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Lecture Outline

• WFSTs in speech recognition
• WFSTs for machine translation
• Semirings
• Parameter estimation for WFSTs

part of Eisner (2002)
• Grammatical inference for finite-state models

Stolcke and Omohundro (1993)
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From Acoustics to Text
(Mohri & Riley)
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offline.
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• IBM model 3:  give the probability of a
sequence of French words given a sequence
of English words:  p(F | E)  (translation model)

• Combine with language model, p(E).
• These are very simple models, but exact

decoding is rather hard.  (NP hard in fact.)

translate(F) = argmaxE p(E, F)

From French to English
(Knight and Al-Onaizan)
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From French to English
(Knight and Al-Onaizan; Model 3 with WFSTs)

WFSA English language model

WFST fertility model

WFST null insertion model
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WFST word translation model

(W)FSA of all French permutations



Back to more general discussion of WFSTs.



What do WFSTs encode?

• Weighted relations on strings.

w1

w2

w3



When weights have a probability
interpretation …

• The weight of a path is the product of all the arcs’
weights in the path.

• The weight of an output string (given an input
string) is the sum of path weights.

Alternative:
• If we want the best path, use max instead of sum.

Weights can have different interpretations.



Semirings
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Weighted Composition

• What does weighted composition mean?
• The semantics we want, given the models we’ve

been looking at,

• The point:  this is specific to the semiring.  If we had
the Boolean semiring, we’d use OR and AND … and
get old-fashioned intersection!
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Application of Weighted
Composition:  Path Sum

• In the probability case, build x ° T ° y … result is a WFST
encoding all of the ways (paths) to recognize (x, y).

• Sum up weights of those paths = path sum.
– One way to do it:  replace all input and output symbols with ε; project,

determinize, minimize … end up with a single state FSM whose
weight is the path sum.

– Another way:  convert to a linear system.

• Generalizes to other semirings.
– max path, existence of path, etc.

• Special case:  forward algorithm’s trellis = big composed
machine!

• Special case:  Viterbi is the same thing, in max/× semiring.



Why are Path Sums Important?

• Total weight of all the paths that meet some
constraints, such as:
– match input
– match output
– match both input and output



Why are Path Sums Important?

• Total weight of all the paths that meet some
constraints, such as:
– match input   p(x)
– match output   p(y)
– match both input and output   p(x, y) or p(y | x)



Where do the weights come from?

• In an HMM or n-gram model, if you have annotated
data, you can use it to estimate arc probabilities.
(MLE, perhaps smoothed.)

• Generalization to WFSTs:  if we have a bunch of
observed paths, we can do the same thing.

• What if we only have inputs & outputs (no paths)?



Suppose we don’t have paths.

• For today:  assume you do have the input &
the output …

ich bin ein berliner I am a Berliner° °

path sum = p(ich bin ein berliner, I am a Berliner)



• p(x, y) … likelihood of the data under the model.

• Reminiscent of other log-linear models … the data
and the model class (features) define a function
(likelihood) that we want to maximize.

• General point:  training weights usually means
defining an iterative update rule, e.g., based on
gradients.

• Can we compute the gradient?

Training Weighted FSTs
(Eisner, 2002)



• Eisner’s solution:  include gradient as part of
the weight.

• Before:  weight is a probability.
• Now:  weight is (probability, gradient).

• Key idea:  this (p, ∇) weight is a semiring!

Training Weighted FSTs
(Eisner, 2002)



Semirings
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• Generalization:  if the output weren’t known, the
whole thing goes through the same way … just
replace y with an FSM that accepts anything!
– Same if we have “noisy” y.

• Generalization:  if arcs have multiple features,
modify their vectors to be feature count vectors,
instead of [0 … 1 … 0].
– “Parameterized” WFSTs.

• The “gradients” have another interpretation ….
expectations of the number of times we cross each
arc.  This will come in handy later.

Training Weighted FSTs
(Eisner, 2002)



Training Weighted FSTs
(Eisner, 2002)

So the training method …

1. Initialize the ith arc in T with weights for T with (wi,
[0 0 0 … 1 … 0]); ith cell is 1

2. For each example (x, y), build x ° T ° y.
3. Compute the path sum in the expectation semiring.

This gives p(x, y) and ∇wp(x, y).
4. Update: w  w + α∇wp(x, y)
5. If not converged, go to 2.
Swept under the rug:  making sure the weights are well-formed arc

probabilities.  Also efficiency.


