
Language and Statistics II

Lecture 18: Clustering

Noah Smith

Clustering

• Given a set of examples, infer classes.
• Class variable has never been observed!

– So this is unsupervised classification.
– Usual insight: if two examples are very similar,

they are probably in the same class.
• In some settings, it’s clear how to define the

similarity between two examples.
– But not always (e.g., in NLP).

Clustering R Data

K-Means

• Given: examples {xi}, K
1. Randomly select m1, …, mK.
2. Assign each xi to the nearest mj.

3. Select each mj to be the mean of all xi
assigned to it.

4. If all mj have converged stop; else go to 2.

!

ˆ y i = argmin
m j

d xi,m j()

!

m j =
1

i : ˆ y i = m j{ }
xi

i: ˆ y i = m j

"

K-Means, Visualized

K-Means, Visualized

K-Means, Visualized

K-Means, Visualized

K-Means, Visualized

K-Means, Visualized

Questions

• How to choose K?

Try different K; choose the smallest K such
that adding another cluster will not explan
much variance.

K

Questions
• How to choose K?
• Does the choice of distance measure matter?

– Yes!

• Guaranteed to converge?
– Yes.

• Always to same centroids?
– No.

• Is there an objective function that is being optimized?
– Yes (locally).

• Does this have a probabilistic interpretation?
– Yes.

From K-Means to EM

• Soft K-Means … add a parameter β.

Each xi gets one vote, which it divides
between clusters.

Cluster mj is chosen by a vote among all xi.

!

V j xi() =
exp "#d xi,m j()[]
exp "#d xi,m j '()[]

j '

$

!

m j =

xiV j xi()
i

"

V j xi()
i

"

portion of
xi’s vote

going to mj

weighted
average of xi (by

their votes)

From K-Means to EM

• Soft K-Means … add a parameter β.
 β is “stiffness” - it controls how much variance

the clusters can have.
 β → ∞ approaches hard K-Means!

!

V j xi() =
exp "#d xi,m j()[]
exp "#d xi,m j '()[]

j '

$
%
#%& 1 if m j = argmin

m

d xi,m()

0 otherwise

'
(
)

!

m j =

xiV j xi()
i

"

V j xi()
i

"

Soft K-Means, Visualized

Soft K-Means, Visualized

Soft K-Means, Visualized

From K-Means to EM

• Soft K-Means … add a parameter β.
 β is “stiffness” - it controls how much variance

the clusters can have.
 β → ∞ approaches hard K-Means!

• Claim: this is the EM algorithm, for a
particular log-linear model!

!

p(X = x,M = m)"exp #$d x,m()[]

From K-Means to EM

• If d(x, y) is squared Euclidean distance, clusters are
equiprobable a priori, all clusters have same
variance, and β = 2σ2 …

!

p(X = x,M = m) = p x m()p m() =
1

K
p x m()

!

p(X = x,M = m)"exp #$d x,m()[]
!

=
1

K " 2#()
D

exp $
1

2
x $m()%"$1 x $m()

&

'
(

)

*
+

!

"exp #$ x #m()
2()

What is this EM?

• EM is many things.
– Class of alternating minimization algorithms
– Likelihood maximization technique for hidden

variables (like clusters)
– Approximate inference technique

• For now, think of it as a soft clustering
method with two alternating steps:
– E (expectation or “election”) step
– M (maximization or “model-fitting”) step

E (Election) Step
• Each example xi decides how much of its vote to

give to each cluster.
• To allocate xi’s vote, consider the posterior

probability that xi came from mj:

– The closer mj is, the more of xi’s vote it gets.
• For squared Euclidean distance, you can tell this

generative story:
– Pick a centroid j uniformly.
– Sample X according to a Gaussian at mean mj.

!

q m j xi()"e
#$d xi,m j()

M (Model-Fitting) Step

• Each cluster conforms to its constituents!
• I.e., given a set of (possibly fractional)

examples, carry out MLE for mj:

!

ˆ m j = argmax
m

p xi m()
q m j xi()

fractional
count of xi6 7 8

i=1

n

"

!

= argmax
m

q m j xi() log p xi m()
i=1

n

"

!

= argmax
m

q m j xi() loge
"#d xi,m()

i=1

n

$

!

= argmin
m

q m j xi()d xi,m()
i=1

n

"

Another View of EM

• If we knew the mj, we could say how strongly
each xi belongs to each mj. (Easily!)

• If we knew how strongly each xi belongs to
each mj, we could guess where the mj are.
(Easily!)

Another View of EM

• If we knew the mj, we could say how strongly
each xi belongs to each mj. (Easily!)

This is the E step.

• If we knew how strongly each xi belongs to
each mj, we could guess where the mj are.
(Easily!)

This is the M step.

The Model
• Two random variables: X and Y
• Each xi is observed (the data)
• Each Yi is hidden or latent
• -d(x, y) is a similarity (negative distance) feature
• β is the weight of that feature
• The possible values of the yj (the possible values

for each Yi) are the model parameters. We know
there are K vectors, m1, …, mK.

(This model really only makes sense in a continuous
space where we can take weighted averages!)

In General …

• EM can be applied to any probabilistic
model.
– But it’s much easier to apply to some models

than to others!

• There’s always a “winner-take-all” variant.
– You should think of this as an approximation.

EM in General

• E step:

• M step:

!

"i,y, q y xi()# p r
$

t() y xi() =
p r
$

t() xi,y()

p r
$

t() xi,y '()
y'

%

!

r
" t +1() # argmax

r
"

˜ p x()q y x()
"pretend" ˜ p x,y()
1 2 4 3 4

log p r
"

x, y()
x,y

$

soft assignment
or voting

fully-observed
data MLE

Aside: EM ≈ Gibbs Sampling

• Alternative view: we have two hidden
variables, Θ (the parameters) and Y.

• Randomized approach to inference: sample
each hidden variable in turn, given all the
others.
– Sample Y given X, Θ. (E step: exact inference)
– Sample Θ given X, Y. (M step: take the mode)

Claims

• EM is trying to maximize the likelihood of the
data.
– The observed part: {xi}
– The hidden part, Y, is marginalized over.

• EM converges to a local optimum.
– Which local optimum depends on the initial

parameters (or posterior).
– EM can take many iterations to converge.

Clustering Words

• Brown et al. (1992)
• Pereira et al. (1993)
• Schütze (1993)

Brown et al., 1992

• Motivation: improved language modeling.
• Class-based language model:

• Classes are hard clusters.
• Greedy search algorithm …!

p si si"m ...si"1() = p si ci()p ci ci"m ...ci"1()

Brown et al., 1992

• Input: vocabulary of V words, K
1. Initialize with each word in its own class.
2. For t = 1 to V - K:

1. Compute the average mutual information
between each class pair.

2. Merge the class pair that will result in the
smallest loss in average mutual information.

*Some implementation tricks required!

Average Mutual Information

• Likelihood of the data:

!

1

N
log p wi ci()p ci ci"1()() = E ˜ p log p W C() p C C'()()[]

i=1

N

#

!

= E ˜ p log
p W C()p C C'() p(C)

p(C)

"

$ $

%

&
' '

(

)
*
*

+

,
-
-

!

= E ˜ p log
p C C'()
p(C)

"

$ $

%

&
' ' + log p W C()p C()()

(

)
*
*

+

,
-
-

!

= E ˜ p log
p C',C()

p C'() p C()

"

$

%

&
' + log p W()()

(

)
*
*

+

,
-
-

Comparison

K-Means
• Hard classes
• Distance feature

(similarity model)
• Fixed # classes K
• Winner-take-all EM

(optimize “extreme”
likelihood)

Brown et al., 1992
• Hard classes
• Bigram features

(bigram class model)
• # classes: V → K
• Greedy search based

on MI (optimize
likelihood)

Both can be seen as trying to optimize likelihood.

Pereira et al., 1993
*Warning: this is a very confusing paper because it introduces lots of new ideas.

• Soft clustering of nouns based on the verbs that
take them as objects.

• The model:
• Like in K-Means, there is a distance feature: it is

the KL divergence between two distributions:

• Unlike the other methods discussed so far, K is not
fixed. It starts at 1, and they gradually increase it
by splitting clusters.

• To make this happen, they manipulate β …

!

p v,n() = p c()p v c()p n c()
c

"

!

d n,c() = D ˜ p V n() p V c()()

Deterministic Annealing and
Phase Transitions

• Recall:

• When β is close to 0, every noun is in every cluster with
about the same strength.

• As β increases, model commits more.
• Can think of β as a Lagrange multiplier controlling the

entropy of the posterior!

!

q m j xi()"e
#$d xi,m j()

!

q c n()"e
#$d n,c()

!

F = E
p C N()

d N,C()[] "
1

#
H p C N()()

Deterministic Annealing and
Phase Transitions

• Recall:

• When β is close to 0, every noun is in every cluster with
about the same strength.

• As β increases, model commits more.
• Can think of β as a Lagrange multiplier controlling the

entropy of the posterior!
• Physical analogy: β = 1/temperature.

– At high temperatures, the system is equally likely to be in any state.
– As system cools (β gets large), system commits to one state.
– Goal of annealing in metalworking is to find a stable configuration

(low free energy).

!

q m j xi()"e
#$d xi,m j()

!

q c n()"e
#$d n,c()

!

F = E
p C N()

d N,C()[] "
1

#
H p C N()()

Deterministic Annealing and
Phase Transitions

• Recall:

• When β is close to 0, every noun is in every cluster with
about the same strength.

• As β increases, model commits more
• Can think of β as a Lagrange multiplier controlling the

entropy of the posterior!

Phase transitions are the effect of gradually
increasing β.

!

q m j xi()"e
#$d xi,m j()

!

q c n()"e
#$d n,c()

!

F = E
p C N()

d N,C()[] "
1

#
H p C N()()

DA Clustering

• Start out with two clusters: c and its twin, c.t, and
set β to be close to zero.

• Iteratively re-estimate the cluster centroids,
gradually increasing β.
– Whenever a cluster c and its twin c.t become

sufficiently distinct (in terms of distance from
each other), split c.t into a new cluster c’, and
give c and c’ new twins (slight perturbations).

Note: can extract a hierarchical clustering from this! How?

The Objective Function View

Comparison
K-Means

• Hard classes
• Distance feature

(similarity
model)

• Fixed # classes
K

• Winner-take-all
EM (optimize
“extreme”
likelihood)

Brown et al., 1992
• Hard classes
• Bigram features

(bigram class
model)

• # classes: V →
K

• Greedy search
based on MI
(optimize
likelihood)

All three can be seen as trying to optimize likelihood.

Pereira et al., 1993
• Soft classes
• Distributional

similarity feature
• # classes: 1 → K
• DA/EM search

(optimize
likelihood)

Schütze (1993)

• Map words into high-dimensional R vector of
coocurrence counts (-2, -1, +1, +2).

• Singular value decomposition to reduce
dimensionality

• Didn’t work well for ambiguous words; used a
neural network to do classification in context.

• See paper for more details.

Next Time

• EM-based unsupervised learning with
models of discrete structures (sequences
and trees).

