
Language and Statistics II

Lecture 17: Discriminative
Training, part III

Noah Smith

Lecture Overview

• Formal problem from assignment 3
• MIRA
• Kernel for trees and sequences (Collins)
• Discrimative reranking
• Transformation-based learning (if time)

HMM as a PCFG
HMM H = 〈Σ, Q, q0, F, e:(Q\F)×Σ→P, t:Q×Q→P〉
PCFG G = 〈Σ, N, n0, r:N×(N∪Σ)*→P〉
Let:

Σ = Σ
N = Q
n0 = q0

r(q, 〈s, q’〉) = e(q, s) ⋅ t(q, q’) if q’ ∉ F
r(q, 〈s〉) = e(q, s) ⋅ ⊕q’:q’ ∈ F t(q, q’)

A Parsing Algorithm for PCFGs
(with rank ≤ 2)

C(si, i, i) = 1
C(X, i, k) = max(maxY C(Y, I, k) × r(X, 〈Y〉),
 maxj, Y, Z C(Y, i, j) × C(Z, j+1, k) × r(X, 〈Y, Z〉))
goal = C(N0, 1, |s|)
priority(C(X, i, j)) = |s| - (j - i)

r(q, 〈s, q’〉) = e(q, s) ⋅ t(q, q’) if q’ ∉ F
r(q, 〈s〉) = e(q, s) ⋅ maxq’:q’ ∈ F t(q, q’)

A Parsing Algorithm for PCFGs
(with rank ≤ 2)

C(si, i, i) = 1
C(X, i, k) = max(maxY C(Y, i, k) × r(X, 〈Y〉),
 maxj, Y, Z C(Y, i, j) × C(Z, j+1, k) × r(X, 〈Y, Z〉))
goal = C(N0, 1, |s|)
priority(C(X, i, j)) = |s| - (j - i)

Notice: When binary rule fires, Y is always in Σ.

r(q, 〈s, q’〉) = e(q, s) ⋅ t(q, q’) if q’ ∉ F
r(q, 〈s〉) = e(q, s) ⋅ maxq’:q’ ∈ F t(q, q’)

A Parsing Algorithm for PCFGs
(with rank ≤ 2)

C(si, i, i) = 1
C(X, i, k) = max(maxY C(Y, i, k) × r(X, 〈Y〉),

 maxY, Z C(Y, i, i) × C(Z, i+1, k) × r(X, 〈Y, Z〉))
goal = C(N0, 1, |s|)
priority(C(X, i, j)) = |s| - (j - i)

Notice: When binary rule fires, Y is always in Σ.

So j = i. r(q, 〈s, q’〉) = e(q, s) ⋅ t(q, q’) if q’ ∉ F
r(q, 〈s〉) = e(q, s) ⋅ maxq’:q’ ∈ F t(q, q’)

A Parsing Algorithm for PCFGs
(with rank ≤ 2)

C(si, i, i) = 1
C(X, i, k) = max(maxY C(Y, i, k) × r(X, 〈Y〉),

 maxY, Z C(Y, i, i) × C(Z, i+1, k) × r(X, 〈Y, Z〉))
goal = C(N0, 1, |s|)
priority(C(X, i, j)) = |s| - (j - i)

r(q, 〈s, q’〉) = e(q, s) ⋅ t(q, q’) if q’ ∉ F
r(q, 〈s〉) = e(q, s) ⋅ maxq’:q’ ∈ F t(q, q’)

A Parsing Algorithm for PCFGs
(with rank ≤ 2)

C(si, i, i) = 1
C(X, i, k) = max(maxY C(Y, i, k) × r(X, 〈Y〉),

 maxY, Z C(Y, i, i) × C(Z, i+1, k) × r(X, 〈Y, Z〉))
goal = C(N0, 1, |s|)
priority(C(X, i, j)) = |s| - (j - i)

Notice: When binary rule fires, Y always = si.

r(q, 〈s, q’〉) = e(q, s) ⋅ t(q, q’) if q’ ∉ F
r(q, 〈s〉) = e(q, s) ⋅ maxq’:q’ ∈ F t(q, q’)

A Parsing Algorithm for PCFGs
(with rank ≤ 2)

C(si, i, i) = 1
C(X, i, k) = max(maxY C(Y, i, k) × r(X, 〈Y〉),

 maxZ C(si, i, i) × C(Z, i+1, k) × r(X, 〈si, Z〉))
goal = C(N0, 1, |s|)
priority(C(X, i, j)) = |s| - (j - i)

Notice: When binary rule fires, Y always = si.

So substitute. r(q, 〈s, q’〉) = e(q, s) ⋅ t(q, q’) if q’ ∉ F
r(q, 〈s〉) = e(q, s) ⋅ maxq’:q’ ∈ F t(q, q’)

A Parsing Algorithm for PCFGs
(with rank ≤ 2)

C(si, i, i) = 1
C(X, i, k) = max(maxY C(Y, i, k) × r(X, 〈Y〉),

 maxZ C(si, i, i) × C(Z, i+1, k) × r(X, 〈si, Z〉))
goal = C(N0, 1, |s|)
priority(C(X, i, j)) = |s| - (j - i)

Notice: When binary rule fires, Y always = si.

And C(si, i, i) = 1. r(q, 〈s, q’〉) = e(q, s) ⋅ t(q, q’) if q’ ∉ F
r(q, 〈s〉) = e(q, s) ⋅ maxq’:q’ ∈ F t(q, q’)

A Parsing Algorithm for PCFGs
(with rank ≤ 2)

C(si, i, i) = 1
C(X, i, k) = max(maxY C(Y, i, k) × r(X, 〈Y〉),
 maxZ C(Z, i+1, k) × r(X, 〈si, Z〉))
goal = C(N0, 1, |s|)
priority(C(X, i, j)) = |s| - (j - i)

r(q, 〈s, q’〉) = e(q, s) ⋅ t(q, q’) if q’ ∉ F
r(q, 〈s〉) = e(q, s) ⋅ maxq’:q’ ∈ F t(q, q’)

A Parsing Algorithm for PCFGs
(with rank ≤ 2)

C(si, i, i) = 1
C(X, i, k) = max(maxY C(Y, i, k) × r(X, 〈Y〉),
 maxZ C(Z, i+1, k) × r(X, 〈si, Z〉))
goal = C(N0, 1, |s|)
priority(C(X, i, j)) = |s| - (j - i)

Notice: When unary rule fires, Y is always in Σ and =
si.

r(q, 〈s, q’〉) = e(q, s) ⋅ t(q, q’) if q’ ∉ F
r(q, 〈s〉) = e(q, s) ⋅ maxq’:q’ ∈ F t(q, q’)

A Parsing Algorithm for PCFGs
(with rank ≤ 2)

C(si, i, i) = 1
C(X, i, k) = max(C(si, i, k) × r(X, 〈si〉),
 maxZ C(Z, i+1, k) × r(X, 〈si, Z〉))
goal = C(N0, 1, |s|)
priority(C(X, i, j)) = |s| - (j - i)

Notice: When unary rule fires, Y is always in Σ and =
si.

So substitute.

r(q, 〈s, q’〉) = e(q, s) ⋅ t(q, q’) if q’ ∉ F
r(q, 〈s〉) = e(q, s) ⋅ maxq’:q’ ∈ F t(q, q’)

A Parsing Algorithm for PCFGs
(with rank ≤ 2)

C(si, i, i) = 1
C(X, i, k) = max(C(si, i, k) × r(X, 〈si〉),
 maxZ C(Z, i+1, k) × r(X, 〈si, Z〉))
goal = C(N0, 1, |s|)
priority(C(X, i, j)) = |s| - (j - i)

r(q, 〈s, q’〉) = e(q, s) ⋅ t(q, q’) if q’ ∉ F
r(q, 〈s〉) = e(q, s) ⋅ maxq’:q’ ∈ F t(q, q’)

A Parsing Algorithm for PCFGs
(with rank ≤ 2)

C(si, i, i) = 1
C(X, i, k) = max(C(si, i, k) × r(X, 〈si〉),
 maxZ C(Z, i+1, k) × r(X, 〈si, Z〉))
goal = C(N0, 1, |s|)
priority(C(X, i, j)) = |s| - (j - i)

Notice: k either = i (in the unary case) or |s| (in the
binary case).

r(q, 〈s, q’〉) = e(q, s) ⋅ t(q, q’) if q’ ∉ F
r(q, 〈s〉) = e(q, s) ⋅ maxq’:q’ ∈ F t(q, q’)

A Parsing Algorithm for PCFGs
(with rank ≤ 2)

C(si, i, i) = 1
C(X, i, i) = C(si, i, i) × r(X, 〈si〉)
C(X, i, |s|) = maxZ C(Z, i+1, |s|) × r(X, 〈si, Z〉)
goal = C(N0, 1, |s|)
priority(C(X, i, j)) = |s| - (j - i)

Notice: k either = i (in the unary case) or |s| (in the
binary case).

r(q, 〈s, q’〉) = e(q, s) ⋅ t(q, q’) if q’ ∉ F
r(q, 〈s〉) = e(q, s) ⋅ maxq’:q’ ∈ F t(q, q’)

A Parsing Algorithm for PCFGs
(with rank ≤ 2)

C(si, i, i) = 1
C(X, i, i) = C(si, i, i) × r(X, 〈si〉)
C(X, i, |s|) = maxZ C(Z, i+1, |s|) × r(X, 〈si, Z〉)
goal = C(N0, 1, |s|)
priority(C(X, i, j)) = |s| - (j - i)

r(q, 〈s, q’〉) = e(q, s) ⋅ t(q, q’) if q’ ∉ F
r(q, 〈s〉) = e(q, s) ⋅ maxq’:q’ ∈ F t(q, q’)

A Parsing Algorithm for PCFGs
(with rank ≤ 2)

C(si, i, i) = 1
C(X, i, i) = C(si, i, i) × r(X, 〈si〉)
C(X, i, |s|) = maxZ C(Z, i+1, |s|) × r(X, 〈si, Z〉)
goal = C(N0, 1, |s|)
priority(C(X, i, j)) = |s| - (j - i)

Notice: C(si, i, i) is unnecessary in general; only
used when i = |s|.

r(q, 〈s, q’〉) = e(q, s) ⋅ t(q, q’) if q’ ∉ F
r(q, 〈s〉) = e(q, s) ⋅ maxq’:q’ ∈ F t(q, q’)

A Parsing Algorithm for PCFGs
(with rank ≤ 2)

C(X, |s|, |s|) = r(X, 〈s|s|〉)
C(X, i, |s|) = maxZ C(Z, i+1, |s|) × r(X, 〈si, Z〉)
goal = C(N0, 1, |s|)
priority(C(X, i, j)) = |s| - (j - i)

Notice: C(si, i, i) is unnecessary in general; only
used when i = |s|.

r(q, 〈s, q’〉) = e(q, s) ⋅ t(q, q’) if q’ ∉ F
r(q, 〈s〉) = e(q, s) ⋅ maxq’:q’ ∈ F t(q, q’)

A Parsing Algorithm for PCFGs
(with rank ≤ 2)

C(X, |s|, |s|) = r(X, 〈s|s|〉)
C(X, i, |s|) = maxZ C(Z, i+1, |s|) × r(X, 〈si, Z〉)
goal = C(N0, 1, |s|)
priority(C(X, i, j)) = |s| - (j - i)

r(q, 〈s, q’〉) = e(q, s) ⋅ t(q, q’) if q’ ∉ F
r(q, 〈s〉) = e(q, s) ⋅ maxq’:q’ ∈ F t(q, q’)

A Parsing Algorithm for PCFGs
(with rank ≤ 2)

C(X, |s|, |s|) = r(X, 〈s|s|〉)
C(X, i, |s|) = maxZ C(Z, i+1, |s|) × r(X, 〈si, Z〉)
goal = C(N0, 1, |s|)
priority(C(X, i, j)) = |s| - (j - i)

Notice: third term of C(…) is always |s|.

r(q, 〈s, q’〉) = e(q, s) ⋅ t(q, q’) if q’ ∉ F
r(q, 〈s〉) = e(q, s) ⋅ maxq’:q’ ∈ F t(q, q’)

A Parsing Algorithm for PCFGs
(with rank ≤ 2)

C(X, |s|) = r(X, 〈s|s|〉)
C(X, i) = maxZ C(Z, i+1) × r(X, 〈si, Z〉)
goal = C(N0, 1)
priority(C(X, i)) = |s| - (|s| - i) = i

Notice: third term of C(…) is always |s|.

r(q, 〈s, q’〉) = e(q, s) ⋅ t(q, q’) if q’ ∉ F
r(q, 〈s〉) = e(q, s) ⋅ maxq’:q’ ∈ F t(q, q’)

A Parsing Algorithm for PCFGs
(with rank ≤ 2)

C(X, |s|) = r(X, 〈s|s|〉)
C(X, i) = maxZ C(Z, i+1) × r(X, 〈si, Z〉)
goal = C(N0, 1)
priority(C(X, i)) = i

r(q, 〈s, q’〉) = e(q, s) ⋅ t(q, q’) if q’ ∉ F
r(q, 〈s〉) = e(q, s) ⋅ maxq’:q’ ∈ F t(q, q’)

Equivalent to Back-Viterbi!

C(X, |s|) = r(X, 〈s|s|〉)
C(X, i) = maxZ C(Z, i+1) × r(X, 〈si, Z〉)
goal = C(N0, 1)
priority(C(X, i)) = i

C(X, |s|) = e(q, s) × maxZ:Z ∈ F t(X, Z)
C(X, i) = maxZ∉F C(Z, i+1) × e(X, si) × t(X, Z)
goal = C(q0, 1)
priority(C(X, i)) = i r(q, 〈s, q’〉) = e(q, s) ⋅ t(q, q’) if q’ ∉ F

r(q, 〈s〉) = e(q, s) ⋅ maxq’:q’ ∈ F t(q, q’)

Kernels and Dual Weights

• Recall that a kernel is a way of implicitly expanding
our feature set by replacing the dot-product with
new function of two vectors.

• Recall also that dual formulation of linear models
uses “support vectors” (sparse in SVMs, but holds
for most parameter estimation methods):

!

w = " i,y ' f xi,y '()()
y'#GEN yi()

$
i

$

!

K f x,y(),w() = " i,y 'K f x,y(),f xi,y'()()
y'#GEN yi()

$
i

$

!

K f x,y(),f x ',y'()() = f ' x,y() " f ' x ',y'()

Specialized Kernels

• The kernel function K is just a measure of
similarity.
– Higher = more similar.

• A function of two objects (any objects!) is a
kernel if it equates to taking a dot product in
some feature space.

• Let’s reason backwards …
– What feature spaces would we like?

Tree Kernels
(Collins and Duffy, 2002)

• The feature vector implied by the use of a
CFG is a vector of rule counts.

• Implied kernel:

• Rules are just “bits” of structure.
• Scaling up: what if we could match up all

subtree types?
!

K "
1
,"
2() = count r;"

1() #
r$G

% count r;"
2()

Subtree Features

A

C B

D A

C B

y

x

z

w

2 (A (C B))
1 (C (D A))
1 (D x)
1 (C y)
1 (B z)
1 (B w)
0 (D (B B)
0 (A (B C)
0 (B (C C)

1 (A ((C D A) B)
1 (A ((C D A) (B w))
1 (A ((C (D x) A) B)
1 (A ((C (D x) A) (B w))
1 (A ((C D (A C B))

(B w))
1 (A ((C (D x) (A C B))

(B w))
…
1 (A ((C (D x) (A (C y) (B
z))) (B w))

“All Subtrees”

• Not a new idea.
– Bod (1998 and before): “data-oriented parsing”

• many tricks required - not efficient

– Goodman (1996): convert DOP model to an
approximating PCFG

• Collins and Duffy (2002): can implement this as a
kernel!
– Avoid the Really Big feature representation.
– Train using discriminative methods.

• Note: subtrees contain full rules; can’t break just
anywhere.

The All-Subtrees Kernel

!

K "
1
,"
2() = count ";"

1() # count ";" 2()
"

$

!

= " #,#
1

•()
#1

• $#1

%
&

'

(
(

)

*

+
+ " #,#

2

•()
2

• $# 2

%
&

'

(
(

)

*

+
+

#

%

!

= " #,#
1

•()" #,# 2•()
#

$
2

• %# 2

$
#1

• %#1

$

!

= # of matching subtrees rooted at n1

i,n2

j[]
" n1

i ,n2
j()

1 2 4 4 4 4 4 4 4 3 4 4 4 4 4 4 4
n2
j #$ 2

%
n1
i #$1

%

Summing over nodes
in the two trees!

Dynamic Program

!

" n1

i,n2

j() =

0 if different productions at roots

1 if same production and preterminal roots

1+ " n1

kid i,k(),n2

kid j ,k()()()
k

if same production and not preterminal roots

$

%

&
&

'

&
&

Thought question: what’s the runtime?

IllustrationA

C B

D A

C B

y

x

z

w

A

C B

D A

E B

y

x

z

w

IllustrationA

C B

D A

C B

y

x

z

w

A

C B

D A

E B

y

x

z

w

matches at (higher) C: 2
C

D A

C

D A

x

IllustrationA

C B

D A

C B

y

x

z

w

A

C B

D A

E B

y

x

z

w

matches at (higher) C: 2
matches at (higher) B: 1

B

w

IllustrationA

C B

D A

C B

y

x

z

w

A

C B

D A

E B

y

x

z

w

matches at (higher) C: 2
matches at (higher) B: 1

Δ(A1,4, A1,4) = (1 + Δ(C1,3, C1,3))× (1 + Δ(B4,4, B4,4)) = 6

NB

• Labeled sequences are trees, too.
– As we saw!

• So you can define an “all-fragments” kernel
for labeled sequences in exactly the same
way.

• Try it!

Problem with the Dual
Representation

• Decoding for parsing and tagging models usually
involves dynamic programming (max-times).
– For that, we need w.
– Need to convert back to the primal.

• How many different α?
– Exponential! (Size of ∑iGEN(xi).)

!

w = " i,y ' f xi,y '()()
y'#GEN yi()

$
i

$

!

K f x,y(),w() = " i,y 'K f x,y(),f xi,y'()()
y'#GEN yi()

$
i

$

Discriminative Reranking

• Reduce the size of GEN.
• Use a base model to propose a list of the top
N structures.
– Usually done approximately until 2005.
– Goodman (1999): N-best semiring (not efficient)
– Huang and Chiang (2005): general solution to
N-best lists for (max-plus) dynamic programming
algorithms.

• Train a model to discriminate correct
structure from other top-N structures.

Discriminative Reranking

• Collins (2000):
– Exp-loss evaluated
– Log-loss defined, not tested (more expensive)

• See Riezler et al. (2002) and Charniak and
Johnson (2005) for log-loss results.

• Don’t need kernels for this!
– Still unclear how easily we can mix kernels with log-loss.

• Great way to throw in features that are too
expensive to put into a dynamic programming
algorithm.

Everything That’s Old is New
Again

• Brill (1992): “transformation-based learning”
• No model and no weights.
• Transformation: a rule that modifies the structure.

– E.g., “if the word is dog and the word before it is the, tag
the word NOUN.”

– Think of these as “find-replace” operators.
• What is learned?

– A sequence of deterministic transformations.
• Applied to tagging, NER, parsing, …
• Application: apply transformations in sequence.

– Really fast!
• Training …

TBL Training
• Specify all rule templates.
• Apply baseline to training data.
• L = 〈〉
• Iterate until performance decreases on dev set:

– Choose the rule R that increases net accuracy by the
most (if it exists; else quit). (Expensive search!)

– Add the rule to the end of L.
– Apply R to the training data.

• Return L.
Notes:

This is a greedy learner.
Error rate on training data is guaranteed to decrease until termination.

Recap of Discriminative Methods:
Attacking Error Directly

• Linear separation and the perceptron
• Conditional estimation, Boosting, Maximum Margin

training
– 0-1 loss, log-loss, exp-loss, hinge loss

• Lagrange duality
• Support vector machines
• Kernels

– Tree kernels
• Reranking
• Transformation-based learning

Next Time …

Unsupervised learning: models gone wild!

