Language and Statistics II

Lecture 8: Applications and Learning of WFSTs

Noah Smith

Lecture Outline

- WFSTs in speech recognition
- WFSTs for machine translation
- Semirings
- Parameter estimation for WFSTs

part of Eisner (2002)

Grammatical inference for finite-state models
 Stolcke and Omohundro (1993)

words

phones

contextdependent phones

acoustic stream (discretized)

At runtime: given acoustic sequence as input, find the best path through the WFST.

In principle, could compose and get FSA of hypotheses ...

All of this is done offline.

From French to English

(Knight and Al-Onaizan)

- IBM model 3: give the probability of a sequence of French words given a sequence of English words: p(F | E) (translation model)
- Combine with language model, p(E).
- These are very simple models, but exact decoding is rather hard. (NP hard in fact.)

 $translate(F) = argmax_F p(E, F)$

From French to English (IBM Model 3)

1 2 3 4 5 6 7 8 9 English
1 3 3 4 6 6 7 9 "Enggglis"

null

Enggglis w/nulls

3

From French to English

(Knight and Al-Onaizan; Model 3 with WFSTs)

From French to English

(Knight and Al-Onaizan; Model 3 with WFSTs)

Back to more general discussion of WFSTs.

What do WFSTs encode?

Weighted relations on strings.

When weights have a probability interpretation ...

- The weight of a path is the product of all the arcs' weights in the path.
- The weight of an output **string** (given an input string) is the **sum** of path weights.

Alternative:

If we want the best path, use max instead of sum.

Weights can have different interpretations.

Semirings

Interpretation of weights	Want to compute	weights	"plus"	"times"
probabilities	p(s)		+	×
	best path prob.	[0, 1]	max	×
log-probabilities	log p(s)		log+	+
	best path log- prob.	(-∞, 0]	max	+
costs	min-cost path [0, +∞)		min	+
Boolean	s in language?	{0, 1}	OR	AND
strings	s itself	Σ^{\star}	set-union	concat.

Weighted Composition

- What does weighted composition mean?
- The semantics we want, given the models we've been looking at,

$$\underbrace{p_C(z|x)}_{\text{new composed transducer;}} = \sum_{y} p_B(z|y) \times p_A(y|x)$$

 The point: this is specific to the semiring. If we had the Boolean semiring, we'd use OR and AND ... and get old-fashioned intersection!

Application of Weighted Composition: Path Sum

- In the probability case, build x ° T ° y ... result is a WFST encoding all of the ways (paths) to recognize (x, y).
- Sum up weights of those paths = path sum.
 - One way to do it: replace all input and output symbols with ε; project, determinize, minimize ... end up with a single state FSM whose weight is the path sum.
 - Another way: convert to a linear system.
- Generalizes to other semirings.
 - max path, existence of path, etc.
- Special case: forward algorithm's trellis = big composed machine!
- Special case: Viterbi is the same thing, in max/x semiring.

Why are Path Sums Important?

- Total weight of all the paths that meet some constraints, such as:
 - match input
 - match output
 - match both input and output

Why are Path Sums Important?

- Total weight of all the paths that meet some constraints, such as:
 - match input p(x)
 - match output p(y)
 - match both input and output p(x, y) or $p(y \mid x)$

Where do the weights come from?

- In an HMM or n-gram model, if you have annotated data, you can use it to estimate arc probabilities. (MLE, perhaps smoothed.)
- Generalization to WFSTs: if we have a bunch of observed paths, we can do the same thing.
- What if we only have inputs & outputs (no paths)?

Suppose we don't have paths.

For today: assume you do have the input & the output ...

path sum = p(ich bin ein berliner, I am a Berliner)

Training Weighted FSTs (Eisner, 2002)

- p(x, y) ... likelihood of the data under the model.
- Reminiscent of other log-linear models ... the data and the model class (features) define a function (likelihood) that we want to maximize.
- General point: training weights usually means defining an iterative update rule, e.g., based on gradients.
- Can we compute the gradient?

Training Weighted FSTs (Eisner, 2002)

- Eisner's solution: include gradient as part of the weight.
- Before: weight is a probability.
- Now: weight is (probability, gradient).

Key idea: this (p, ∇) weight is a semiring!

Semirings

Interpretation of weights	Want to compute	weights	"plus"	"times"
probabilities	p(s)	[0, 1]	+	×
probability, gradient	$p(s),$ $\nabla_{w}p(s)$	[0, 1] ×	$(p_1, \mathbf{g}_1) \oplus (p_2, \mathbf{g}_2)$ = $(p_1 + p_2, \mathbf{g}_1 + \mathbf{g}_2)$	$(p_1, \mathbf{g}_1) \otimes (p_2, \mathbf{g}_2)$ = $(p_1p_2, p_2\mathbf{g}_1 + p_1\mathbf{g}_2)$

Training Weighted FSTs (Eisner, 2002)

- Generalization: if the output weren't known, the whole thing goes through the same way ... just replace y with an FSM that accepts anything!
 - Same if we have "noisy" y.
- Generalization: if arcs have multiple features, modify their vectors to be feature count vectors, instead of [0 ... 1 ... 0].
 - "Parameterized" WFSTs.
- The "gradients" have another interpretation
 expectations of the number of times we cross each
 arc. This will come in handy later.

Training Weighted FSTs (Eisner, 2002)

So the training method ...

- 1. Initialize the *i*th arc in T with weights for T with (w_i, [0 0 0 ... 1 ... 0]); *i*th cell is 1
- 2. For each example (x, y), build x ° T ° y.
- 3. Compute the path sum in the expectation semiring. This gives p(x, y) and $\nabla_{w}p(x, y)$.
- 4. Update: $\mathbf{w} \leftarrow \mathbf{w} + \alpha \nabla_{\mathbf{w}} p(\mathbf{x}, \mathbf{y})$
- 5. If not converged, go to 2.

Swept under the rug: making sure the weights are well-formed arc probabilities. Also efficiency.