speeding up multi-way database joins, constraint
programming, or marginalization of graphical mod-
els. Unfolding eliminates items; it can be used to
specialize a parser to a particular grammar and then
to eliminate unary rules.Magic templatesintroduce
top-down filtering into the search strategy and can be
used to derive Earley’s algorithm (Minnen, 1996), to
introduce left-corner filters, and to restrict FSM con-
structions to build only accessible states.

Finally, there are low-level optimizations.Term

constituents not in any good parse) by consultinggagenda[a]
values that the previous backward pass can have written onto
the tape (overwriting∆ or old).

transformations restructure terms to change their
layout in memory. We are also exploring the intro-
duction of declarations that control which items use
the agenda or are memoized in the chart. This can
be used to support lazy or “on-the-fly” computation
(Mohri et al., 1998) and asymptotic space-saving
tricks (Binder et al., 1997).

7 Usefulness of the Implementation

7.1 Applications

The current Dyna compiler has proved indispens-
able in our own recent projects, in the sense that we
would not have attempted many of them without it.

In some cases, we were experimenting with gen-
uinely new algorithms not supported by any ex-
isting tool, as in our work on dependency-length-
limited parsing (Eisner and Smith, 2005b) and
loosely syntax-based machine translation (Eisner
and D. Smith, 2005). (Dyna would have been
equally helpful in the first author’s earlier work on
new algorithms for lexicalized and CCG parsing,
syntactic MT, transformational syntax, trainable pa-
rameterized FSMs, and finite-state phonology.)

In other cases (Smith and Eisner, 2004; Smith and
Smith, 2004; Smith et al., 2005), Dyna let us quickly
replicate, tweak, and combine useful techniques
from the literature. These techniques included un-
weighted FS morphology, conditional random fields
(Lafferty et al., 2001), synchronous parsers (Wu,
1997; Melamed, 2003), lexicalized parsers (Eisner
and Satta, 1999),22 partially supervised training̀a la
(Pereira and Schabes, 1992),23 and grammar induc-
tion (Klein and Manning, 2002). These replications
were easy to write and extend, and to train via§5.2.

7.2 Experiments

We compared the current Dyna compiler to hand-
built systems on a variety of parsing tasks. These
problems were chosen not for their novelty or inter-
esting structure, but for the availability of existing
well-tuned implementations.

Best parse. We compared a Dyna CFG parser
to the Java parser of Klein and Manning (2003b),24

22Markus Dreyer’s reimplementation of the complex
Collins (1999) parser uses under 30 lines of Dyna.

23For example, lines 2–3 of Fig. 1 can be extended with
whenever permitted(X,I,K).

24Neither uses heuristics from Klein and Manning (2003a).

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 1 2 3 4 5 6 7 8 9 10

D
yn

a
pa

rs
er

 ru
nt

im
e

(s
ec

on
ds

)

Klein & Manning runtime (seconds)

y=3.99x

y=7.16x

y=9.94x

y=11.25x

10 words
20 words
30 words
40 words

Figure 5: Dyna CKY parser vs. Klein & Manning hand-built
parser, comparing runtime.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 5 10 15 20 25 30 35

D
yn

a
pa

rs
er

 ru
nt

im
e

(s
ec

on
ds

)

Handwritten parser runtime (seconds)

y=5.4x

10 words
20 words
30 words

Figure 6: Dyna CKY parser vs. C++PARSE, a similar hand-
built parser. The implementation differences amount to storage
and indexing and give a consistent 5-fold speedup.

on the same grammar. Fig. 5 shows the re-
sults. Dyna’s disadvantage is greater on longer
sentences—probably because its greater memory
consumption results in worse cache behavior.25

We also compared a Dyna CKY parser to
our own hand-built implementation, C++PARSE.
C++PARSE is designed like the Dyna parser but
includes a few storage and indexing optimizations
that Dyna does not yet have. Fig. 6 shows the 5-
fold speedup from these optimizations on binarized-
Treebank parsing with a large 119K-rule grammar.
The sharp diagonal indicates that C++PARSE is sim-
ply a better-tuned version of the Dyna parser.

These optimizations and others are now being in-
corporated into the Dyna compiler, and are expected

25Unlike Java, Dyna does not yet decide automatically when
to perform garbage collection. In our experiment, garbage col-
lection was called explicitly after each sentence and counted
as part of the runtime (typically 0.25 seconds for 10-word sen-
tences, 5 seconds for 40-word sentences).

99% 99.99%
uniform 89.3 (4.5) 90.3 (4.6)

after 1 EM iteration 82.9 (6.8) 85.2 (6.9)

after 2 EM iterations 77.1 (8.4) 79.1 (8.3)

after 3 EM iterations 71.6 (9.4) 73.7 (9.5)

after 4 EM iterations 66.8 (10.0) 68.8 (10.2)

after 5 iterations 62.9 (10.3) 65.0 (10.5)

Table 1: Early stopping. Each row describes a PCFG at a differ-
ent stage of training; later PCFGs are sharper. The table shows
the percentage of agenda runtime (mean across 1409 sentences,
and standard deviation) required to get within 99% or 99.99%
of the true value ofgoal.

to provide similar speedups, putting Dyna’s parser
in the ballpark of the Klein & Manning parser. Im-
portantly, these improvements will speed up existing
Dyna programs through recompilation.

Inside parsing. Johnson (2000) provides a C im-
plementation of the inside-outside algorithm for EM
training of PCFGs. We ran five iterations of EM
on the WSJ10 corpus26 using the Treebank grammar
from that corpus. Dyna took 4.1 times longer.

Early stopping. An advantage of the weighted
agenda discipline (§4.2) is that, with a reasonable
priority function such as an item’s inside probabil-
ity, the inside algorithm can be stopped early with
an estimate ofgoal’s value. To measure the goodness
of this early estimate, we tracked the progression of
goal’s value as each sentence was being parsed. In
most instances, and especially after more EM itera-
tions, the estimate was very tight long before all the
weight had been accumulated (Table 1). This sug-
gests that early stopping is a useful training speedup.

PRISM. The implemented tool most similar to
Dyna that we have found is PRISM (Zhou and Sato,
2003), a probabilistic Prolog with efficient tabling
and compilation. PRISM inherits expressive power
from Prolog but handles only probabilities, not gen-
eral semirings (or even side conditions).27 In CKY
parsing tests, PRISM was able to handle only a small
fraction of the Penn Treebank ruleset (2,400 high-
probability rules) and tended to crash on long sen-
tences. Dyna is designed for real-world use: it con-
sistently parses over 10× faster than PRISM and
scales to full-sized problems.

IBAL (Pfeffer, 2001) is an elegant and power-
ful language for probabilistic modeling; it general-
izes Bayesian networks in interesting ways.28 Since

26Sentences with≤10 words, stripping punctuation.
27Thus it can handle a subset of the cases described by

Goodman (1999), again by building the whole parse forest.
28It might be possible to implement IBAL in Dyna (Pfeffer,

PCFGs and marginalization can be succinctly ex-
pressed in IBAL, we attempted a performance com-
parison on the task of the inside algorithm (Fig. 1).
Unfortunately, IBAL’s algorithm appears not to ter-
minate if the PCFG contains any kind of recursion
reachable from the start symbol.

8 Conclusions

Weighted deduction is a powerful theoretical for-
malism that encompasses many NLP algorithms
(Goodman, 1999). We have given a bottom-up “in-
side” algorithm for general semiring-weighted de-
duction, based on a prioritized agenda, and a general
“outside” algorithm that correctly computes weight
gradients even when the inside algorithm is pruned.

We have also proposed a declarative language,
Dyna, that replaces Prolog’s Horn clauses with
“Horn equations” over terms with values. Dyna can
express more than the semiring-weighted dynamic
programs treated in this paper. Our ongoing work
concerns the full Dyna language, program transfor-
mations, and feedback-directed optimization.

Finally, we evaluated our first implementation of
a Dyna-to-C++ compiler (download and documen-
tation athttp://dyna.org). We hope it will facili-
tate EMNLP research, just as FS toolkits have done
for the FS case. It produces code that is slower than
hand-crafted code but acceptably fast for our NLP
research, where it has been extremely helpful.

References
J. Binder, K. Murphy, and S. Russell. 1997. Space-efficient inference in dynamic

probabilistic networks. InProc. of IJCAI.
S. A. Caraballo and E. Charniak. 1998. New figures of merit for best-first proba-

bilistic chart parsing.CL, 24(2):275–298.
E. Charniak, S. Goldwater, and M. Johnson. 1998. Edge-based best-first chart

parsing. InProc. of COLING-ACL.
M. J. Collins. 1999.Head-Driven Statistical Models for Natural Language Pars-

ing. Ph.D. thesis, U. of Pennsylvania.
J. C. Culberson and J. Schaeffer. 1998. Pattern databases.Computational Intelli-

gence.
A. Dempster, N. Laird, and D. Rubin. 1977. Maximum likelihood estimation

from incomplete data via the EM algorithm.Journal of the Royal Statistical
Society B, 39:1–38.

J. Earley. 1970. An efficient context-free parsing algorithm.Communications of
the ACM, 13(2):94–102.

J. Eisner and G. Satta. 1999. Efficient parsing for bilexical CFGs and head-
automaton grammars. InProc. of ACL.

J. Eisner and D. A. Smith. 2005a. Quasi-synchronous grammars: Alignment by
soft projection of syntactic dependencies. Technical report, Johns Hopkins U.

J. Eisner and N. A. Smith. 2005b. Parsing with soft and hard constraints on
dependency length. InProc. of IWPT.

p.c.). Dyna is a lower-level language that itself knows nothing
about the semantics of probability models, but whose inference
rules could be used to implement any kind of message passing.

J. Eisner, E. Goldlust, and N. A. Smith. 2004. Dyna: A declarative language for
implementing dynamic programs. InProc. of ACL(companion vol.).

J. Eisner. 2001.Smoothing a Probabilistic Lexicon via Syntactic Transforma-
tions. Ph.D. thesis, U. of Pennsylvania.

J. Eisner. 2002. Parameter estimation for probabilistic FS transducers. InProc.
of ACL.

J. Goodman. 1999. Semiring parsing.CL, 25(4):573–605.
A. Griewank and G. Corliss, editors. 1991.Automatic Differentiation of Algo-

rithms. SIAM.
M. Johnson. 2000. Inside-outside (computer program).

http://www.cog.brown.edu/ ˜mj/Software.htm .
L. Karttunen, J.-P. Chanod, G. Grefenstette, and A. Schiller. 1996. Regular ex-

pressions for language engineering.JNLE, 2(4):305–328.
M. Kifer and V. S. Subrahmanian. 1992. Theory of generalized annotated

logic programming and its applications.Journal of Logic Programming,
12(4):335–368.

D. Klein and C. D. Manning. 2002. A generative constituent-context model for
grammar induction. InProc. of ACL.

D. Klein and C. D. Manning. 2003a. A∗ parsing: Fast exact Viterbi parse selec-
tion. In Proc. of HLT-NAACL.

D. Klein and C. D. Manning. 2003b. Accurate unlexicalized parsing. InProc. of
ACL.

J. Lafferty, A. McCallum, and F. Pereira. 2001. Conditional random fields: Prob-
abilistic models for segmenting and labeling sequence data. InProc. of ICML.

I. D. Melamed. 2003. Multitext grammars and synchronous parsers. InProc.
HLT-NAACL.

G. Minnen. 1996. Magic for filter optimization in dynamic bottom-up processing.
In Proc. of ACL.

M. Mohri, F. Pereira, and M. Riley. 1998. A rational design for a weighted FST
library. LNCS, 1436.

M.-J. Nederhof. 2003. Weighted deductive parsing and Knuth’s algorithm.CL,
29(1):135–143.

I. Niemel̈a. 1998. Logic programs with stable model semantics as a constraint
programming paradigm. InProc. Workshop on Computational Aspects of
Nonmonotonic Reasoning.

F. Pereira and Y. Schabes. 1992. Inside-outside reestimation from partially brack-
eted corpora. InProc. of ACL.

F. Pereira and D. H. D. Warren. 1983. Parsing as deduction. InProc. of ACL.
A. Pfeffer. 2001. IBAL: An integrated Bayesian agent language. InProc. of

IJCAI.
A. Prieditis. 1993. Machine discovery of effective admissible heuristics.Ma-

chine Learning, 12:117–41.
R. Ramakrishnan, D. Srivastava, S. Sudarshan, and P. Seshadri. 1994. The

CORAL deductive system.The VLDB Journal, 3(2):161–210.
R. Ramakrishnan. 1991. Magic templates: a spellbinding approach to logic pro-

grams.J. Log. Program., 11(3-4):189–216.
K. A. Ross and Y. Sagiv. 1992. Monotonic aggregation in deductive databases.

In Proc. of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems.

S. M. Shieber, Y. Schabes, and F. Pereira. 1995. Principles and implementation
of deductive parsing.Journal of Logic Programming, 24(1–2):3–36.

K. Sikkel. 1997.Parsing Schemata: A Framework for Specification and Analysis
of Parsing Algorithms. Texts in Theoretical Computer Science. Springer.

N. A. Smith and J. Eisner. 2004. Annealing techniques for unsupervised statisti-
cal language learning. InProc. of ACL.

N. A. Smith and J. Eisner. 2005. Contrastive estimation: Training log-linear
models on unlabeled data. InProc. of ACL.

D. A. Smith and N. A. Smith. 2004. Bilingual parsing with factored estimation:
Using English to parse Korean. InProc. of EMNLP.

N. A. Smith, D. A. Smith, and R. W. Tromble. 2005. Context-based morphologi-
cal disambiguation with random fields. InProc. of HLT-EMNLP.

G. Specht and B. Freitag. 1995. AMOS: A NL parser implemented as a deductive
database in LOLA. InApplications of Logic Databases. Kluwer.

A. Stolcke. 1995. An efficient probabilistic CF parsing algorithm that computes
prefix probabilities.CL, 21(2):165–201.

H. Tamaki and T. Sato. 1984. Unfold/fold transformation of logic programs.
In S. Å. Tärnlund, editor,Proceedings Second International Conference on
Logic Programming, pages 127–138, Uppsala University.

R. J. Williams and D. Zipser. 1989. A learning algorithm for continually running
fully recurrent neural networks.Neural Computation, 1(2):270–280.

D. Wu. 1997. Stochastic inversion transduction grammars and bilingual parsing
of parallel corpora.CL, 23(3):377–404.

N.-F. Zhou and T. Sato. 2003. Toward a high-performance system for symbolic
and statistical modeling. InProc. of Workshop on Learning Statistical Models
from Relational Data.

U. Zukowski and B. Freitag. 1997. The deductive database systemLOLA. In
Logic Programming and Nonmonotonic Reasoning, LNAI 1265. Springer.

