Language and Statistics II

Lecture 20: Contrastive estimation

Noah Smith

Administrivia

- Your drafts: hopefully by Thursday
- Email me a 3-best list for presentation times:
 - o 11/28 3:00pm
 - o 11/28 3:30pm
 - o 11/30 3:00pm
 - o 11/30 3:30pm
 - o 12/5 3:00pm
 - o 12/5 3:30pm
 - o 12/7 3:00pm
 - o 12/7 3:30pm

Today's Lecture is a Bit Different

- Adapted from some talks in 2005
- Apologies for the heavy styling

"Red leaves don't hide blue jays."

What's a sequence model?

Let X be a random variable over Σ^* (\mathbf{x} represents a value of X):

HMMs

Markov (*n*-gram) models

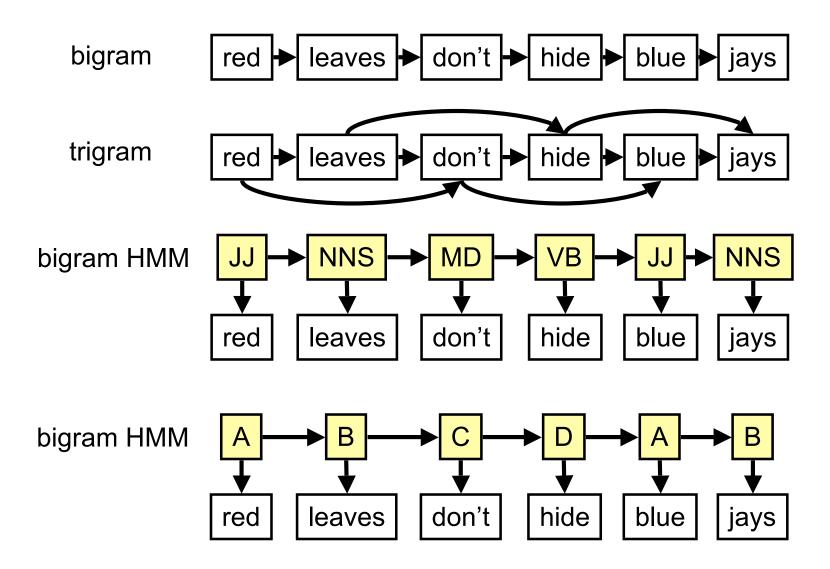
Can add *hidden* variables to the model, like labels, parse trees, etc.

Call the hidden part **Y**.

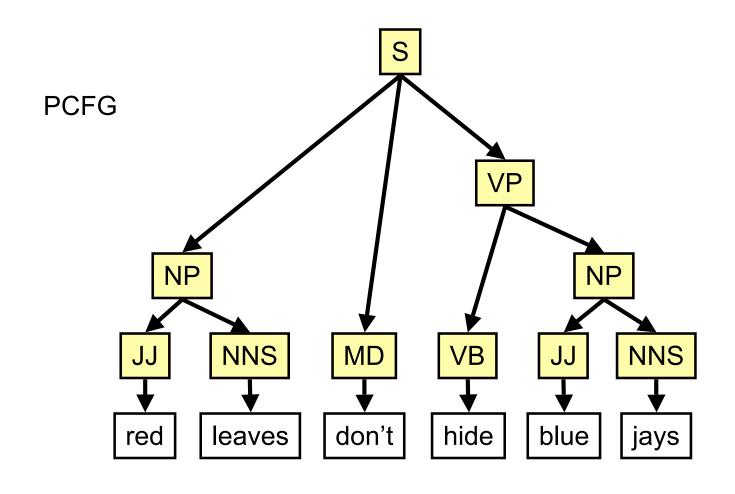
These are all log-linear models.

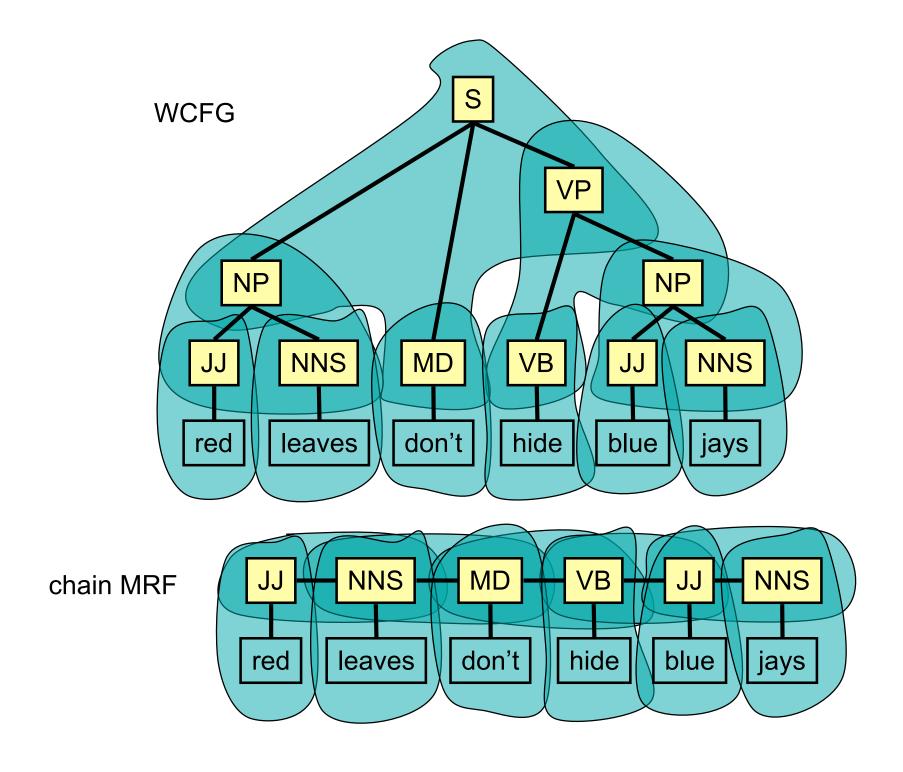
PCFGs

Sequence Models (Finite-State)



Sequence Models (Context-Free)





model class ≠ estimation method

•*n*-gram models

•HMMs

•"chain" MRFs

•WFSAs

•PCFGs

•WCFGs

•MLE

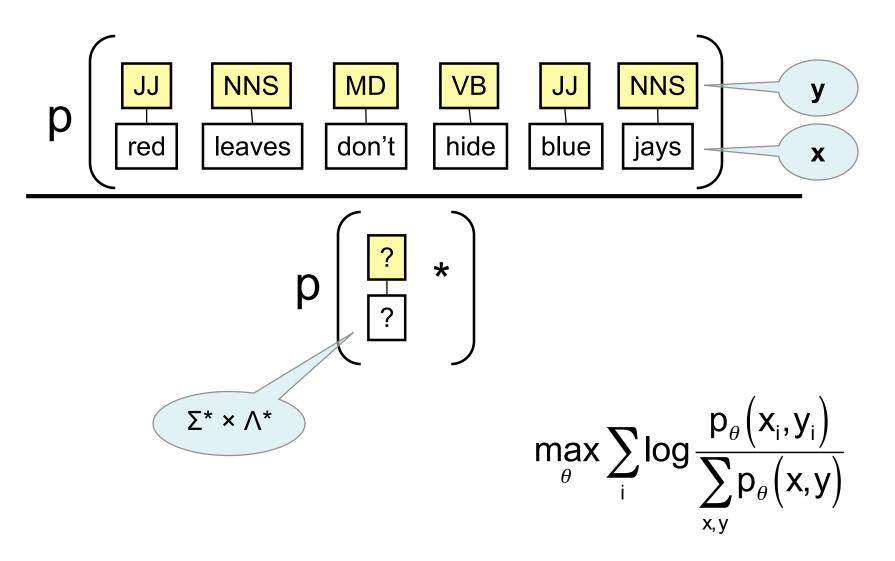
conditional likelihood

boosting

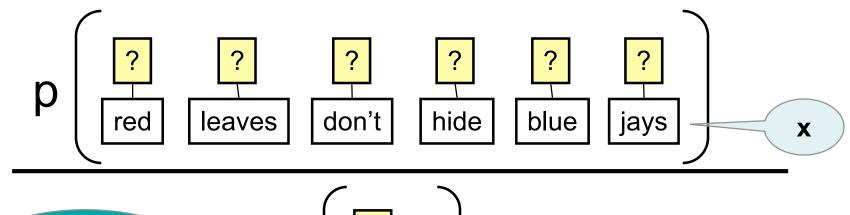
perceptron

maximum margin

Maximum Likelihood Estimation (Supervised)



Maximum Likelihood Estimation (Unsupervised)

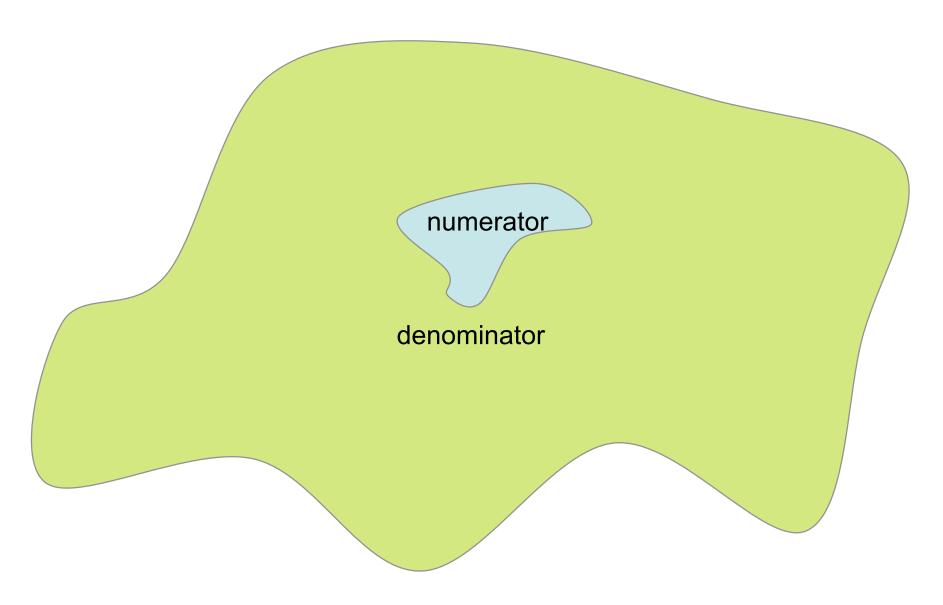


This is what p ? *
EM does.

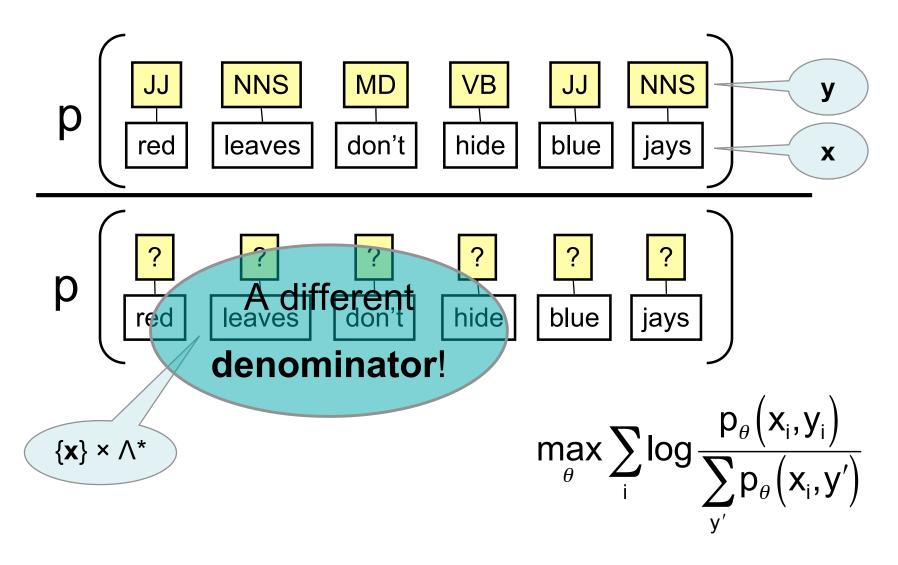
$$\Sigma^* \times \Lambda^*$$

$$\max_{\theta} \sum_{i} log \frac{\sum_{y} p_{\theta} \left(x_{i}, y \right)}{\sum_{x', y'} p_{\theta} \left(x', y' \right)}$$

Focusing Probability Mass



Conditional Estimation (Supervised)



Objective Functions

Objective	Numerator	Denominator
MLE	tags & words	Σ* × Λ*
MLE with hidden variables	words	Σ* × Λ*
Conditional Likelihood	tags & words	(words) × Λ*
Maximum Margin	≈ tags & words	≈ hypothesized tags & words

Objective Functions

Objective	Optimization Algorithm	Numerator	Denominator
MLE	Count & Normalize*	tags & words	∑* × \ *
MLE with hidden variables	EM*	words	Σ* × Λ*
Conditional Likelihood	Iterative Scaling	tags & words	(words) × ∧*
Maximum Margin	Perceptron	≈ tags & words	≈ hypothesized tags & words

Objective Functions

Objective	Optimization Algorithm	Numerator	Denominator
Contrastive Estimation	generic numerical solvers (in this talk, LMVM L-BFGS)	observed data (in this talk, raw word sequence, sum over all possible values of Y)	?

This talk is about **denominators** ... in the **unsupervised case**.

A good denominator can improve

accuracy

and

tractability.

MLE/EM as a Teacher

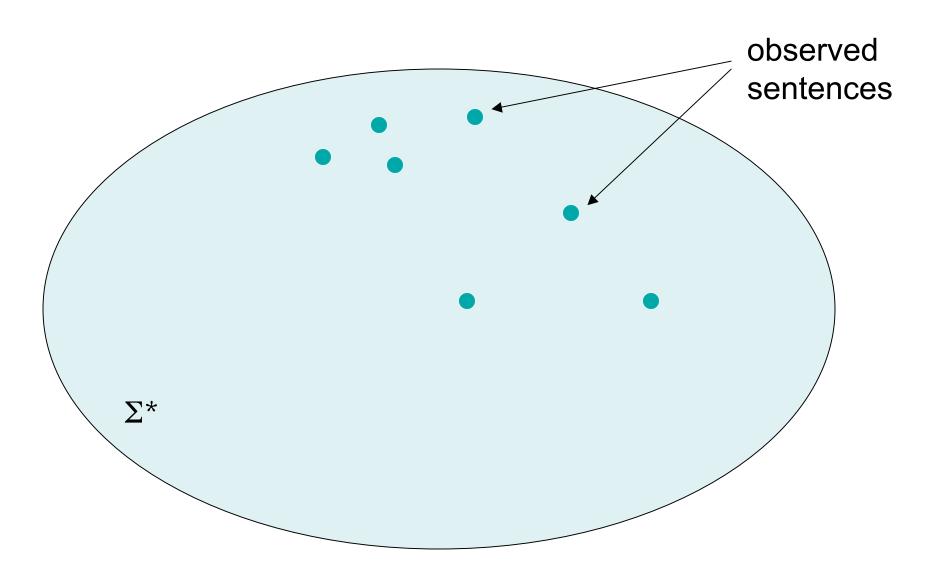
Red leaves don't hide blue jays.

Mommy doesn't love you.

Dishwashers are a dime a dozen.

Dancing granola doesn't hide blue jays.

Probability Allocation



What We'd Like

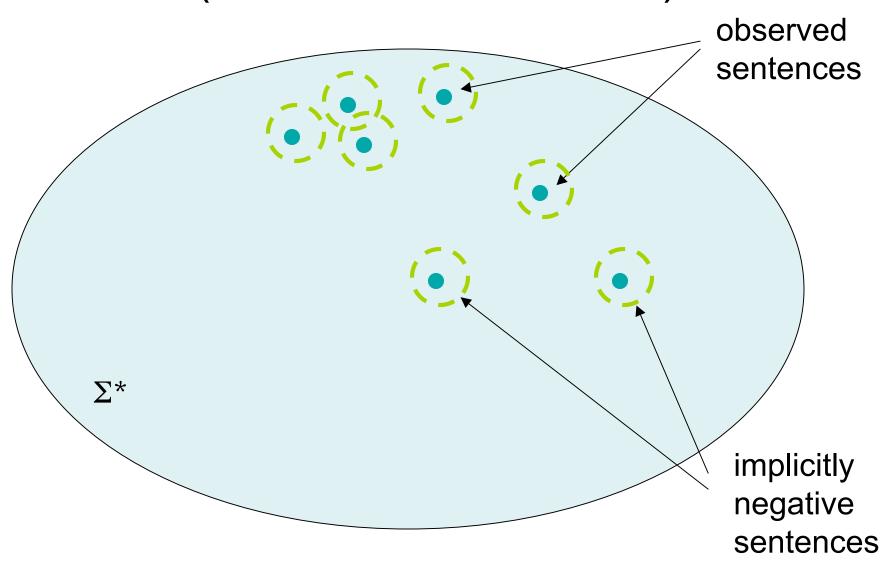
 Focus on the model on the properties of the data that will lead to an explanation of syntax.

Red leaves don't hide blue jays.

- *Jays blue hide don't leaves red.
- *Blue don't hide jays leaves red.
- *Hide don't blue jays red leaves.

 Idea: train model to explain order but not content.

Contrastive Estimation (Smith & Eisner, 2005)



Maximum Likelihood Estimation vs. Contrastive Estimation

MLE/MAP:
observed data are
Sentences,
neighborhood is S*

$$\underset{\vec{\theta}}{\text{max}} \left[\prod_{i=1}^{n} \sum_{\mathbf{y}} p_{\vec{\theta}} \left(\mathbf{x}_{i}, \mathbf{y} \right) \right]$$

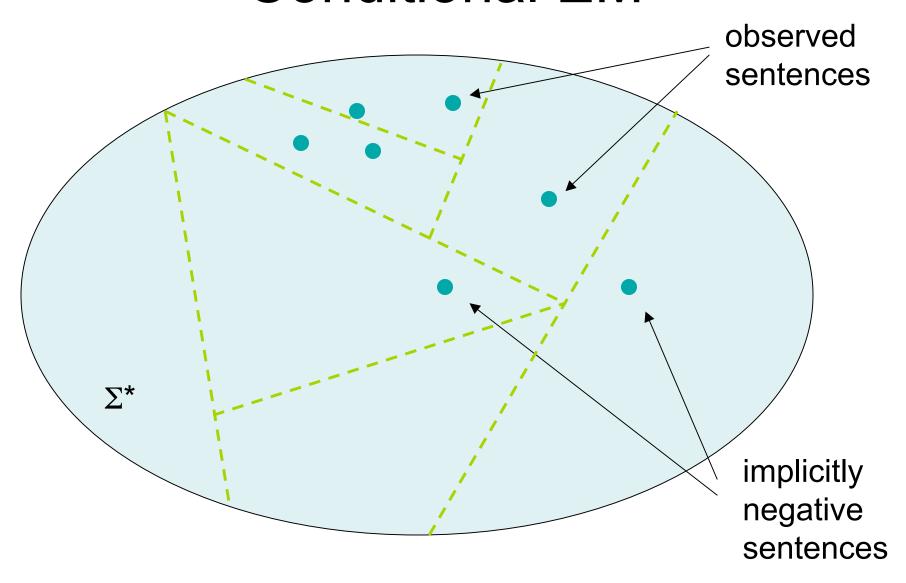
Require numerical optimization

CE:
observed data are
sentences,
neighborhood is ...?

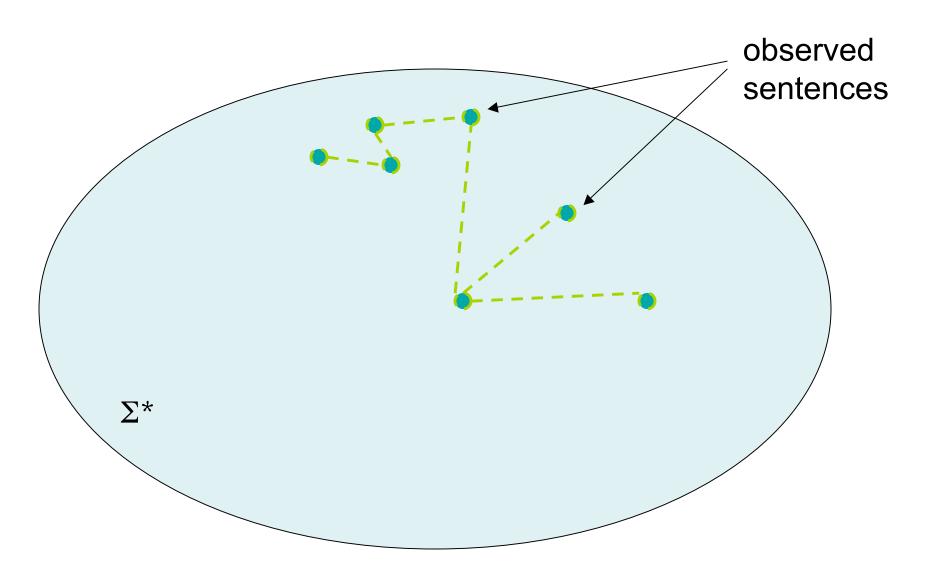
$$\max_{\bar{\theta}} \left[\frac{\sum_{\mathbf{y}} p_{\bar{\theta}} (\mathbf{x}_{i}, \mathbf{y})}{\sum_{\mathbf{x} \in \mathcal{N}(\mathbf{x}_{i})} \sum_{\mathbf{y}} p_{\bar{\theta}} (\mathbf{x}, \mathbf{y})} \right]$$

$$= \max_{\bar{\theta}} \left[\prod_{i=1}^{n} p_{\bar{\theta}} \left(\mathbf{X} = \mathbf{x}_{i} \mid \mathbf{X} \in \mathcal{N}(\mathbf{x}_{i}) \right) \right]$$

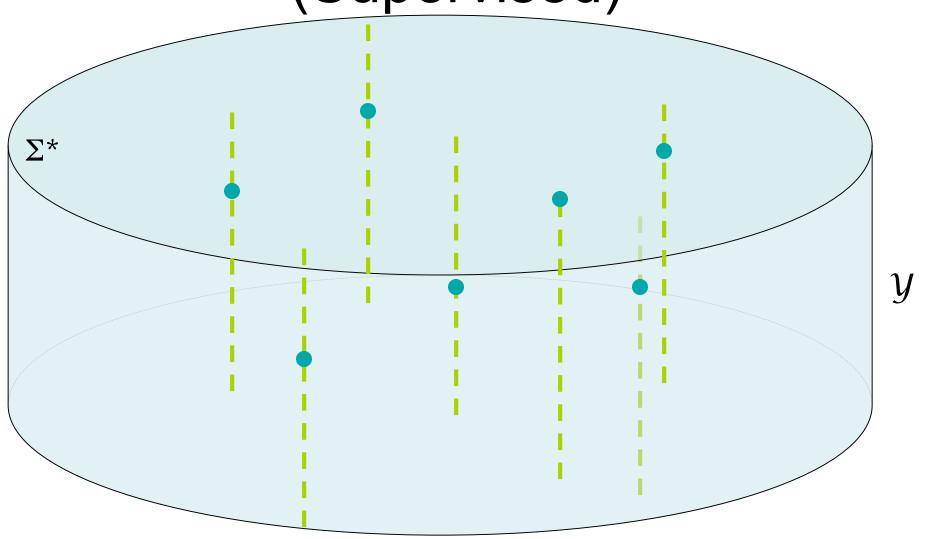
Partition Neighborhood = Conditional EM



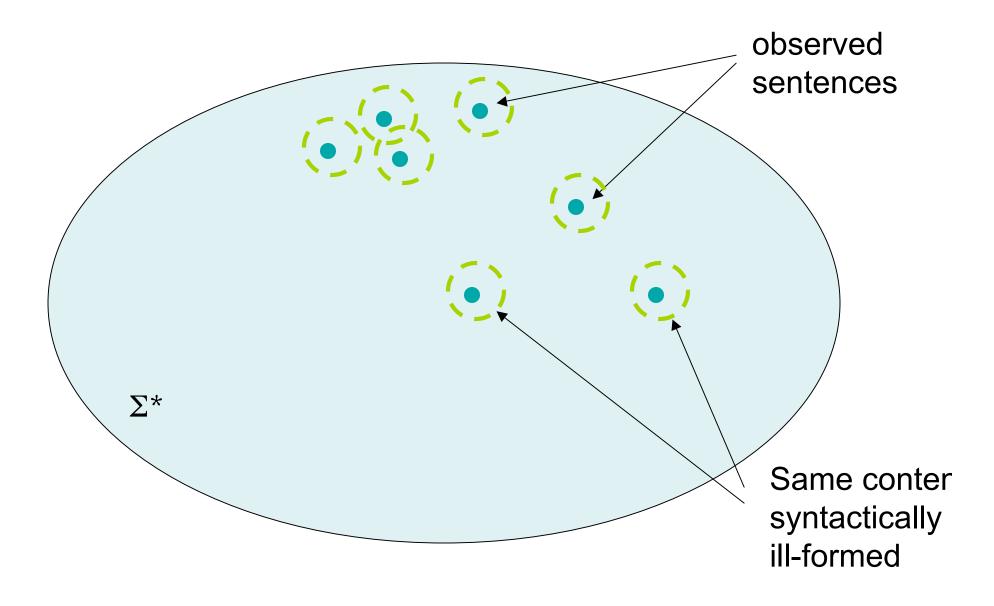
Riezler's (1999) Approximation



Analogy to Conditional Estimation (Supervised)



CE for Syntax



CE as Teacher

Red leaves don't hide blue jays.

Leaves red don't hide blue jays.

Red don't leaves hide blue jays.

Red leaves hide don't blue jays.

What is a syntax model supposed to explain?

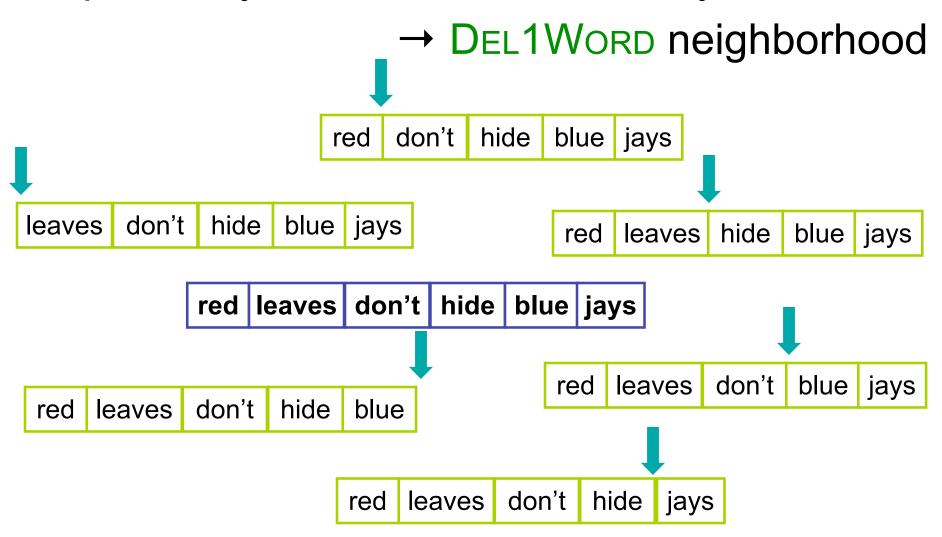
Each learning hypothesis

corresponds to

a denominator / neighborhood.

The Job of Syntax

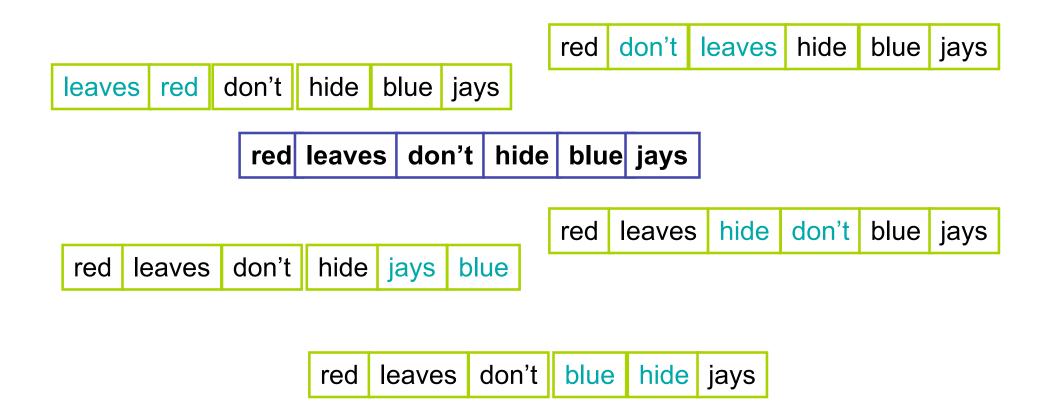
"Explain why each word is necessary."

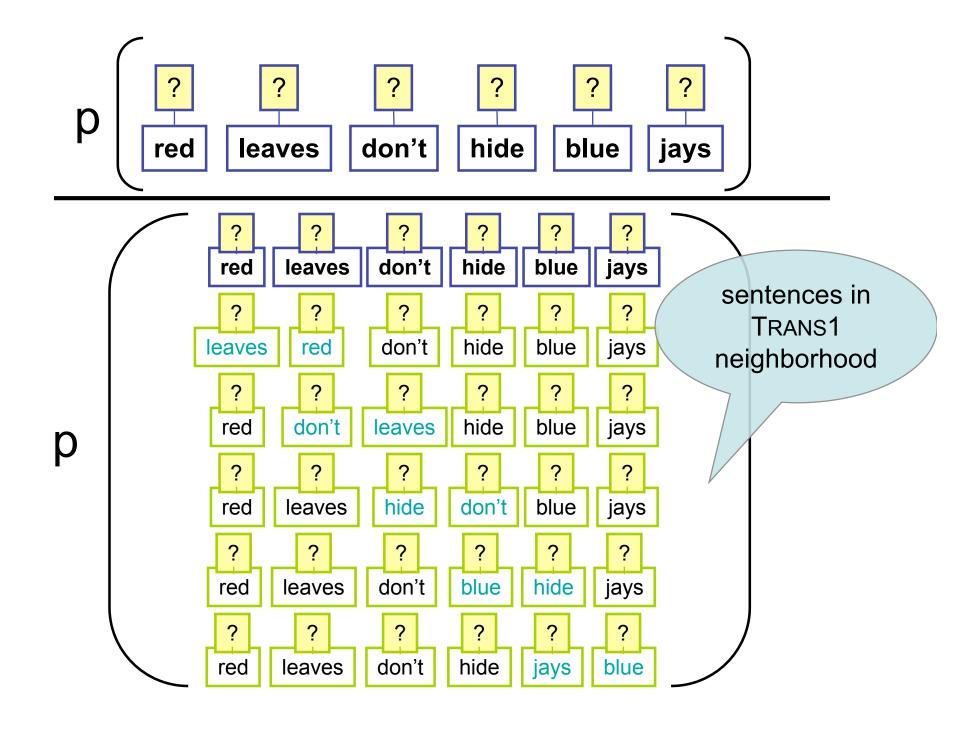


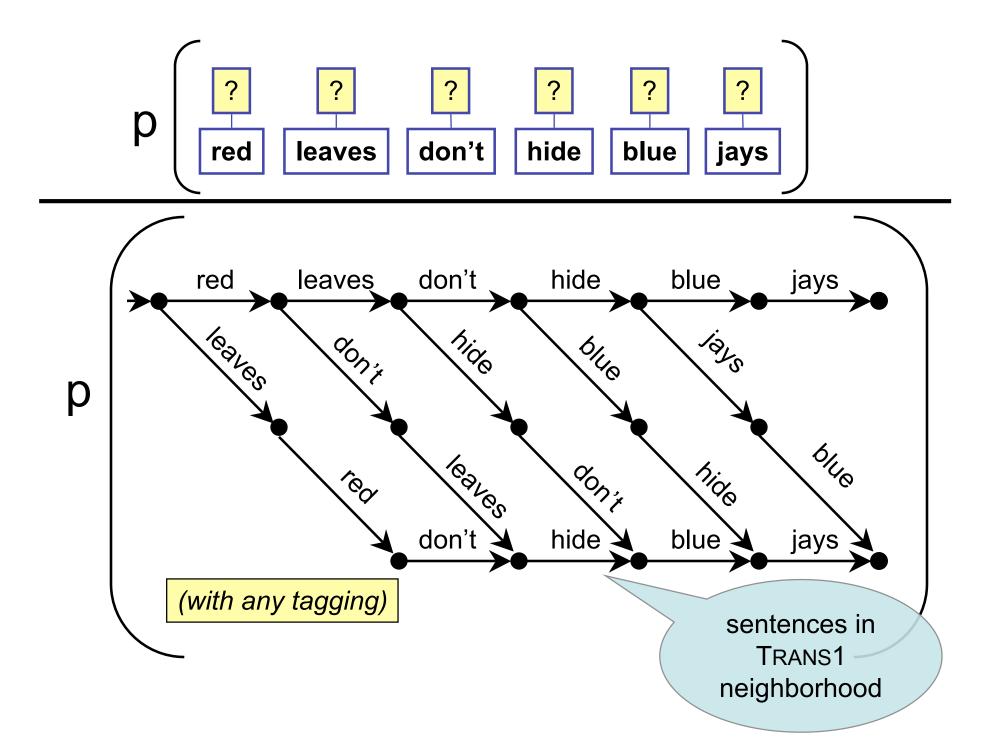
The Job of Syntax

"Explain the (local) order of the words."

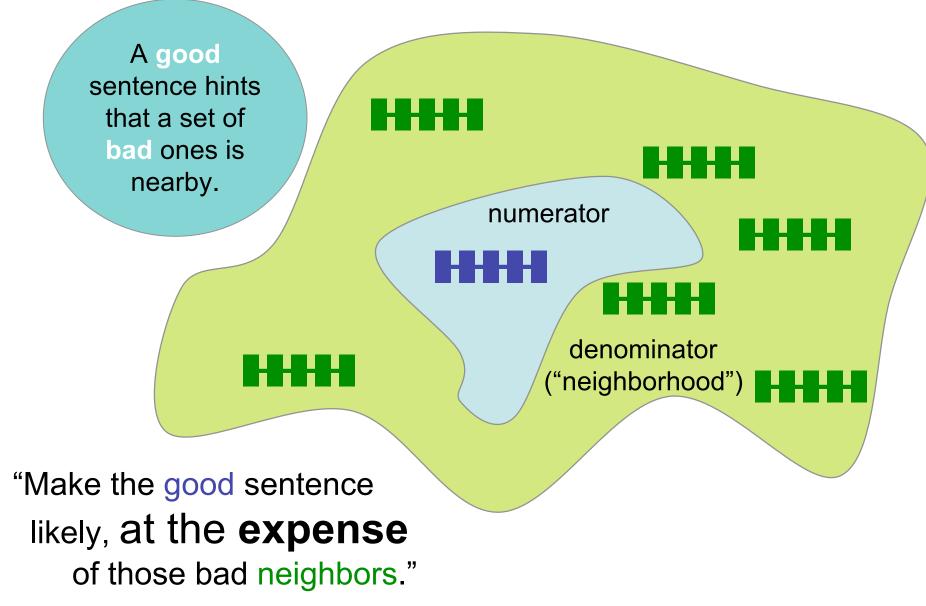
→ Trans1 neighborhood







The New Modeling Imperative



This talk is about **denominators** ... in the **unsupervised case**.

A good denominator can improve accuracy

and

tractability.

Log-Linear Models

score of x, y

$$p(x,y) = \frac{exp(f(x,y) \cdot \theta)}{Z(\theta)}$$

Z may be infinite for some θ; computing it (if it is finite) may require solving a non-linear system.

partition function

$$Z(\theta) = \sum_{x} \sum_{y} exp(f(x,y) \cdot \theta)$$

Sums over all possible taggings of all possible sentences!

Log-Linear Models

score of x, y

$$p(x,y) = \frac{exp(f(x,y) \cdot \theta)}{Z(\theta)}$$

partition function

$$Z(\theta) = \sum_{x} \sum_{y} \exp(f(x,y) \cdot \theta)$$

Computing Z is undesirable!

Conditional Estimation (Supervised)

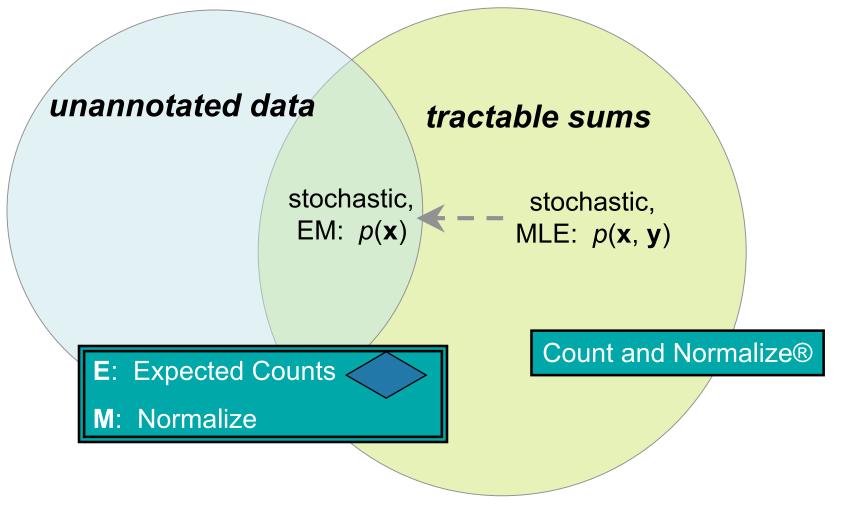
1 sentence: $Z(\mathbf{x})$

Contrastive
Estimation
(Unsupervised)

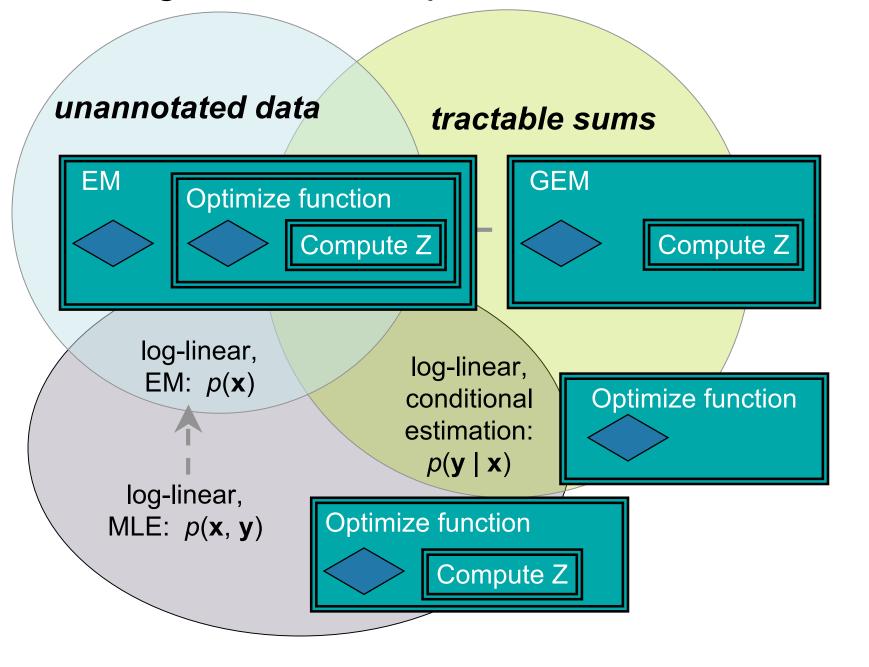
a few sentences: Z(N(x))

Sums over all possible taggings of all possible sentences!

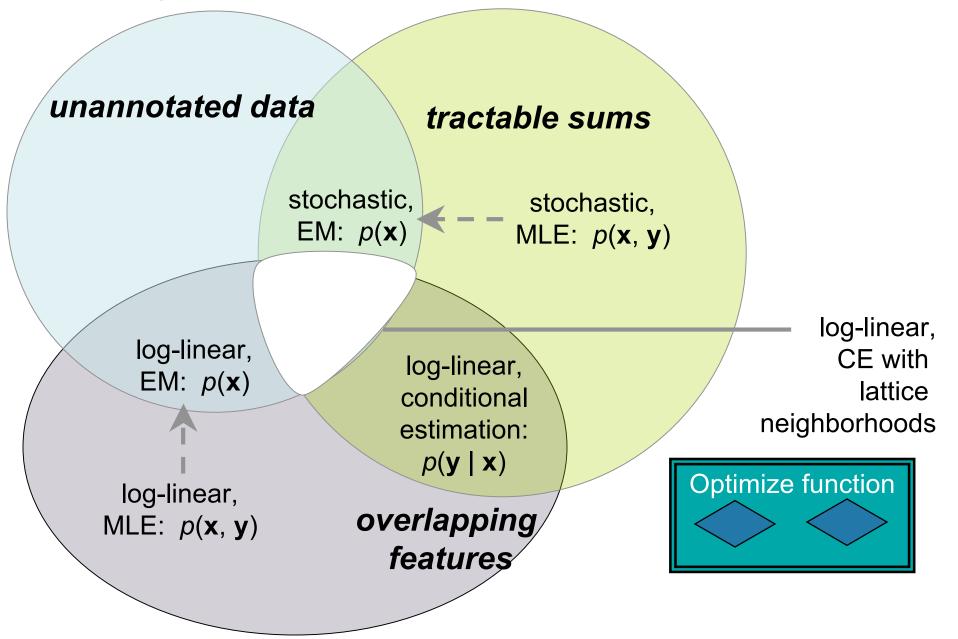
A Big Picture: Sequence Model Estimation



A Big Picture: Sequence Model Estimation



A Big Picture: Sequence Model Estimation



Contrastive Neighborhoods

 Guide the learner toward models that do what syntax is supposed to do.

Lattice representation → efficient algorithms.

There is an **art** to choosing neighborhood functions.

Neighborhoods

neighborhood	size	lattice arcs	perturbations
Del1Word	n+1	O(n)	delete up to 1 word
Trans1	n	<i>O</i> (<i>n</i>)	transpose any bigram
DELORTRANS1	O(n)	O(n)	DEL1WORD U TRANS1
DEL1SUBSEQUENCE	$O(n^2)$	O(n ²)	delete any contiguous subsequence
Σ* (MLE)	8	1	replace each word with anything

Optimizing Contrastive Likelihood

$$F(\vec{\theta}) = \left[\sum_{i=1}^{n} log p_{\vec{\theta}} (\mathbf{X} = \mathbf{x}_{i}) - log p_{\vec{\theta}} (\mathbf{X} \in \mathcal{N}(\mathbf{x}_{i})) \right]$$

$$\frac{\partial F}{\partial \theta_{r}} = \left[\sum_{i=1}^{n} \mathbf{E}_{p_{\vec{\theta}}} \left[f_{r} \left(\mathbf{x}_{i}, \mathbf{Y} \right) \right] - \mathbf{E}_{p_{\vec{\theta}}} \left[f_{r} \left(\mathbf{X}, \mathbf{Y} \right) \mid \mathbf{X} \in \mathcal{N} \left(\mathbf{x}_{i} \right) \right] \right]$$

Expected count
Of rule **r** in sentence *i*

Expected count
Of rule **r** in neighborhood *i*

The Merialdo (1994) Task

Given unlabeled text

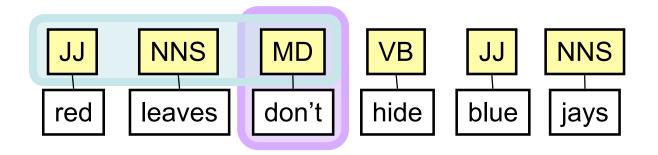
and a POS dictionary

(that tells all possible tags for each word type),

A form of supervision / domain knowledge.

learn to tag.

Trigram Tagging Model



feature set:

tag trigrams

tag/word pairs from a POS dictionary

Tagging Experiment

	12	2K	2 4	ŀΚ	48	3K	96	δK
	u-sel.	oracle	u-sel.	oracle	u-sel.	oracle	u-sel.	oracle
+ CRF (supervised)		100.0		99.8		99.8		99.5
× HMM (supervised)		99.3		98.5		97.9		97.2
△ LENGTH	74.9	77.4	78.7	81.5	78.3	81.3	78.9	79.3
■ Del1OrTrans1	70.8	70.8	78.6	78.6	78.3	79.1	75.2	78.8
☐ Trans1	72.7	72.7	77.2	77.2	78.1	79.4	74.7	79.0
\times EM	49.5	52.9	55.5	58.0	59.4	60.9	60.9	62.1
▼ Del1	55.4	55.6	58.6	60.3	59.9	60.2	59.9	60.4
 Del1Subseq 	53.0	53.3	55.0	56.7	55.3	55.4	57.3	58.7
 random expected 		35.2		35.1		35.1		35.1
ambiguous words	'	6,244	•	12,923		25,879	•	51,521

So, why does LENGTH beat EM?

* the model is log-linear?

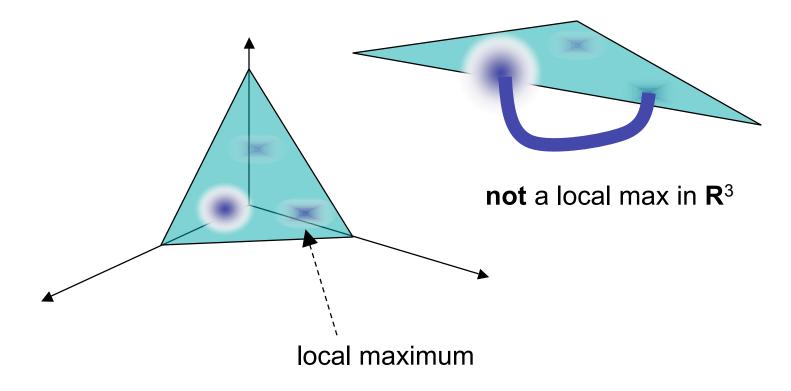
the objective function is better?

(don't have to model # words)

functions essentially the same, but better **search**?

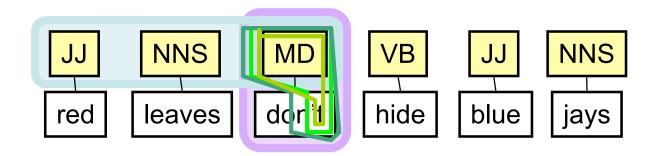
On Local Maxima

 Requiring weights to sum to one is simply a numerical constraint.



For bumpy functions, it's preferable to have fewer constraints.

Trigram Tagging Model + Spelling



feature set:

tag trigrams

tag/word pairs from a POS dictionary

1- to 3-character suffixes, contains hyphen, digit

Diluted Dictionary

		tagging dictionary									
			all train & dev.	first 500 sents.			count > 2	count ≥ 3			
estimation	model	u-sel.	oracle	u-sel.	oracle	u-sel.	oracle	u-sel.	oracle		
MAP/EM	trigram	78.0	84.4	77.2	80.5	70.1	70.9	66.5	66.5		
CE/Del1OrTrans1	trigram	78.3	90.1	72.3	84.8	69.5	81.3	65.0	77.2		
	+ spelling	80.9	91.1	80.2	90.8	79.5	90.3	78.3	89.8		
CE/TRANS1	trigram	90.4	90.4	80.8	82.9	77.0	78.6	71.7	73.4		
	+ spelling	88.7	90.9	88.1	90.1	78.7	90.1	78.4	89.5		
CE/LENGTH	trigram	87.8	90.4	68.1	78.3	65.3	75.2	62.8	72.3		
	+ spelling	87.1	91.9	76.9	83.2	73.3	73.8	73.2	73.6		
random expected			69.5		60.5		56.6		51.0		
ambiguous words			13,150		13,841		14,780		15,996		
ave. tags/token			2.3		3.7		4.4		5.5		

(reduced, coarser tag set)

The sequence model need not be finite-state.

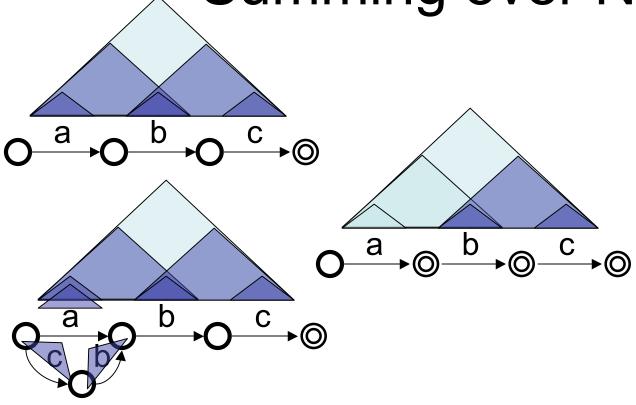
Y can range over trees.

Dependency Parsing

- Features (model from Klein and Manning, 2004):
 - (parent, child, direction) triples
 - "no children on left (right)"
 - "1 child on left (right)"
 - "multiple children on left (right")

- Dynamic programming:
 - Eisner & Satta (1999) for **inside** algorithm (generalized for lattices)

Summing over N(x)



- Dynamic programming saves the day again!
- If the set N(x) is represented as a lattice, we can apply the usual Inside-Outside algorithm with a slight change.

	German		English		Bulgarian		Mandarin		Turkish		Portuguese	
	te	est	te	st	te	st	te	st	te	st	te	est
	accu	racy	accu	racy	accu	racy	accu	racy	accu	racy	accu	racy_
	directed	undirected	directed	undirected	directed	undirected	directed	undirected	directed	undirected	directed	undirected
ATTACH-LEFT	8.2	59.1	22.6	62.1	37.2	61.0	13.1	56.1	6.6	68.6	36.2	65.7
ATTACH-RIGHT	47.0	55.2	39.5	62.1	23.8	61.0	42.9	56.1	61.8	68.3	29.5	65.7
Σ^* (MAP/EM)	19.8	55.2	41.6	62.2	44.6	63.1	37.2	56.1	41.2	57.8	37.4	62.2
Del1	26.5	43.7	18.3	33.9	13.1	31.5	25.6	41.4	41.8	45.2	39.9	67.2
Trans1	17.9	53.0	29.4	57.8	23.8	61.0	22.7	56.3	27.7	59.4	36.0	65.5
Del1OrTrans1	59.3	72.6	47.3	63.6	24.2	60.0	22.6	58.2	46.5	62.9	36.0	65.4
LENGTH	49.2	64.1	45.5	64.9	27.0	60.1	16.5	43.4	34.4	57.6	31.9	59.4
DYNASEARCH	16.0	53.0	39.7	61.9	23.8	61.0	48.3	58.8	44.9	62.7	37.9	62.3
					'				'		'	

	German test		English test		Bulgarian test		Mandarin test		Turkish test		Portuguese test	
	accuracy		accuracy_		accurac <u>y</u>		accuracy		accuracy		accuracy	
	directed	undirected	directed	undirected	directed	undirected	directed	undirected	directed	undirected	directed	undirected
ATTACH-LEFT	8.2	59.1	22.6	62.1	37.2	61.0	13.1	56.1	6.6	68.6	36.2	65.7
ATTACH-RIGHT	47.0	55.2	39.5	62.1	23.8	61.0	42.9	56.1	61.8	68.3	29.5	65.7
Σ^* (MAP/EM)	54.4	71.9	41.6	62.2	45.6	63.6	50.0	60.9	48.0	59.1	42.3	64.1
Del1	34.4	49.3	39.7	53.5	17.7	33.8	43.4	49.8	42.1	45.1	28.0	43.1
Trans1	45.6	59.0	41.2	62.5	40.1	57.9	41.1	56.1	47.2	63.4	35.9	65.8
Del1OrTrans1	63.4	66.5	57.6	69.0	40.5	61.5	41.1	56.9	58.2	66.4	71.8	78.4
LENGTH	57.3	65.1	45.5	64.9	38.3	63.4	26.2	44.9	59.0	64.9	33.6	65.3
DYNASEARCH	45.7	58.6	47.6	65.3	34.0	58.0	47.9	60.6	44.9	62.7	40.9	64.4
s-sel. (N)	63.4	66.5	57.6	69.0	40.5	61.5	41.1	56.1	59.0	64.9	71.8	78.4

Summing Up (Ha Ha)

- Contrastive estimation = designing a negative evidence class that keeps part of the data the same (e.g., semantics) but damages the part you want your model to learn (e.g., syntax).
- Idea of "implicit negative evidence" is central.