
Language and Statistics II

 Lecture 7:

Noah Smith

FW S A

Tε

s

Finite-State Technology
• Formally well-understood

– Regular languages, rational relations
– Generalizes n-grams, HMMs

• Many applications in NL technologies
– Speech recognition
– Lexical, morphological processing
– Information extraction
– Translation (!)
– Parsing (!)

• Several toolkits
• Often determinizable: very fast

Finite-State Automata
(Recognizers)

• Automaton that recognizes regular language
• Implementation of a regular expression
• Regular languages are closed under

numerous operations
– Concatenation, union, intersection, Kleene *,

difference, reverse, complement, …
• Correspond to regular grammars (type 3 in

Chomsky hierarchy)
• Pumping lemma: necessary condition for a

language to be regular

FSM as a Dictionary

• Example: 850 words in “Basic English”
• Each word is an FSM

 Ten-Word Dictionary

Remove ε-transitions

Determinize

Minimize

Full 850-Word Dictionary

arcsfinal
statesstates

1535

2608

4453

5302

42

848

850

850

744Minimize

2609Determinize

4454Remove ε-transitions

5303Union

Algorithms

• Removing ε-transitions
• Determinization
• Minimization

Generalizations

• FS Recognizer is a function from Σ*→{0,1}
– Meaning: fsa(s) = 1 ⇔ s is in the language

• Other rational relations …
– FS Transducer: Σ*→Δ*
– Weighted FSA: Σ*→R
– Weighted FST: Σ*→Δ* × R

• WFSAs and WFSTs can be considered
probabilistic (but don’t have to be)

WFSTs

FSTs WFSAs

Mapping to {0, 1} Output = Input

FSAs

Finite-State Transducers

• Input alphabet Σ
• Output alphabet Δ
• Set of states Q
• Initial state q0

• Final states F ⊆ Q
• Arcs, Q × Σ × Q × Δ*
Sequential: arcs are functions from Q to Σ × Q × Δ*.
p-subsequential: deterministic, except each final

state has at most p output strings after each final
state.

Finite-State Transducers

• Biggest application: morphology
– Xerox tools: 20+ languages

• Example …

 v o u l o i r +pres +3p +sing

 v e u ε ε ε ε ε ε t

Input string

Output string

generationan
al

ys
is

This
represents
one path.

Ambiguity and Optionality

• leaves 
{leaf +N +pl, leave +V +pres +3p +sing}

• advice +maker 
{advisor, adviser}

• inter+ nation +al +ize +ation 
{internationalization, internationalisation}

Also, Phonology

• Mapping between pronunciation (phonemes
or phonetic symbols) and lexical entries
(morpheme sequences or orthography).

• Optionality even more necessary here!

FST Composition

f

g
{veux  vœ,
 veut  vœ,
 voulons  vulõ,
 voulez  vule,
 veulent  vœl,
 …}

{vouloir  veux,
 vouloir  veut,
 vouloir  voulons,
 vouloir  voulez,
 vouloir  veulent,
 …} f º g

{vouloir  vœ,
 vouloir  vœ,
 vouloir  vulõ,
 vouloir  vule,
 vouloir  vœl,
 …}

FST Composition
• Formally, (x, z) ∈ f ° g iff

there exists y such that (x, y) ∈ f and (y, z) ∈ g.

• Set and relation:
(x, z) ∈ f ° g iff x ∈ f and (x, z) ∈ g

• Relation and set:
(x, z) ∈ f ° g iff (x, z) ∈ f and z ∈ g

• Set and set (intersection):
x ∈ f ° g iff x ∈ f and x ∈ g

Basically, treat sets as identity relations.

Why?

• String into transducer (to compute f(s)):
string is a set of size one

• Feed set of strings to transducer in parallel!
• Filter a relation by the outputs (compose with

a filter set)
• Building a morphological lexicon: define

lexicon by a FSA (set), rules by a bunch of
transducers (relation)

FST Projection

• Can strip off input or output symbols … get a
FSA. (Might want to determinize.)

Weighted FSAs

• Instead of
Is it grammatical (possible)?

we might ask,
How grammatical (likely) is it?

• Examples:
– N-gram models
– HMMs
– Acoustic lattices
– Perfect hash

Weighted Finite-State Acceptors
• Alphabet Σ
• Set of states Q
• Initial weight function, π : Q → R
• Final weight function, ξ : Q → R
• Arcs in Q × Σ × Q × R

Unigram model as a WFSA

log p()
a/log p(a) aardvark/

log p(aardvark)

One state.
One arc for every word.

Bigram model as a WFSA

0.0

ε/log p( | aardvark)

|Σ| + 2 states.
One arc for every bigram.

a

aardvark

baboon

ε/log p( | a)

ε/log p( | baboon)
a/log p(a | )

baboon
/log p(baboon | a)

Bigram HMM as a WFSA
• Alphabet Σ (HMM’s alphabet)
• Set of states Q (HMM’s states)
• Initial weight function, π : Q → R

(0 for start state, -∞ for others)
• Final weight function, ξ : Q → R

log γ( | q)
• Arcs in Q × Σ × Q × R

log γ(q’ | q) + log η(s | q)

Can you tell how to build a WFSA from a trigram HMM?

WFSA as a Log-Linear Model

• WFSAs assign weights to paths through the
network.

• Can exponentiate, normalize, and interpret
this as a joint p(path, output) or conditional
p(path | output).

• Feature schemata:
– Initial state is q
– Stop state is q
– Number of times arc (q, q’, s) was crossed

Weighted FSTs

• Weighted relation on Σ* × Δ*
• Like FSTs, closed under composition
• Examples:

– Spelling correction
– Morphological disambiguation
– Edit distance
– Machine translation
– Speech recognition

Source (WFSA)

Channel (WFST)

Toolkits (links on course page)

• FSM libraries (AT&T)
– Free binaries
– Implements pretty much everything you need to build

weighted and unweighted FS recognizers and
transducers … except training!

• Xerox FS toolkit
– Web demo; software can be purchased
– No weights

• RWTH FSA toolkit
– Newer, open-source
– Not sure what’s implemented

Interesting analogy

• (weighted) Regexps
• Regexp compiler
• (W)FSTs
• Determinization,

minimization, …
• Composition
• Inversion

• Source code
• Compiler
• Object code
• Optimization

• Composition
• Inversion

Summary

• FSAs, FSTs, WFSAs, WFSTs as formal
systems, with reference to some key
operations, algorithms, and toolkits.

• Next time(s): examples of WFSTs, and
learning WFSTs from data
– Speech and MT
– Semirings
– Parameter estimation
– Grammatical inference

