Language and Statistics II

Lecture 5: Log-Linear Models
(The Details)
Noah Smith

Today's Plan

- (Anonymous) pop quiz
- Maximum Entropy modeling
- Relationship to log-linear models
- How to do it!
- Feature selection
- Regularization
- Conditional estimation

Data

Maximum Likelihood (Multinomial)

Maximum Likelihood Estimation

- Given a model family, pick the parameters to maximize p (data | model)
- Examples:
- Gaussian: $\hat{\mu}=\bar{x}, \hat{\sigma}=\sqrt{\frac{\sum_{i}\left(x_{i}-\mu\right)}{n}}$
- Bernoulli: $\hat{p}=\frac{n_{\text {sccecess }}}{n}$
- Multinomial: ${ }^{n} \forall i, \hat{p}_{i}=\frac{n_{i}}{n}$
- n-gram model?
- HMM?

Using the Chain Rule

	\triangle	0.125
	\bigcirc	0.375
	\square	0.500
	\triangle	0.125
\bigcirc	0.375	
\square	0.500	

$\operatorname{Pr}($ Color, Shape, Size $)=\operatorname{Pr}($ Color $) \cdot \operatorname{Pr}($ Shape \mid Color $) \cdot \operatorname{Pr}($ Size \mid Color, Shape $)$

Add an Independence Assumption?

$\operatorname{Pr}($ Color, Shape, Size $)=\operatorname{Pr}($ Color $) \cdot \operatorname{Pr}($ Shape $) \cdot \operatorname{Pr}($ Size \mid Color, Shape $)$

Reverse Arrows?

Strong Independence?

\triangle	0.125
\bigcirc	0.375
\square	0.500

large	0.375
small	0.625

$\operatorname{Pr}($ Color, Shape, Size $)=\operatorname{Pr}($ Size $) \cdot \operatorname{Pr}($ Shape $) \cdot \operatorname{Pr}($ Color $)$

This Is Hard!

- Different factorizations affect
- Model size (e.g., number of parameters or df)
- Complexity of inference
- "Interpretability"
- Goodness of fit to the data
- Generalization
- Smoothing methods
- How would it change if we used log-linear models?
- Arguable: some major "innovations" in NLP involved really good choices about independence assumptions, directionality, and smoothing!

A Log-Linear Shape Model

Desideratum: after we pick features, picking the weights should be the computer's job!

Some Intuitions

- Simpler models are better
- (E.g., fewer degrees of freedom)
- Why?
- Want to fit the data
- Don't want to assume that an unobserved event has probability 0

Occam's Razor

One shaulid not imerease, fiegund what is necessary.
 the numfier of entities required to explain angthing.

Uniform model

	Λ	\bigcirc	\square
small	0.083	0.083	0.083
small	0.083	0.083	0.083
large	0.083	0.083	0.083
large	0.083	0.083	0.083

Constraint: $\operatorname{Pr}($ small $)=0.625$

Where did the constraint come from?

$\operatorname{Pr}(\triangle$, small $)=0.048$

0.048

$\operatorname{Pr}($ large, $\quad)=0.125$

Maximum Entropy

$$
\max _{p} H(p) \equiv \max _{p} \sum_{x}-p(x) \log p(x)
$$

subject to

$$
\sum_{x} p(x)=1, \quad \forall x, p(x) \geq 0
$$

$$
\begin{aligned}
\forall j \in\{1,2, \ldots, m\}, \quad \mathbf{E}_{p}\left[f_{j}(X)\right] & =\alpha_{j} \\
\sum_{x} p(x) f_{j}(x) & =\alpha_{j}
\end{aligned}
$$

Questions Worth Asking

- Does a solution always exist?
- What to do if it doesn't?
- How to find the solution?

Max Ent

Maximum Entropy

$$
\max _{p} H(p) \equiv \max _{p} \sum_{x}-p(x) \log p(x)
$$

subject to

$$
\sum_{x} p(x)=1, \quad \forall x, p(x) \geq 0
$$

$$
\begin{aligned}
\forall j \in\{1,2, \ldots, m\}, \quad \mathbf{E}_{p}\left[f_{j}(X)\right] & =\alpha_{j} \\
\sum_{x} p(x) f_{j}(x) & =\alpha_{j}
\end{aligned}
$$

Marginal Constraints

$$
\begin{aligned}
& \sum_{x} p(x) f_{j}(x)=\alpha_{j} \\
& \sum_{x} p(x) f_{j}(x)=\frac{1}{D} \sum_{i=1}^{D} f_{j}\left(\tilde{x}_{i}\right)
\end{aligned}
$$

Example:

$$
\sum_{x} p(x)\left\{\begin{array}{c}
1 \text { if } x \text { is square } \\
0 \text { otherwise }
\end{array}=\frac{1}{D} \sum_{i=1}^{D}\left\{\begin{array}{c}
1 \text { if } \tilde{x}_{i} \text { is square } \\
0 \text { otherwise }
\end{array}=\frac{\text { count(square })}{D}\right.\right.
$$

Let \mathcal{P} represent the set of distributions p that meet the constraints.

Claim 1

The unique solution to the maximum entropy problem

$$
\underset{p \in \mathcal{P}}{\arg \max } H(p)
$$

is a log-linear model on the same features as \mathcal{P}.

Claim 2

The unique solution to the maximum entropy problem

$$
\underset{p \in \mathcal{P}}{\arg \max } H(p)
$$

is the log-linear model on the same features as \mathcal{P} that also solves
$\underset{p \in \text { Loglinear }}{\operatorname{argmax}} p(\overrightarrow{\tilde{x}})$

Mathematical Magic

Mathematical Magic

For details: see handout on course page.

1. Use Lagrangean multipliers (one per constraint).
2. Take the gradient, set equal to zero.
3. Algebra ...
4. Voilà! Maximum likelihood problem!

Additional Point

- If the constraints are empirical, then they are satisfiable (solution exists).
- So there is a unique solution to:

Max Ent = Log-linear MLE

Slightly More General View

- Instead of "maximize entropy," can describe this as "minimize divergence" to a base distribution q (which happens so far to be uniform, but needn't have been).

$$
D(p \| q)=\sum_{x} p(x) \log \frac{p(x)}{q(x)}
$$

- Everything goes through pretty much the same.

Training the Weights

- Old answer:"iterative scaling"
- Specialized method for this problem
- Later versions: Generalized IS (Darroch and Ratliff, 1972) and Improved IS (Della Pietra, Della Pietra, and Lafferty, 1995)
- More recent answer:
- It's unconstrained, convex optimization!
- See Malouf (2002) for comparison.

Improved Iterative Scaling (Della Pietra et al., 1997)

- Initialize each θ_{j} arbitrarily.
- Let: $f_{f}(x)=\sum f_{j}(x)$
- Repeat until convergence:
- Solve for each $\delta_{j}: \quad \sum_{x} \tilde{p}(x) f_{j}(x)=\sum_{x} \frac{\exp f(x) \cdot \vec{\theta}}{Z(\vec{\theta})} f_{j}(x) e^{\delta_{j} f_{t}(x)}$
- Update:

$$
\theta_{j} \leftarrow \theta_{j}+\delta_{j}
$$

Berger's IIS tutorial gives a derivation.

Gradient Ascent

- Initialize each θ_{j} arbitrarily.
- Repeat until convergence:
- Line search for step size:

$$
\hat{\alpha} \leftarrow \underset{\alpha}{\arg \max } f(\vec{\theta}+\alpha \nabla f(\vec{\theta}))
$$

- Gradient step:

$$
\vec{\theta} \leftarrow \vec{\theta}+\hat{\alpha} \nabla f(\vec{\theta})
$$

Quasi-Newton Methods

- Use the same information as gradient ascent: function value and gradient.
- Build up an approximate Hessian matrix (second derivatives) over time.
- Converge much faster.
- There are existing implentations: you provide a function that computes f and ∇f.
- (Could use true Hessian, but $n \times n$ second derivatives to compute!)
- Common examples: conjugate gradient, L-BFGS.

What are the Function and Gradient?

$$
\begin{aligned}
& L(\theta)=\frac{1}{D} \sum_{j} \theta_{j} \sum_{i=1}^{D} f_{j}\left(\tilde{x}_{i}\right)-\log \underbrace{\sum_{x} \exp \sum_{j} f_{j}(x) \cdot \theta_{j}}_{z(\bar{\theta})} \\
& \frac{\partial L}{\partial \theta_{j}}=\frac{1}{D} \sum_{i=1}^{D} f_{j}\left(\tilde{x}_{i}\right)-\mathbf{E}_{p_{\bar{\theta}}(X)}\left[f_{j}(X)\right] \quad \begin{array}{c}
\text { Should } \\
\text { remind you of } \\
\text { Max Ent } \\
\text { constraints! }
\end{array}
\end{aligned}
$$

