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Today’s Plan

• Conditional MLE
• Conditional random fields made simple
• Feature selection
• Regularization



Log-Linear Models for Prediction
• So far, we’ve talked about p(X), a single

random variable.

• Consider p(X, Y), where X is the input and Y
is the output.
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Decoding

• At test time, pick the most probable
value of Y, given the value of X:

• Do we need, then, to model X?
! 
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Related
• Recall from last week that we can use log-

linear models for language modeling:

• I said:  “It makes no sense to have features
that don’t look at the next word at all.”
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Motivating Conditional
Estimation

• Speaking in general (not just about log-
linear models):
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Conditional MLE

• Marginal p(x) doesn’t affect decoding;
why bother modeling it?

• Decoding is as before:

• Training (estimation) is different:
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Conditional MLE for Log-
Linear Models
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Is it Still Maximum Entropy?

• Remember, ME(empirical constraints) =
MLE(log-linear).  What about CMLE?
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Conditional Random Fields
Made Simple

• Start with an HMM’s features (transitions and
emissions)

• All log-probabilities  arbitrary weights.
• Now we have a log-linear model giving p(tags,

words)
• Train to maximize p(tags | words).

– Required quantities (for L and ∇L) will come from
forward-backward algorithms!

• Add more fine-grained features if you want to.



Maximum Mutual Information
Estimation

(Or, the speech people had the same idea!)
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Example

• Suppose we’re building a conditional log-
linear model over character j, given the
previous character j - 1.

• In training, q is always followed by u.  This
happens 52 times.
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Example

• Ideal for maximizing conditional likelihood:
p(u|q)  1

• To do this, drive θ342 to +∞
• At the same time, drive θ343 to -∞

• Is this really what we want?
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The infinity problem

! 

E f
1[ ] =1

E f
2[ ] = 0.4

θ1

θ2



The infinity problem

! 

E f
1[ ] =1

E f
2[ ] = 0

θ1

θ2



Problems with “Max Ent”

• Training can be expensive
– Iterative algorithms
– Inference at each step, possibly involves DP

• No generalization guarantees.
• Based on empirical counts.
• More features  better fit (overfitting).
• Next up:

– Feature selection
– Regularization



Poor Man’s Feature Induction
(Ratnaparkhi, 1996)

• Include a feature if it is observed five or
more times in the training data.



Feature Induction
(Della Pietra et al., 1997)

1. Start with no active features.
2. Consider candidates:

• “Atomic” features
• Conjoined features (1 active & 1 atomic)

3. Pick the candidate g with the greatest gain.
• Gain is the maximal improvement over values for g’s

weight, assuming other feature weights are fixed.
• Closed form for binary features!  (See the paper.)

4. Add g to the model.
5. Retrain the model.



Regularization

• MLE and CMLE tend to overfit, even for log-linear
models.

• Idea borrowed from neural networks:  regularize,
or penalize models that are too “extreme.”
– L2:

– L1:
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L2 Regularization
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Probabilistic Interpretation

• Maximum a posteriori (MAP) estimation:

• Zero-mean diagonal Gaussian prior is
equivalent to L2 (Chen & Rosenfeld,
1999).
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Probabilistic Interpretation

• Goodman (2003):  Laplacian prior
corresponds to L1 regularization; also
presents exponential prior.

• Related:
– Kazama & Tsuji’i (2003) and Khudanpur (1995),

“relaxed” constraints
• Added bonus for these:  sparsity

– As the prior is strengthened (c is increased),
more weights go to zero.



Sparsity
Goodman

Kazama & Tsujii

Cusp; function is not
differentiable here.

Gradient < 0; always
pushing toward 0.

This shows the penalty from a single parameter.



Sparsity

-1 -0.5 0 0.5 1 1.5 2 2.5 3

Kazama & Tsujii's smoothing

Goodman's smoothing

Gaussian smoothing

θk

penalty

Cusp; function is not
differentiable here.

Gradient is 0.



Wrapping Up Log-Linear
Models

• Last Thursday:  the basic idea
– Features!
– Informal thoughts about decoding.

• Tuesday:  motivation and training (I)
– Max Ent and MLE
– MLE as numerical optimization.

• Today:  training (II)
– Conditional estimation
– Feature selection
– Regularization


