Language and Statistics II

Lecture 6: Log-Linear Models (Practical Matters) Noah Smith

Today's Plan

- Conditional MLE
- Conditional random fields made simple
- Feature selection
- Regularization

Log-Linear Models for Prediction

So far, we've talked about p(X), a single random variable.

$$p(x) = \frac{\exp \vec{f}(x) \cdot \vec{\theta}}{\sum_{x'} \exp \vec{f}(x') \cdot \vec{\theta}}$$

Consider p(X, Y), where X is the input and Y is the output.

$$p(x,y) = \frac{\exp \vec{f}(x,y) \cdot \vec{\theta}}{\sum_{x',y'} \exp \vec{f}(x',y') \cdot \vec{\theta}}$$

Decoding

• At test time, pick the most probable value of *Y*, given the value of *X*:

 $\hat{y}(x) = \underset{y}{\operatorname{arg\,max}} p(x, y) = \underset{y}{\operatorname{arg\,max}} p(y|x)p(x) = \underset{y}{\operatorname{arg\,max}} p(y|x)$

• Do we need, then, to model X?

Related

 Recall from last week that we can use loglinear models for language modeling:

$$p(W_{i-1} = w | w_1^{i-1}) = \frac{\exp \vec{f}(w_1^{i-1}, w) \cdot \vec{\theta}}{\sum_{w' \in \Sigma} \exp \vec{f}(w_1^{i-1}, w') \cdot \vec{\theta}}$$
 Denominator
depends on
history

• I said: "It makes no sense to have features that don't look at the next word at all."

$$p(W_{i-1} = w | w_1^{i-1}) = \frac{\exp(\vec{f}(w_1^{i-1}, w) \cdot \vec{\theta}) e^{g(w_1^{i-1})\rho}}{\sum_{w' \in \Sigma} \exp(\vec{f}(w_1^{i-1}, w') \cdot \vec{\theta}) e^{g(w_1^{i-1})\rho}}$$
$$= \frac{e^{g(w_1^{i-1})\rho} \exp(\vec{f}(w_1^{i-1}, w) \cdot \vec{\theta})}{e^{g(w_1^{i-1})\rho} \sum_{w' \in \Sigma} \exp(\vec{f}(w_1^{i-1}, w') \cdot \vec{\theta})}$$
$$= \frac{\exp(\vec{f}(w_1^{i-1}, w) \cdot \vec{\theta})}{\sum_{w' \in \Sigma} \exp(\vec{f}(w_1^{i-1}, w') \cdot \vec{\theta})}$$

Motivating Conditional Estimation

• Speaking in **general** (not just about loglinear models):

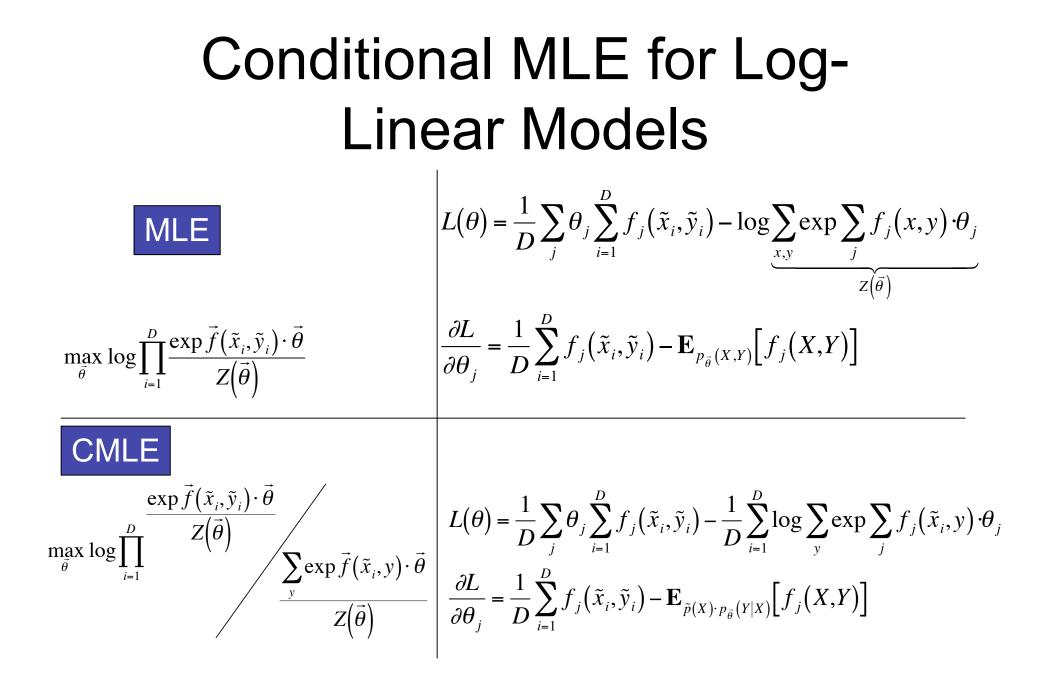
$$p(x,y) = \underbrace{p(y|x)}_{\text{a factor for "y with x"}} \cdot \underbrace{p(x)}_{\text{a factor for just "x"}} = f_c(x,y)^1 \cdot f_m(x)^1$$

$$p(y|x) = f_c(x,y)^1 \cdot f_m(x)^0$$

Conditional MLE

- Marginal p(x) doesn't affect decoding;
 why bother modeling it?
- Decoding is as before:

 $\hat{y}(x) = \underset{y}{\operatorname{arg\,max}} p(x, y) = \underset{y}{\operatorname{arg\,max}} p(y|x)p(x) = \underset{y}{\operatorname{arg\,max}} p(y|x)$ • Training (estimation) is different: $\max_{\vec{\theta}} \prod_{i=1}^{D} p_{\vec{\theta}}(\tilde{y}_i|\tilde{x}_i)$



Is it Still Maximum Entropy?

 Remember, ME(empirical constraints) = MLE(log-linear). What about CMLE?

$$\max_{p} \sum_{x} \tilde{p}(x) H(p(Y|x))$$

subject to
$$\forall j, \mathbf{E}_{\tilde{p}(X,Y)} \Big[f_{j}(X,Y) \Big] = \mathbf{E}_{\tilde{p}(X)p_{\tilde{\theta}}(Y|X)} \Big[f_{j}(X,Y) \Big]$$

Conditional Random Fields Made Simple

- Start with an HMM's features (transitions and emissions)
- All log-probabilities → arbitrary weights.
- Now we have a log-linear model giving p(tags, words)
- Train to maximize <u>p(tags | words)</u>.
 - Required quantities (for L and ∇L) will come from forward-backward algorithms!
- Add more fine-grained features if you want to.

Maximum Mutual Information Estimation

(Or, the speech people had the same idea!)

$$I(X;Y) = \mathbf{E}\left[\log\frac{p(X,Y)}{p(X)p(Y)}\right]$$
Assume empirical distribution over X, Y

$$\approx \mathbf{E}_{\tilde{p}(X,Y)}\left[\log\frac{p(X,Y)}{p(X)p(Y)}\right] = \mathbf{E}_{\tilde{p}(X,Y)}\left[\log\frac{p(Y|X)}{p(Y)}\right]$$
Assume $p(Y)$ is $\approx \mathbf{E}_{\tilde{p}(X,Y)}\left[\log p(Y|X)\right] = \frac{1}{D}\sum_{i=1}^{D}\log p(\tilde{y}_{i}|\tilde{x}_{i})$

Example

 Suppose we're building a conditional loglinear model over character *j*, given the previous character *j* - 1.

$$f_{342}(c,c') = \begin{cases} 1 & \text{if } c = q \text{ and } c' = u \\ 0 & \text{otherwise} \end{cases}$$
$$f_{343}(c,c') = \begin{cases} 1 & \text{if } c = q \text{ and } c' = v \\ 0 & \text{otherwise} \end{cases}$$

 In training, q is always followed by u. This happens 52 times.

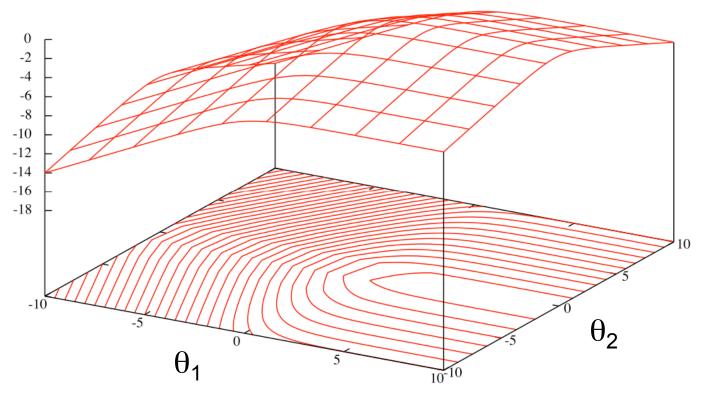
Example

- Ideal for maximizing conditional likelihood:
 p(u|q) ← 1
- To do this, drive θ_{342} to + ∞
- At the same time, drive θ_{343} to - ∞

$$L(\theta) = \frac{1}{D} \sum_{j} \theta_{j} \sum_{i=1}^{D} f_{j}(\tilde{x}_{i}, \tilde{y}_{i}) - \frac{1}{D} \sum_{i=1}^{D} \log \sum_{y} \exp \sum_{j} f_{j}(\tilde{x}_{i}, y) \cdot \theta_{j}$$
$$\frac{\partial L}{\partial \theta_{j}} = \frac{1}{D} \sum_{i=1}^{D} f_{j}(\tilde{x}_{i}, \tilde{y}_{i}) - \mathbf{E}_{\tilde{p}(X) \cdot p_{\tilde{\theta}}(Y|X)} [f_{j}(X, Y)]$$

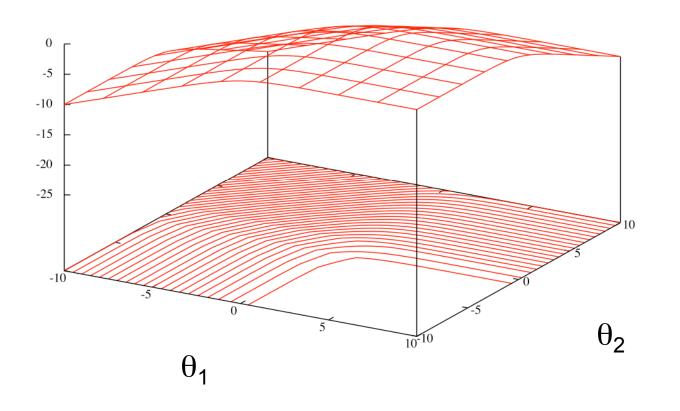
• Is this really what we want?

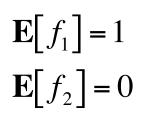
The infinity problem



 $\mathbf{E}[f_1] = 1$ $\mathbf{E}[f_2] = 0.4$

The infinity problem





Problems with "Max Ent"

- Training can be expensive
 - Iterative algorithms
 - Inference at each step, possibly involves DP
- No generalization guarantees.
- Based on empirical counts.
- More features → better fit (overfitting).
- Next up:
 - Feature selection
 - Regularization

Poor Man's Feature Induction (Ratnaparkhi, 1996)

• Include a feature if it is observed five or more times in the training data.

Feature Induction (Della Pietra et al., 1997)

- 1. Start with no active features.
- 2. Consider candidates:
 - "Atomic" features
 - Conjoined features (1 active & 1 atomic)
- 3. Pick the candidate *g* with the greatest gain.
 - Gain is the maximal improvement over values for g's weight, assuming other feature weights are fixed.
 - Closed form for binary features! (See the paper.)
- 4. Add g to the model.
- 5. Retrain the model.

Regularization

- MLE and CMLE tend to overfit, even for log-linear models.
- Idea borrowed from neural networks: regularize, or penalize models that are too "extreme."

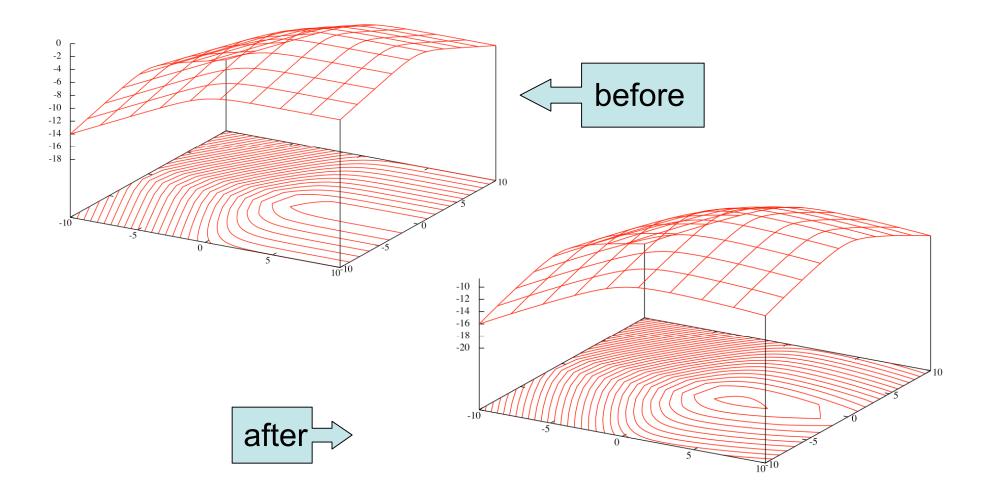
$$-L_{2}: \max_{\vec{\theta}} L(\vec{\theta}) - c \left\|\vec{\theta}\right\|_{2}^{2}$$

$$c \sum_{j} \theta_{j}^{2}$$

$$-L_{1}: \max_{\vec{\theta}} L(\vec{\theta}) - c \left\|\vec{\theta}\right\|_{1}^{1}$$

$$c \sum_{j} \left\|\theta_{j}\right\|$$

L₂ Regularization



Probabilistic Interpretation

• Maximum a posteriori (MAP) estimation:

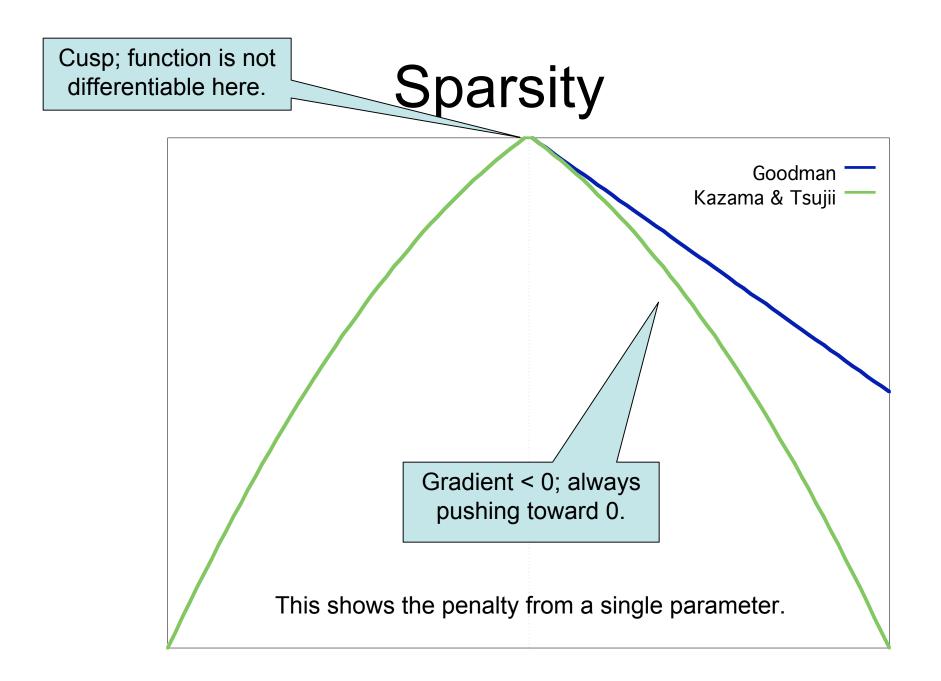
$$\max_{\vec{\theta}} p_{\vec{\theta}} \left(\tilde{\vec{x}} \right) \cdot p(\vec{\theta})$$
$$= \max_{\vec{\theta}} \log p_{\vec{\theta}} \left(\tilde{\vec{x}} \right) + \log p(\vec{\theta})$$

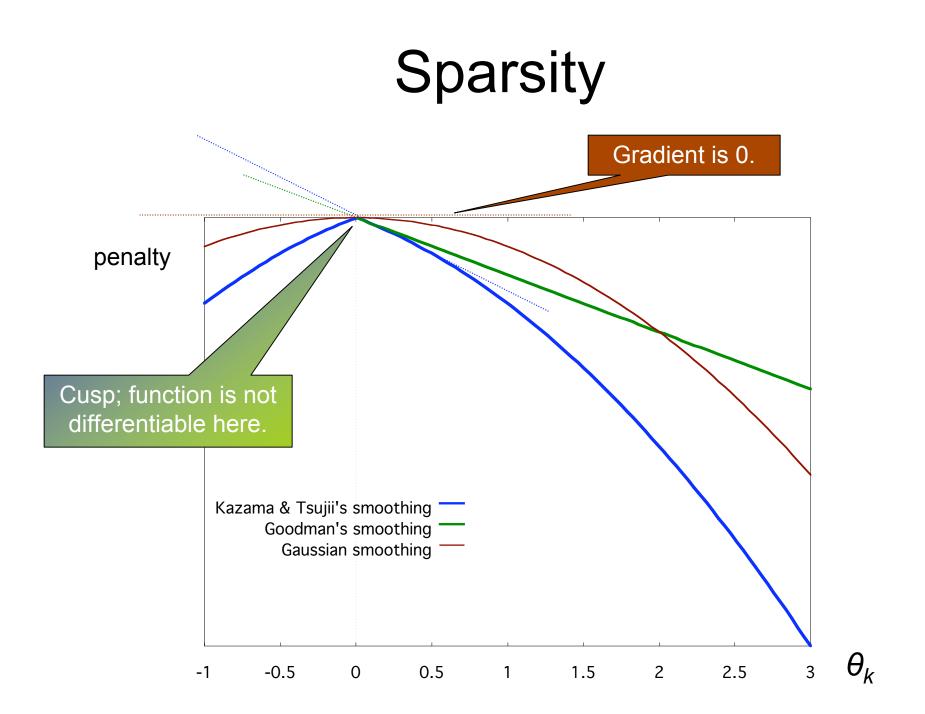
 Zero-mean diagonal Gaussian prior is equivalent to L₂ (Chen & Rosenfeld, 1999).

$$\log \mathcal{N}(\theta_j; \mu = 0, \sigma^2) = const(\theta_j) - \frac{\theta_j^2}{2\sigma^2}$$

Probabilistic Interpretation

- Goodman (2003): Laplacian prior corresponds to L₁ regularization; also presents exponential prior.
- Related:
 - Kazama & Tsuji'i (2003) and Khudanpur (1995),
 "relaxed" constraints
- Added bonus for these: sparsity
 - As the prior is strengthened (*c* is increased), more weights go to zero.





Wrapping Up Log-Linear Models

- Last Thursday: the basic idea
 - Features!
 - Informal thoughts about decoding.
- Tuesday: motivation and training (I)
 - Max Ent and MLE
 - MLE as numerical optimization.
- Today: training (II)
 - Conditional estimation
 - Feature selection
 - Regularization