Language and Statistics II

Lecture 5: Log-Linear Models (The Details) Noah Smith

Today's Plan

- (Anonymous) pop quiz
- Maximum Entropy modeling
- Relationship to log-linear models
- How to do it!
- Feature selection
- Regularization
- Conditional estimation

Maximum Likelihood (Multinomial)

Maximum Likelihood Estimation

 Given a model family, pick the parameters to maximize

p(data | model)

- Examples:
 - $\left|\sum \left(x_i \hat{\mu}\right)^2\right|$ - Gaussian: $\hat{\mu} = \bar{x}, \hat{\sigma} = \sqrt{\frac{\bar{i}}{n}}$
 - Bernoulli: $\hat{p} = \frac{n_{\text{success}}}{p}$
 - ^{*n*} $\forall i, \hat{p}_i = \frac{n_i}{n_i}$ – Multinomial:
 - *n*-gram model?

-HMM?

Using the Chain Rule

Pr(Color, Shape, Size) = Pr(Color) • Pr(Shape | Color) • Pr(Size | Color, Shape)

Add an Independence Assumption?

Pr(Color, Shape, Size) = Pr(Color) • Pr(Shape) • Pr(Size | Color, Shape)

Reverse Arrows?

Pr(Color, Shape, Size) = Pr(Size) • Pr(Shape | Size) • Pr(Color | Size)

Strong Independence?

Pr(Color, Shape, Size) = Pr(Size) • Pr(Shape) • Pr(Color)

This Is Hard!

- Different factorizations affect
 - Model size (e.g., number of parameters or df)
 - Complexity of inference
 - "Interpretability"
 - Goodness of fit to the data
 - Generalization
 - Smoothing methods
- How would it change if we used log-linear models?
- Arguable: some major "innovations" in NLP involved really good choices about independence assumptions, directionality, and smoothing!

Desideratum: after we pick features, picking the weights should be the computer's job!

Some Intuitions

- Simpler models are better
 - (E.g., fewer degrees of freedom)– Why?
- Want to fit the data
- Don't want to assume that an unobserved event has probability 0

Occam's Razor

One should not increase, beyond what is necessary, the number of entities required to explain anything.

Uniform model

small	0.083	0.083	0.083
small	0.083	0.083	0.083
large	0.083	0.083	0.083
large	0.083	0.083	0.083

Constraint: Pr(small) = 0.625

small	0.104	0.104	0.104	
small	0.104	0.104	0.104	
large	0.063	0.063	0.063	
large	0.063	0.063	0.063	

Where did the constraint come from?

0.625

Pr(/\, small) = 0.048

0.048

0.625

Pr(large,) = 0.125

0.048

0.625

Maximum Entropy
$$\max_{p} H(p) = \max_{p} \sum_{x} -p(x)\log p(x)$$

subject to

$$\sum_{x} p(x) = 1, \quad \forall x, p(x) \ge 0$$

$$\forall j \in \{1, 2, \dots, m\}, \quad \mathbf{E}_{p} \begin{bmatrix} f_{j}(X) \end{bmatrix} = \alpha_{j}$$

$$\sum_{x} p(x) f_{j}(x) = \alpha_{j}$$

Questions Worth Asking

- Does a solution always exist?
 What to do if it doesn't?
- How to find the solution?

Max Ent

Maximum Entropy
$$\max_{p} H(p) = \max_{p} \sum_{x} -p(x)\log p(x)$$

subject to

$$\sum_{x} p(x) = 1, \quad \forall x, p(x) \ge 0$$

$$\forall j \in \{1, 2, \dots, m\}, \quad \mathbf{E}_{p} \begin{bmatrix} f_{j}(X) \end{bmatrix} = \alpha_{j}$$

$$\sum_{x} p(x) f_{j}(x) = \alpha_{j}$$

Marginal Constraints

$$\sum_{x} p(x) f_{j}(x) = \alpha_{j}$$

$$\sum_{x} p(x) f_{j}(x) = \frac{1}{D} \sum_{i=1}^{D} f_{j}(\tilde{x}_{i})$$
Example:
$$\sum_{x} p(x) \begin{cases} 1 \text{ if } x \text{ is square} \\ 0 \text{ otherwise} \end{cases} = \frac{1}{D} \sum_{i=1}^{D} \begin{cases} 1 \text{ if } \tilde{x}_{i} \text{ is square} \\ 0 \text{ otherwise} \end{cases} = \frac{\text{count(square)}}{D}$$

Let \mathcal{P} represent the set of distributions p that meet the constraints.

Claim 1

The unique solution to the maximum entropy problem

$$\underset{p \in \mathcal{P}}{\operatorname{arg\,max}} H(p)$$

is a **log-linear** model on the **same** features as \mathcal{P} .

Claim 2

The unique solution to the maximum entropy problem

 $\underset{p \in \mathcal{P}}{\operatorname{argmax}} H(p)$

is the log-linear model on the same features as $\ensuremath{\mathcal{P}}$ that also solves

$$\underset{p \in \text{Loglinear}}{\operatorname{arg\,max}} p(\vec{\tilde{x}})$$

Mathematical Magic

Mathematical Magic

For details: see handout on course page.

- 1. Use Lagrangean multipliers (one per constraint).
- 2. Take the gradient, set equal to zero.
- 3. Algebra ...
- 4. Voilà! Maximum likelihood problem!

Additional Point

- If the constraints are empirical, then they are satisfiable (solution exists).
- So there is a **unique** solution to: Max Ent = Log-linear MLE

Slightly More General View

 Instead of "maximize entropy," can describe this as "minimize divergence" to a **base** distribution *q* (which happens so far to be uniform, but needn't have been).

$$D(p||q) = \sum_{x} p(x) \log \frac{p(x)}{q(x)}$$

• Everything goes through pretty much the same.

Training the Weights

- Old answer: "iterative scaling"
 - Specialized method for this problem
 - Later versions: Generalized IS (Darroch and Ratliff, 1972) and Improved IS (Della Pietra, Della Pietra, and Lafferty, 1995)
- More recent answer:
 - It's unconstrained, convex optimization!
 - See Malouf (2002) for comparison.

Improved Iterative Scaling (Della Pietra et al., 1997)

- Initialize each θ_i arbitrarily.
- **Let:** $f_{\#}(x) = \sum_{i} f_{j}(x)$
- Repeat until convergence:

- Solve for each
$$\delta_j$$
: $\sum_{x} \tilde{p}(x) f_j(x) = \sum_{x} \frac{\exp f(x) \cdot \theta}{Z(\theta)} f_j(x) e^{\delta_j f_{\#}(x)}$

- Update:
$$\theta_j \leftarrow \theta_j + \delta_j$$

Berger's IIS tutorial gives a derivation.

Gradient Ascent

- Initialize each θ_i arbitrarily.
- Repeat until convergence:
 - Line search for step size:

$$\hat{\alpha} \leftarrow \operatorname*{arg\,max}_{\alpha} f\Big(\vec{\theta} + \alpha \nabla f\Big(\vec{\theta}\Big)\Big)$$

- Gradient step:

$$\vec{\theta} \leftarrow \vec{\theta} + \hat{\alpha} \nabla f\left(\vec{\theta}\right)$$

Quasi-Newton Methods

- Use the same information as gradient ascent: function value and gradient.
- Build up an approximate Hessian matrix (second derivatives) over time.
- Converge **much** faster.
- There are existing implentations: you provide a function that computes f and ∇f .
- (Could use true Hessian, but n×n second derivatives to compute!)
- Common examples: conjugate gradient, L-BFGS.

What are the Function and Gradient?

