Compiling Comp Ling:
Practical Weighted Dynamic Programming and the Dyna Languagé

Jason Eisner and Eric Goldlust and Noah A. Smith
Department of Computer Science / Center for Language and Speech Processing
Johns Hopkins University, Baltimore, MD 21218 USA
{jason,goldlust,nasmith }@cs.jhu.edu

Abstract 1.2 The role of toolkits

Weighted deduction with aggregation is a powerful theoreticahne might regard deductive inference as merely a
formalism that encompasses many NLP algorithms. This pa- . .)

per proposes a declarative specification language, Dyna; give€lpful perspective for teaching old algorithms and
generalagenda-basedgorithms for computing weights and thinking about new ones, linking NLP to logic and
gradients; briefly discusses Dyna-to-Dyna program transforma-) . ! ;

tions; and shows that a first implementation of a Dyna-to-C+€lassical Al. Real implementations would then be

compiler produces code that is efficient enough for real NLP r - i iti
search, though still several times slower than hand-crafted cog%farefu"y hand COd_ed in a traditional Iangu_a_ge'
That was the view ten years ago of finite-state

1 Introduction machines—that FSMs were part of the theoretical

In this paper, we generalize some modern protRackbone qf CL, Iink_ing _the field_ to the theory
abilistic parsing techniques to a broader class @ computation. Starting in the mid-1990's, how-
weighted deductive algorithms. Our implemente@Ver: finite-state methods came to the centeapf
system encapsulates these implementation tedii€d NLP as researchers at Xerox, AT&T, Gronin-
niques behind a clean interface—a small high-levé&€n and elsewhere improved the expressive power
specification language, Dyna, which compiles int®f FSMs by moving from automata to transduc-
C++ classes. This system should help the HLT conf2'S: 2dding semiring weights, and developing pow-
munity to experiment more easily with new model€'ful néw regular-expression operators and algo-

and algorithms. rithms for these cases. They also developed soft-
ware. Karttunen et al. (1996) built an FSM toolkit
1.1 Dynamic programming as deduction that allowed construction of morphological ana-

The “parsing as deduction” framework (Pereira andyzers for many languages. Mohrietal. (1998)
Warren, 1983) is now over 20 years old. It provide®Uilt a weightedtoolkit that implemented novel
an elegant notation for specifying a variety of parsalgorithms (e.g., weighted minimization, on-the-
ing algorithms (Shieber et al., 1995), including algofly composition) and scaled up to handle large-
rithms for probabilistic or other semiring-weightedvocabulary continuous ASR. At the same time, re-
parsing (Goodman, 1999). In the parsing commulewed community-wide interest in shallow methods
nity, new algorithms are often stated simply as a sé@r information extraction, chunking, MT, and di-
of deductive inference rules (Sikkel, 1997; Eisneflogue processing meant that such off-the-shelf FS
and Satta, 1999). toolkits became the core of diverse systems used in
It is also straightforward to specify other NLP al-cutting-edge research.
gorithms this way. Syntactic MT models, language The weakness of FSMs, of course, is that they
models, and stack decoders can be easily describ@ only finite-state. One would like something like
using deductive rules. So can operations on finitéAT&T's FSM toolkit that also handles the various
state and infinite-state machines. formalisms now under consideration for lexicalized
“We thank Joshua Goodman, David McAllester, and Pai@fammars, non-context-free grammars, and syntax-
Ruhlen for useful early discussions; pioneer users Markusased MT—and hold the promise of extending to

Dreyer, David Smith, and Roy Tromble for their feedback a”‘bther formalisms and applications not yet imagined
input; John Blatz for discussion of program transformations;) o)
and several reviewers for useful criticism. This work was \We believe that deductive inference should play
supported by NSF ITR grant 11S-0313193, ONR MURI granithe role of regular expressions and FSMs, providing
N00014-01-1-0685, and a Hertz Foundation fellowship to th . .

third author. The views expressed are not necessarily endors theoretical foundation for such an effort. Many

by the sponsors. engineering ideas in the field can be regarded, we

1. :- double item=0. % declares that all item values are doubles, default is O
2. constit(X,l,K) += rewrite(X,W) * word(W,1,K). % a constituent is either aword . ..

3. constit(X,1,K) += rewrite(X,Y,Z) * constit(Y,l,J) * constit(Z,J,K). % ... or a combination of two adjacent subconstituents
4. goal += constit(“s”,0,N) whenever ?ends _at(N). % a parse is ang constituent that covers the input string

Figure 1: A probabilistic CKY parser written in Dyna. Axioms are in boldface.

believe, as ideas for how to specify, transform, oas a consequent.) If the PCFG contains a rewrite rule

compile systems of inference rules. np — Mary with probability p(Mary | np)=0.005,
. the user should assert thafvrite(“np”, “Mary”) has
2 A lLanguage for Deductive Systems value 0.005. If the input idohn loves Mary val-

. . es of 1 should be asserted fabrd(*John",0,1),
Any toolkit needs an interface. For example, Févjv ord(loves” 1.2), word("Mary” 2.3), andends.at(3).

toolkits offer a regular expression language. We _. . . .
9 P guag Given the axioms as base cases, the equations in

Propose a swn_plg but Turlng-complgte _Ianguagie:ig' 1 enable deduction of values for other items.
Dyna, for specifying weighted deductlve—lnf(—:'rencer

) . :) he value of theheorem constit(*s”,0,3) will be the
algorithms. We illustrate it here by example; Se?nside robability3s(0, 3).2 and the value ofoal
http://dyna.org for more details and a tutorial. P YPs (U, 2),

- will be the total probability of all parses.
The short Dyna program in Fig. 1 expresses the If one replaces= by max= throughout, theron-

inside algorithm for PCFGs (i.e., the probabilistic

. ' ; stit(“s”,0,3) will accumulate the maximum rather than
generalization of CKY recognition). Itsi@ference " .
. . . the sum of these quantities, agwhl will accumulate
rules schematically specify mangquations over

an arbitrary number of unknowns. This is poss;ibléhe probaplllty of thebestparse.
With different input, the same program car-

bcause the unknowng€ms) havestructured names .) :) .
ries out lattice parsing. Simply assert axioms

(terms) such asonstit(“s”,0,3). They resemble typed - g

variables in a C program, but we usariable in- that correspond to (weighted) lattice arcs,.such as

stead to refer to the capitalized identifiets|, K, word(*John ’17.’50)’ wher_e 17 and ?O are_arbltrary .
terms denoting states in the lattice. It is also quite

...in lines 2—4. Each rule gives @nsequenton . - .
| . . straightforward to lexicalize the nonterminals or ex-
the left-hand side of the=, which can be built by
tend to synchronous grammars.

combining theantecedentson the right-hand sidé. _ ,
A related context-free parsing strategy, shown in

Lines 2-4 are equational schemas that SpeE_i 2, is Earley’s algorithm. These equations illus
ify how to compute the value of items such as 9. < ysag ' q

o) trate nested terms such as lists. The side condition
constit(“s”,0,3) from the values of other items.. o . :

. . . in line 2 prevents building any constituent until one
Using the summation operator=, lines 2-—

3 say that for anyx, I, and K, constt(<.K) has built a left context that calls for it.

is _defined by summing over the remaining3 Relation to Previous Work

variables, as)y rewrite(X,W)*word(W,|,K) +

ZYL J rewrite(X,Y,Z)*constit(Y,1,J)*constit(z,J,K). For There is alarge relevant literature. Some of the well-

exampleconstit(“s”,0,3) is @ sum of quantities such asknown CL papers, notably Goodman (1999), were

rewrite(“s”, “np”, “vp”)*constit(“np”,0,1)*constit("vp”,1,3). already mentioned in section 1.1. Our project has

The whenever operator in line 4 specifies aide three main points of difference from these.

condition that restricts the set of expressions in the First, we provide an efficient, scalable, open-

sum (i.e., only whem is the sentence length). source implementation, in the form of a compiler
To fully define the system of equations, nonfrom Dynato C++ classes. (Related work iih2.)

default values (in this case, non-zero values) shouithe C++ classes are efficient and easy to use, with

be assertedfor someaxiomsat runtime. (Axioms, statements such agewrite(“np”,2,3)]=0.005 to assert

shown in bold in Fig. 1, are items that never appeaixiom values into a chart named(i.e., a deduc-

Much of our notation and terminology comes from 2That is, the probability thas would stochastically rewrite
logic programming: term, variable, inference rule, an-o the first three words of the input. If this can happen in more
tecedent/consequent, assert/retract, axiom/theorem. than one way, the probability sums over multiple derivations.

1. need(“s”,0) = 1. % begin by looking for ars that starts at position 0

2. constit(Nonterm/Needed,|,1) += rewrite(Nonterm,Needed) whenever ?need(Nonterm, I). % traditionalpredict step

3. constit(Nonterm/Needed,|,K) += constit(Nonterm/cons(W,Needed),l,J) * word(W,J,K). % traditionalscanstep

4. constit(Nonterm/Needed,|,K) += constit(Nonterm,cons(X,Needed),l,J) * constit(X/nil,J,K). % traditionalcompletestep

5. goal += constit(“s"/nil,0,N) whenever ?ends _at(N). % we want a complets constituent covering the sentence

6. need(Nonterm,J) += constit(_/cons(Nonterm, _), _,J). % Note: underscore matches anything (anonymous wildcard)

Figure 2: An Earley parser that recovers inside probabilities (Earley, 1970; Stolcke, 1995). Tine fuldet n should be encoded
as the axionrewrite(“np”,cons(“det”,cons(“n”,nil))), a nested term‘np”/Needed is the label of a partiahp constituent that is
still missing thelist of subconstituents ihNeeded. need(“np”,3) is derived if some partial constituent seeksngrsubconstituent
starting at position 3. As in Fig. 1, lattice parsing comes for free, as does training.

tive database) and expressions ldigoal] to extract pressions. This allows specification of a wider class
the values of the resulting theorems, which are conef algorithms from NLP and elsewhere (e.g., mini-
puted as needed. The C++ classes also give accesstom expected loss decoding, smoothing formulas,
the proof forest (e.g., the forest of parse trees), anteural networks, game tree analysis, and constraint
integrate with parameter optimization code. programming). Althougt{4 and§5 have space to
Second, we fully generalize the agenda-baseeresent only techniques for the semiring case, these
strategy of Shieber etal. (1995) to the weightegan be generalized.
case—in particular supportingpmioritized agenda. ~ Our approach may be most closely related to de-
That allows probabilities to guide the search foductive databases, which even in their heyday were
the best parse(s), a crucial technique in state-of-thgpparently ignored by the CL community (except for
art context-free parsefsWe also give a “reverse” Minnen, 1996). Deductive database systems per-
agenda algorithm to compute gradients or outsid@it inference rules that can derive new database
probabilities for parameter estimation. facts from old ones. They are essentially declara-
Third, regarding weights, the Dyna language iéiVe logic programming languages (with restrictions
designed to express systems of arbitrary, heter8I €xtensions) that are—or could be—implemented
geneous equations over item values. In previoldsing efficient database techniques. Some imple-
work such as (Goodman, 1999; Nederhof, 2003jnented deductive databases suchcaRAL (Ra-
one only specifies the inference rules as unweightéBakrishnan et al., 1994) andLA (Zukowski and
Horn clauses, and then weights are added autom&teitag, 1997) support aggregation (as in Dyna’s
ically in a standard way: all values have the samg&= log+=, max=, ...), although only “stratified”

type W, and all rules transform to equations of thdorms of it that exclude unary CFG rule cycles.
forme @©= a1 ® as ® -+ @ ai, where® and® ROss and Sagiv (1992) (and in a more restricted

give W the structure of a semirirfy.In Dyna one Way, Kifer and Subrahmanian, 1992) come closest to

writes these equations explicitly in place of HorroUr notion of attaching aggregable values to terms.
clauses (Fig. 1). Accordingly)eterogeneoubyna ~ Among deductive or other database systems,
programs, to be supported soon by our compilePynais perhaps unusualin that its goal is not to sup-
will allow items of different types to have valuesPort transactional databasesaut hocqueries, but
of different types, computed by different aggregatather to serve as an abstract layer for specifying an
tion operations over arbitrary right-hand-side ex&lgorithm, such as a dynamic programming (DP) al-
gorithm. Thus, the Dyna program already implicitly
3Previous treatments of weighted deduction have used &M explicitly specifies all queries that will be needed.
agenda only for an unweighted parsing phase (Goodman, 199%hjs allows compilation into a hard-coded C++ im-

or for finding the single best parse (Nederhof, 2003). Our algo- . Haria i
rithm works in arbitrary semirings, including non-idempotentplementatlon' The compiler's job is to support these

ones, taking care to avoid double-counting of weights and tgueries by laying out and indexing the database re-
handle side conditions. B

“E.g., the inside algorithm in Fig. 1 falls into Goodman's ~ °Often they use some variant of theweightedagenda-
framework, with(W, @, ®) = (R>o, +, *)—the RLUSTIMES based algorithm, which is known in that community as “semi-
semiring. Becausey distributes overd in a semiring, com- nhaive bottom-up evaluation.”
puting goal is equivalent to an aggregation over many separate °An unweighted parser was implemented in an earlier ver-
parse trees. That is not the case for heterogeneous programssion of LOLA (Specht and Freitag, 1995).

lations in memory in a way that resembles hand-, tor each axiom, setagendda] := value of axioma

designed data structures for the algorithm in ques-while there is an itena with agendda] # 0

tion. The Compiler has many choices to make heré.. (* remove an item from the agenda and move its value to the chart *)
. i) 4’ choose such am

we ultimately hope to implement feedback-directed A .= agendéa]; agendda] := 0

optimization, using profiled sample runs on typicab old := charta]; charta] := chartfa] ® A

data. For example, a sparse grammar should lead’to " ¢ha"al 7 old (only propagate actual chinges *)
X i 8. (* compute new resulting updates and place them on the agenda *)
different strategies than a dense one. 9. for each inference rulec'®=a1 ® a2 ® - - - ® az,”
10. for i from 1 tok
H 11. or each way of instantiating the rule’s variables
4 Computing Theorem Values for each way of instantiating the rule’s variabl
such thaty, = a
. - . old if j <iand
Fig. 1 specifies a set of equations but not how to k J aj_ s
solve them. Any declarative specification languagé& agenddc] &= (Xf A if j =1
. J= . H
must be backed up by a solver for the class of speci- charfa;] otherwise

(* can skip this line if any multiplicand is O *)

fiable problems. In our continuing work to develop a
range of compiler strategies for arbitrary Dyna prOFigur_e 3: Weighted agenda-based deduction in a semiring, with-
. . out side conditions (see text).

grams, we have been inspired by the CL commu-
nity’s experience in building efficient parsers. left recursion, unary rule cycles, erproductions.

In this paper and in our current implementa-This appears to rule out pure top-down (“backward-
tion, we give only the algorithms for what we callchaining”) approaches.
weighted dynamic programsn which all axioms Efficiency. Returning the value ofoal should
and theorems are variable-free. This means theld only as much computation as necessary. To re-
a consequent may only contain variables that aturn goal, one may not need to compute the values
ready appear elsewhere in the rule. We further ref all items? In particular, finding the best parse
strict to semiring-weighted programs as in (Goodshould not require finding all parses (in contrast to
man, 1999). But with a few more tricks not givenGoodman (1999) and Zhou and Sato (2003)). Ap-
here, the algorithms can be generalized to a widg@roximation techniques such as pruning and best-
class of heterogeneous weighted logic progr8ms. first search must also be supported for practicality.

4.1 Desired properties 4.2 The agenda algorithm

Computation is triggered when the user requests ti§&ur basic algorithm (Fig. 3) is a weighted agenda-
value of one or more particu|ar items, suchgasL based algorithm that works onIy with rules of the
Our algorithm must have several properties in orddPrmc @= e, ®a: ®- - -®a;,. ® must distribute ovet.

to substitute for manually written code. Further, the default value for items (line 1 of Fig. 1)

Soundness.The algorithm cannot be guaranteednust be the semiring’s zero element, dendlée
to terminate (since it is possible to write arbitrary Agenda-based deduction maintains two indexed

Turing machines in Dyna). However, if it does ter-data structures: thagendaand thechart. charta]
minate, it should return values from a valid model otores the current value of item The agenda holds
the program, i.e., values that simultaneously satisfyture work that arises from assertions or from pre-
all the equations expressed by the program. vious changes to the charigendda| stores an in-
Reasonable completeness. The computation cremental update to be added (usiapto charta]
should indeed terminate for programs of interedf future. If charta] or agendda] is not stored, it is

to the NLP community, such as parsing under This also affects completeness, as it sometimes enables the

probabilistic grammar—even if the grammar hasomputation ofjoal to terminate even if the program as a whole

— contains some irrelevant non-terminating computation. Even
"Some relations might be left unmaterialized and computeih practical cases, the runtime of computing all items is often

on demand, with optional memoization and flushing of memosprohibitive, e.g., proportional te® or worse for a dense tree-
8Heterogeneous programs may propagate non-additive updjoining grammar or synchronous grammar.

dates, which arbitrarily modify one of the inputs to an aggrega- It satisfieszt ® 0 = 2,2 ® 0 = 0 for all z. Also, this

tion. Non-dynamic programs require non-ground items in thalgorithm requires® to distribute overd. Dyna’s semantics

chart, complicating both storage and queries against the chartequires® to be associative and commutative.

taken to be the defaull. We may now use Fig. 3, but now amy might

When itema is removed from the agenda, itshave the forntb;. Then in line 12chart/a;] will be
chart weight is updated by the increment value. Thighart?b;], which is defined ad or 0 according to
change is then propagated to other itemgia rules whetherchartb;] is stored (i.e., whethér; has been
of the forme @= --- with a on the right-hand-side. derived). Also, ifa; = 2a at line 11 (rather than
The resulting changes toare placed back on the a; = a), thenA in line 12 is replaced byA?, where
agenda and carried out only later. we have sef\? := chart[?q] at line 5.

The unweighted agenda-based algorithm (Shiebﬁr4

et al.,, 1995) may be regarded as the case where
W, ®,®) = ({T,F},V,A). It has previously Whether the agenda algorithm halts depends on the

Convergence

(W, ,®) = (Rsg, max, +). In Fig. 3, we make Ccomplete language, Dyna gives you enough freedom
the natural further generalization to any semiring. {0 Write undesirable programs.

How is this a further generalization? Sinedun- Most NLP algorithms do terminate, of course,
like v andmax) might not be idempotent, we must@nd this remains true under the agenda algorithm.

take care to avoid erroneous double-counting if thECF typical algorithms, only finitely many differ-

antecedent: combines with, or produces, anothe€Nt items (theorems) can ?e derived from a given

copy of itself'! For instance, if the input contains fiNit€ input (set of §1X|oms§. ‘This ensures termi-

words, line 2 of Fig. 1 may get instantiated @s- nation if one is doing unweighted deduction with
> snp") * constit(np” 5,5) * W, ®,®) = ({T,F},V,A), since the test at line 7

stit(“np”,5,5) += rewrite(“np”,“np”, ;] oy
constit(np”5,5). This is why we save the old values€NSures that no item is processed more than Ghce.
The same test ensures termination if one is

of agendéu] and chartfa] as A andold, and why) :
searching for the best proof or parse with (say)

line 12 is complex.
W, ®,®) = (R>p,min,+), where values are

4.3 Side conditions negated log probabilities. Positive-weight cycles

_ will not affect themin. (Negative-weight cycles,
We now extend Fig. 3 to handle Dyna'spoyever, would correctly cause the computation to
side conditions, i.e., rules of the form gyerge: these do not arise with probabilities.)
c EB.= expression Wheneyer boolea.n-expressio.n-. If one is using(W, @, ®) = (Rxg, +, *) to com-
We discuss only the simple side conditions)te the total weight of all proofs or parses, as in
treated in previous literature, which we write ashe inside algorithm, then Dyna must solve a sys-
¢ H= a1®az®- - -@ay whenever by 11 & -+ & 2D, tem of nonlinear equations. The agenda algorithm
He_re,?bj is tru_e or false according to whether thergyyeag this by iterative approximation (propagating
exists arunweightecproof of ;. updates around any cycles in the proof graph until

Again, what is new here? Nederhof (2003) connymerical convergence), essentially as suggested by

siders onlymax= with a uniform-cost agenda disci- sto|cke (1995) for the case of Earley’s algorithfn.

pline (see§4.5), which guarantees that no item will ogain, the computation may diverge.
be removed more than once from the agenda.
12This holds for all Datalog programs, for instance.

wish to support other cases, so we must take CarelaThis argument does not hold if Dyna is used to express

that a second update @ will not retrigger rules of programs outside the semiring. In particular, one can write in-
which a; is a side condition. stances of SAT and other NP-hard constraint satisfaction prob-
. . . lems by using cyclic rulesvith negationover finitely many
For simplicity, let us reformulate the above rUIeboolean-valued items (Nien#l1998). Here the agenda algo-
asc®=a;1 ®aa ®- - D ag ® by, ®--- @ ?bg, rithm can end up flipping values forever between false and true;

where?b; is now treated as having val@eor 1 (the a more general solver would have to be called in order to find a

. . . stable model of a SAT problem’s equations.
|dent|ty for®) rather than false or true reSpeCtlvely' Ystill assuming the number of items is finite, one could in

- principle materialize the system of equations and call a ded-

An agenda update that increaseby 0.3 will increase- « icated numerical solver. In some special cases only a linear
zxx byr«(0.6z+0.09). Hence, the rule += rxx xz must solver is needed: e.g., for unary rule cycles (Stolcke, 1995), or
propagate a new increase of that size toia the agenda. e-cycles in FSMs (Eisner, 2002).

One can declare the conditions under which itemmately we hope tdearn priority functions that ef-
of a particular typedonstit or goal) should be treated fectively balance these two strategies (especially in
as having converged. Then asking for the valuthe context of early stopping).
of goal will run the agenda algorithm not until the

agenda is empty, but only unthartgoa] has con- 46 Matching, indexing, and interning

verged by this criterion. The crucial work in Fig. 3 occurs in the iteration over
o instantiated rules at lines 9-11. In practice, we re-
4.5 Prioritization structure this triply nested loop as follows, where

The order in which items are chosen at line 4 doe@ach line retains the variable bindings that result
not affect the soundness of the agenda algorithrffom the unification in the previous line:

: : o. for each antecedent pattetnthat appears in some
but can greatly affect its speed. We implement the program rule- and unifies withs

agenda as a priority queue whose priority function for each way of simultaneously unifyings remain-
may be specified by the usér. ing antecedent patterms, . .. a1, ait1, . . - ak

Charniak et al. (1998) and Caraballo and Char- with items that may have no@-value in the chart

)) 11. constructr’s consequent (* all vars are bound *)
niak (1998) showed that, when seeking the best]])
parse (usingmin= or max=), best-firstparsing can Our implementation of line 9 testsagainst all of the

be extremely effective. Klein and Manning (2003afntecedent patterns at once, using a tree of §imp|e
went on to describe admissible heuristics and an A4l [€Sts (generated by the Dyna-to-C++ compiler)

framework for parsing. For A* in our general frame-{0 Sharé work across patterns. As an example;

work, the priority of itema should be an estimate of constit(“np”,3,8) will match two antecedents at line 3

the value of the best proof gbal that uses:. (This ©f Fi9- 1, butwillfail to match inline 4. Becauseis
non-standard formulation is carefully chosé. If variable-free (for DPs), a full unification algorithm

$0,g0al is guaranteed to converge the very first imé> N0t necessary, even though an antecedent pattern
it is selected from the priority-queue agenda. can contain repeated variables and nested subterms.

Prioritizing “good” items first can also be useful "€ 10 rapidly looks up the rule's other an-
in other circumstances. The inside-outside trainin(ggecedentS usingdicesthat are automatically main-

algorithm requires one to find all parses, but finding?"€d ©on the chart. For example, oneen-

the high-probability parses first allows one to ignor&!("P"48) has matched antecedent 2 of line 3 of
the rest by “early stopping.” Fig. 1, the compiled code consults a maintained

In all these schemes (even A¥), processin%}S t of_;[he Chirihc or;stltuentg that St?r:t taLposm(?n 8
promising items as soon as possible risks having .e.o’l : sms % he dorrr;:onstlt(Z,S,K) af thave al-
reprocess them if their values change later. Thu§Sady been derve). Suppose one of thesmis

this strategy should be balanced against the “topst-it(“\/p”’s’ls): then the code finds the rule’s remain-

logical sort” strategy of waiting to process an iterrin9 antecedent by consulting a list of items of the

until its value has (probably) convergddl, Ulti- O™ rewrite(Xnp’,'vp). That leads it to construct
consequents such asstit(s",4,15) at line 11.

'°At present by writing a C++ function; ultimately within By default, equal terms are represented by equal
Dyna, by defining items such asiority(constit("s",0,3)). pointers. While this means terms must be “interned”

181t is correct for proofs that incorporate two copiesdas$ h tructed .. hash look it
value, or—more important—no copies@$ value because is when constructed (requiring hash lookup), it en-

a side condition. Thus, it recognizes that a low-probability itenforces structure-sharing and allows any term to be

must havehigh priority if it could be used as a side condition i i ity- i

in a higher-probability parse (though this cannot happen for tgraapldly COp.Ied' haSh.edéfgor equality-tested without

side conditions derived by the magic templates transformatici€referencing the pointe.

(§6)). Note also that’s own value (Nederhof, 2003) might not Each of the above paragraphs conceals many deci-

bel{;m optimistic estimate, if negative weights are present. ¢ions that affect runtime. This presents future oppor-
In parsing, for example, one often processes narrower con- . . . S

stituents before wider ones. But such strategies do not alwajdnities for feedback-directed optimization, where

exist, or break down in the presence of unary rule cycles, gorofiled runs on typical data influence the compiler.

cannot be automatically found. Goodman’s (1999) strategy

of building all items and sorting them before computing any *¥The compiled code provides garbage collection on the

weights is wise only if one genuinely wants to build all items. terms; this is important when running over large datasets.

5 Computing Gradients 1. for eacha, gcharfa] := 0 andgagendéa] := 0

. . . (* respectively hold Ogoal /Ochart{a] and Ogoal /Oagendda] *)
The value otyoal is afunctionof the axioms’ values. . gchar{goal] := 1

If the function is differentiable, we may want to get® fC;rF?an@év tA_v Otlf? triple thatdwas considered at line 8
. * A is d *
its gradient with respect to its parameters (the axiom * [o ¢ harul oo o (* & is agenddal *

I:= gcharl{a] (* will accumulate gagenddia] here *)
values), to aid in numerically optimizing it. 5. for each inference rulec+= a1 * az * - - - x ax”
6. for i from 1 tok
5.1 Gradients by symbolic differentiation 7. for each way of instantiating the rule’s variables
such thatr;, = a
The gradient computation can be derived from the for h from 1 tok such that, is not a side cond.

(* find Ogoal /Dagenddc] - Dagenddc]/d(ay, factor) *)

original by a program transformation. For each item gagendéc] if ; = h

a in the original program—in particular, for each | old if j #£handj <
axiom—the new program will also compute a new- Y= H _ anda; = a
item hose value i$goal /0 = A It 7 handj =i
ltemg(a), w value goa./ @- charfa;] otherwise
Thus, given weighted axioms, the new progran. if h # i thengcharfas] += v
computes botfgoal and Vgoal. An optimization al- if h <iandan =athenI’+= vy

. . . .12 dda] :=T
gorithm such as conjugate gradient can use this |r11§f Eﬁgf{;ﬁﬂ old

formation to tune the axiom weights to maximizeu.return gagendéa] for each axiomu

goal. An alternative is t_h'e EM algorlt'hm (Dempstereiq e 4: An efficient algorithm for computinggoal (even

etal., 1977) for probabilistic generative models sucthengoal is an early-stopping approximation), specialized to

as PCFGs. Luckily the same program serves, singe cas&W,®,®) = (R, +,). The proof is suppressed for
ack of space.

for such models, the E count (expected count) of an

itema can be found as - g(a)/goal. In other words, timet is considered to be a different variable (possi-

the inside-outside algorithm has the same structuldy with different value) than the same item at time

as computing the function and its gradient. t + 1. The reverse pass must recover earlier values.
The GRADIENT transformation is simple. For Our somewhat tricky algorithm is shown in Fig. 4.
examplel® given a rulec += a; % ag * --- * At line 3, a stack is needed to remember the se-

ay whenever 7byr11 & - - - & ?b,, we add a new rule quence of(a, old, A) triples from the original com-
ga;) += g(@) * ai * --- * a;_1 * a;41 * --- = putation?® Itis a more efficient version of the “tape”
aj whenever ?a;, foreachi = 1,2, ..., k’. (The orig- usually used in automatic differentiation. For exam-
inal rule remains, since we need inside values tple, it usesO(n?) rather thanO(n3) space for the
compute outside values.) This strategy for computeKY algorithm. The trick is that Fig. 3 does not
ing the gradien®goal/da via the chain rule is an record all its computations, but only its sequence of
example of automatic differentiation in the reverséems. Fig. 4 then re-runs the inference rules to re-
mode (Griewank and Corliss, 1991), known in thesonstruct the computations in an acceptable order.
neural network community as back-propagation. This method is a generalization of Eisner’s (2001)
prioritized forward-backward algorithm for infinite-
state machines. As Eisner (2001) pointed out, the
However, what ifgoal might be computed only ap- tape created on the first forward pass can also be
proximately, by early stopping before convergencesed to speed up later passes (i.e., after the numeri-
(64.5)? To avoid confusing the optimizer, we wantal optimizer has adjusted the axiom weigHts).
theexactgradient of theapproximateunction. 0 one s wiling to risk floti - "

. « . » . one Is willing to risk tloating-point error, then one can

To do t_h's’ we “unwind” the C(_)mpUt_at'_on Of store only(a, old) on the stack and recovex aschart/a] — old.
goal, undoingthe value updates while building up Also, agend4a] andgagendéa] can be stored in the same loca-
the gradient values. The idea is to differentiatdion. as they are only used during the forward and the backward
w led” . f th iqinal . pass, respectively.
an_ Fmro e Ve'I’SIOn of the o'rlglna. Comp_Utatlon 2ln brief, a later forward pass that choosest Fig. 3, line 4
(Williams and Zipser, 1989), in which an item ataccording to the recorded tape order (1) is faster than using a
priority queue, (2) avoids ordering-related discontinuities in the

“More generally,g(a;) = dgoal/da; = > .0goal/dc - objective function as the axiom weights change, (3) can prune
dc/0a; =3 _.9(c) - Oc/0a; by the chain rule. by skipping useless updateghat scarcely affectedoal (e.g.,

5.2 Gradients by back-propagation

5.3 Parameter estimation transformations restructure terms to change their
|§1yout in memory. We are also exploring the intro-

To support parameter training using these grad _ _ L2
ents, our implementation of Dyna includes a trainguctlon of declarations that control which items use

ing module, DynaMITE. DynaMITE supports thethe agenda or are memoiz:ad in the Ehart. This. can
EM algorithm (and many variants), supervised anBe US?d to support lazy or on—the—fl_y computatu_)n

unsupervised training of log-linear (“maximum en-('_/IOhrI e_t al., 1998) and asymptotic space-saving
tropy”) models using quasi-Newton methods, an&rICkS (Binder et al.
smoothing-parameter tuning on development data.
As an object-oriented C++ library, it also facilitates

rapid implementation of new estimation technique€.1 Applications

(Sm|th and Eisner, 2004, Smith and Eisner, 2005)The current Dyna Compiler has proved indispens_
able in our own recent projects, in the sense that we
would not have attempted many of them without it.

Another interest of Dyna is that its high-level speci- N SOMe cases, we were experimenting with gen-
fications can be manipulated by mechanical sourcginely new algorithms not supported by any ex-

to-source program transformations. This makes {Bting tool, as in our work on dependency-length-

possible to derive new algorithms from old oneslimited parsing (Eisner and Smith, 2005b) and

§5.1 already sketched thgradient transformation loosely syntax-based machine translation (Eisner

for finding Vgoal. We note a few other examples. @nd D. Smith, 2005). (Dyna would have been
Bounding transformations generate a new pro_equally helpful in the first author’s earlier work on

gram that computes upper or lower boundsyoa, new algorithms for lexicalized and CCG parsing,

via generic bounding techniques (Prieditis, 1993§yntactig MT, transformaFiqnaI syntax, trainable pa-
Culberson and Schaeffer, 1998). The A* heuristickMeterized FSMs, and finite-state phonology.)

explored by Klein and Manning (2003a) can be seen “? other ca}ses '(Smith and Eisner, 2004; Smith and
as resulting from bounding transformations. Smith, 2004; Smith et al., 2005), Dyna let us quickly

With John Blatz, we are also exploring trans_replicate, tweak, and combine useful techniques

formations that can result in asymptotically morefror_n the literature. These techmques mcludeq un-
efficient computations ofioal. Their unweighted weighted FS morphology, conditional random fields

versions are well-known in the logic programming(l“"ncferty et al., 2001), synghrqnous parsers (WU’
community (Tamaki and Sato, 1984; Ramakrish—lgg?; Melamed, 2003.)’ Iexmahzt_ed parsers ‘(Elsner
nan, 1991). Folding introduces new intermediate and S_atta, 1999F partially supervised tra|n|_ng la

items, perhaps exploiting the distributive law; ap_(_Perelra and Schabes, 1992jand grammar induc-

plications include parsing speedups such as (Eisn%?n (Klein and Manning, 2002). These replications

and Satta, 1999), as well as well-known technique‘gere easy to write and extend, and to train§a.

for speeding up multi-way database joins, constraift 2 Experiments
programming, or marginalization of graphical mod-We compared the current Dyna compiler to hand-
els. Unfolding eliminates items; it can be used to, . , .

o : built systems on a variety of parsing tasks. These
specialize a parser to a particular grammar and th%rlloblems were chosen not for their novelty or inter-
to eliminate unary rulesMagic templatesntroduce) S -

y g P esting structure, but for the availability of existing

top-down filtering into the search strategy and can bé) .
P g 9y well-tuned implementations.

used to derive Earley’s algorithm (Minnen, 1996), to Best parse. We compared a Dyna CFG parser

introduce left-corner filters, and to restrict FSM con- X .
) :) to the Java parser of Klein and Manning (2003b),
structions to build only accessible states.

Finally, there are low-level optimizationsTerm *Markus Dreyer's reimplementation of the complex
Collins (1999) parser uses under 30 lines of Dyna.
constituents not in any good parse) by consultjagendéu] BFor example, lines 2-3 of Fig. 1 can be extended with
values that the previous backward pass can have written ontdhenever permitted(X,1,K).
the tape (overwriting\ or old). 2Neither uses heuristics from Klein and Manning (2003a).

, 1997).

Usefulness of the Implementation

6 Program Transformations

99% 99.99%

160

10 words * uniform 89.3 @5 | 90.3 (e
140 | 20 words @ v 1 after 1 EMiteration | 82.9 (8 | 85.2 (69
40 words ~ after 2 EM iterations| 77.1 4 | 79.1 (3
120 ¢ . 1 after 3 EM iterations| 71.6 4 | 73.7 @)

after 4 EM iterations| 66.8 (10.0) | 68.8 (102
after 5 iterations 62.9 @@0.3) | 65.0 (o05)
Table 1: Early stopping. Each row describes a PCFG at a differ-
ent stage of training; later PCFGs are sharper. The table shows
the percentage of agenda runtime (mean across 1409 sentences,
and standard deviation) required to get within 99% or 99.99%
of the true value ofoal.

Dyna parser runtime (seconds)

to provide similar speedups, putting Dyna’s parser
in the ballpark of the Klein & Manning parser. Im-
portantly, these improvements will speed up existing
Dyna programs through recompilation.

Inside parsing. Johnson (2000) provides a C im-
plementation of the inside-outside algorithm for EM
training of PCFGs. We ran five iterations of EM
on the WSJ10 corpd8using the Treebank grammar
from that corpus. Dyna took 4.1 times longer.

Early stopping. An advantage of the weighted

0 1 2 3 4 5 6 7 8 9 10
Klein & Manning runtime (seconds)
Figure 5: Dyna CKY parser vs. Klein & Manning hand-built
parser, comparing runtime.
180

10 words _+
160 | 20words ©
30 words -

140
120
100)
80 | S

Dyna parser runtime (seconds)

A ymsar | agenda disciplineg@.?) is that, with a reasonable
or | priority function such as an item’s inside probabil-
407 ﬁ 1 ity, the inside algorithm can be stopped early with
20 ! . 1 an estimate ofoal’s value. To measure the goodness
00 5 10 15 2 3 35 Ofthisearly estimate, we tracked the progression of

Handwritten parser runtime (seconds) goal's value as each sentence was being parsed. In
Figure 6: Dyna CKY parser vs. C-+ARSE, a similar hand- MOSt instances, and especially after more EM itera-
built parser. The implementation differences amount to storagéons, the estimate was very tight long before all the
and indexing and give a consistent 5-fold speedup. weight had been accumulated (Table 1). This sug-

on the same grammar. Fig. 5 shows the redests that early stopping is a useful training speedup.
sults. Dyna’s disadvantage is greater on longer PRISM. The implemented tool most similar to
sentences_probab|y because its greater memd%yna that we have found is PRISM (Zhou and Sato,
consumption results in worse cache behafor. ~ 2003), a probabilistic Prolog with efficient tabling

We also compared a Dyna CKY parser tc@nd compilation. PRISM inherits expressive power
our own hand-built implementation, C+ARSE from Prolog but handles only probabilities, not gen-
C++MRsE is designed like the Dyna parser buteral semirings (or even side conditio$)In CKY
includes a few storage and indexing optimizationBarsing tests, PRISM was able to handle only a small
that Dyna does not yet have. Fig. 6 shows the graction of the Penn Treebank ruleset (2,400 high-
fold speedup from these optimizations on binarized?robability rules) and tended to crash on long sen-
Treebank parsing with a large 119K-rule grammat€nces. Dyna is designed for real-world use: it con-
The sharp diagonal indicates that CaRaEis sim- Sistently parses over }0faster than PRISM and
ply a better-tuned version of the Dyna parser. scales to full-sized problems.

These optimizations and others are now being in- 'BAL (Pfeffer, 2001) is an elegant and power-

corporated into the Dyna compiler, and are expected! language for probabilistic modeling; it general-

- izes Bayesian networks in interesting wa§sSince
BUnlike Java, Dyna does not yet decide automatically whepR—————— o]

to perform garbage collection. In our experiment, garbage col- -°Sentences with10 words, stripping punctuation.

lection was called explicitly after each sentence and counted *’Thus it can handle a subset of the cases described by

as part of the runtime (typically 0.25 seconds for 10-word senSoodman (1999), again by building the whole parse forest.

tences, 5 seconds for 40-word sentences). 2t might be possible to implement IBAL in Dyna (Pfeffer,

PCFGs and marginalization can be succinctly €Xr- Eisner, E. Goldlust, and N. A. Smith. 2004. Dyna: A declarative language for

. implementing dynamic programs. Rroc. of ACL(companion vol.).
pressed n IBAL' we attempted a performance COTT]]-_ Eisner. 2001.Smoothing a Probabilistic Lexicon via Syntactic Transforma-

parison on the task of the inside algorithm (Fig. 1), tions Ph.D. thesis, U. of Pennsylvania. o
J. Eisner. 2002. Parameter estimation for probabilistic FS transducePsodn

Unfortunately, IBAL's algorithm appears not to ter- ofacL
minate if the PCFG contains any kind of recursior]: €eodman. 1999. Semiring parsirg, 25(4):573-605.

. Griewank and G. Corliss, editors. 199Automatic Differentiation of Algo-

reachable from the start symbol. rithms. SIAM.
M. Johnson. 2000. Inside-outside (computer program).
. http://www.cog.brown.edu/ “mj/Software.htm
8 Conclusions L. Karttunen, J.-P. Chanod, G. Grefenstette, and A. Schiller. 1996. Regular ex-

pressions for language engineeridf\LE, 2(4):305-328.

: : : : M. Kifer and V. S. Subrahmanian. 1992. Theory of generalized annotated
Welghted deductlon IS a pOWGI’fUl theoretlcal fOI’ logic programming and its applicationsJournal of Logic Programming

malism that encompasses many NLP algorithms 12(4)335-368. _ _
. «: D Klein and C. D. Manning. 2002. A generative constituent-context model for
(Goodman, 1999). We have given a bottom-up “in-" grammar induction. IProc. of ACL
ida” H HETar H D. Klein and C. D. Manning. 2003a. "Aparsing: Fast exact Viterbi parse selec-
side” algorithm for general semiring-weighted de-=""; 1 0 = = N ARCL
dUCtiOh, based on a prioritized agenda, and a gene;aklein and C. D. Manning. 2003b. Accurate unlexicalized parsing?roe. of

« C . . ACL
OUtS|de algorlthm that COFreCtly ComDUteS We'ghtJ. Lafferty, A. McCallum, and F. Pereira. 2001. Conditional random fields: Prob-

H inai H i abilistic models for segmenting and labeling sequence datroln of ICML
gradlents even when the inside algorlthm IS pruneq.' D. Melamed. 2003. Multitext grammars and synchronous parser£rda.

We have also proposed a declarative language, HLT-NAACL

Minnen. 1996. Magic for filter optimization in dynamic bottom-up processing.

Dyna, that replaces Prolog’s Horn clauses witl? In Proc. of AGL

“Horn equations” over terms with values Dyna cam: Mohri, F. Pereira, and M. Riley. 1998. A rational design for a weighted FST
’ library. LNCS 1436.

express more than the semiring-weighted dynam'm:-J. Nederhof. 2003. Weighted deductive parsing and Knuth’s algoritbi.
programs treated in this paper. Our ongoing work , 2135143

iemel. 1998. Logic programs with stable model semantics as a constraint

concerns the full Dyna |anguage, program transfor- programming paradigm. Ifroc. Workshop on Computational Aspects of
Nonmonotonic Reasoning

mations, and feedback-directed optimization. F. Pereira and Y. Schabes. 1992. Inside-outside reestimation from partially brack-
: . : . eted corpora. IfProc. of ACL

Fma”y’ we evaluate_d our first |mplementat|on OfF. Pereira and D. H. D. Warren. 1983. Parsing as deductioRrde. of ACL
a Dyna-to-C++ compiler (download and documena. Pfecffer. 2001. IBAL: An integrated Bayesian agent language Pioc. of

. . . . 1JCAL
tation athttp://dyna.org) We hope it will facili- A prieditis. 1993. Machine discovery of effective admissible heuristids.-

H H chine Learning12:117-41.

tate EMNLP research, JUSt as FS tOOIk_ItS have dor‘g Ramakrishnan, D. Srivastava, S. Sudarshan, and P. Seshadri. 1994. The
for the FS case. It produces code that is slower than cCorAL deductive systeniThe VLDB Journal3(2):161-210.

.R krish . 1991. Magi | : lIbindi h to logi -
hand-crafted code but acceptably fast for our NLB G e rromram LLa o106 016, o g approach tologic pro
research, where it has been extremely helpful K. A. Ross and Y. Sagiv. 1992. Monotonic aggregation in deductive databases.

! In Proc. of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems
S. M. Shieber, Y. Schabes, and F. Pereira. 1995. Principles and implementation

Refe rences of deductive parsingJournal of Logic Programming24(1-2):3-36.
J. Binder, K. Murphy, and S. Russell. 1097. Space-efficient inference in dynamfé' Sikkel. 1997.Parsing Schemata: A Framework for Specification and Analysis
probabilistic networks. IProc. of IJCAI of Parsing AlgorithmsTexts in Theoretical Computer Science. Springer.

S. A. Caraballo and E. Charniak. 1998. New figures of merit for best-first probaN' A. Smith and J. Els_ner. 2004. Annealing techniques for Unsupervised statisti-
cal language learning. IRroc. of ACL

bilistic chart parsingCL, 24(2):275-298. . . . N -)
E Crl1l '_ K S F(); I(!i 9tL. (d)M Joh 1998, Edae-based best-i hN. A. Smith and J. Eisner. 2005. Contrastive estimation: Training log-linear
. Charniak, S. Goldwater, and M. Johnson. . ge-based best-first chart |\ J1o1s on unlabeled data. Rroc. of ACL

parsmg. InProc. of COLI_NG'ACL_ . D. A. Smith and N. A. Smith. 2004. Bilingual parsing with factored estimation:
M. J. Collins. 1999 Head-Driven Statistical Models for Natural Language Pars- Using English to parse Korean. Rroc. of EMNLP

ing. Ph.D. thesis, U. of Pennsylvania. N. A. Smith, D. A. Smith, and R. W. Tromble. 2005. Context-based morphologi-
J. C. Culberson and J. Schaeffer. 1998. Pattern datab@eesputational Intelli- cal disambiguation with random fields. Rroc. of HLT-EMNLP
gence G. Spechtand B. Freitag. 1995. AMOS: A NL parser implemented as a deductive

A. Dempster, N. Laird, and D. Rubin. 1977. Maximum likelihood estimation database in LOLA. Ii\pplications of Logic DatabaseKluwer.
from incomplete data via the EM algorithrdournal of the Royal Statistical A, Stolcke. 1995. An efficient probabilistic CF parsing algorithm that computes

Society B39:1-38. prefix probabilities.CL, 21(2):165-201.
J. Earley. 1970. An efficient context-free parsing algoritt@emmunications of ~ H. Tamaki and T. Sato. 1984. Unfold/fold transformation of logic programs.
the ACM 13(2):94-102. In S. A. Tarnlund, editorProceedings Second International Conference on
J. Eisner and G. Satta. 1999. Efficient parsing for bilexical CFGs and head- Logic Programmingpages 127-138, Uppsala University.
automaton grammars. Proc. of ACL R. J. Williams and D. Zipser. 1989. A learning algorithm for continually running

J. Eisner and D. A. Smith. 2005a. Quasi-synchronous grammars: Alignment by fully recurrent neura! nf}tworlfsxleural COm‘putationl(Z):270—289_ .
soft projection of syntactic dependencies. Technical report, Johns Hopkins Lﬁ Wu. 1997. Stochastic inversion transduction grammars and bilingual parsing

J. Eisner and N. A. Smith. 2005b. Parsing with soft and hard constraints on of parallel corporaCL, 23(3):377-404.))
dependency length. IRroc. of IWPT N.-F. Zhou and T. Sato. 2003. Toward a high-performance system for symbolic
and statistical modeling. IRroc. of Workshop on Learning Statistical Models

- - . f from Relational Data
p.C.). Dyna is a lower-level language that itself knows nOtthJ. Zukowski and B. Freitag. 1997. The deductive database sys@A In

about the semantics of probability models, but whose inference | o4ic programming and Nonmonotonic ReasopioAl 1265. Springer.
rules could be used to implement any kind of message passing.

