Language and Statistics ||

Lecture 17: Discriminative
Training, part |l

Noah Smith

Lecture Overview

* Formal problem from assignment 3

o MIRA-

» Kernel for trees and sequences (Collins)
* Discrimative reranking

* Transformation-based learning (if time)

HMM as a PCFG

HMM H = (Z, Q, q,, F, €:(Q\F)x=—P, t:QxQ—P)
PCFG G = (Z, N, ny, rNx(NUZ)*—P)
_et:

A Parsing Algorithm for PCFGs
(with rank < 2)

C(s, i, i)=1
C(X, i, k) = max(maxy C(Y, I, k) x r <Y>
max; y z C(Y, i, j) x C(Z, J+1 K) x r(X, (Y, Z)))

goal = C(N,, 1, |s])
priority(C(X, 1,) = |s| - (j - 1)

(0, (s,q))=e(q,s) tq,q)ifqg" &€ F
q <S> = () maxqqut(q,q’)

A Parsing Algorithm for PCFGs
(with rank < 2)

C(s, i, i)=1

C(X, i, k) = max(maxy C(Y, i, k) x r(X, (Y)),
max; y z C(Y, i, j) x C(Z, j+1, k) x r(X, (Y, Z)))

goal = C(N,, 1, |s])

priority(C(X, 1, j)) = |s| - (- 1)

Notice: \When binary rule fires, Y is always in .

(0, (s,q))=e(q,s) tq,q)ifqg &F
q <S> = () maxqqut(q,q’)

A Parsing Algorithm for PCFGs
(with rank < 2)

C(s, i, i)=1
C(X, i, k) = max(maxy C(Y, i, k) x r(X, (Y)),
maxy > C(Y, i, i) x C(Z, i+1, k) x r(X, (Y, Z)))
goal = C(N,, 1, |s])
priority(C(X, 1,])) = [s| - (- 1)

Notice: \When binary rule fires, Y is always in .

Soj=1.

(0, (s,q))=e(q,s) tq,q)ifqg &F
q <S> = () maxqqut(q,q’)

A Parsing Algorithm for PCFGs
(with rank < 2)

C(s;, i, 1) =1
C(X, i, k) = max(maxy C(Y, i, k) x <Y>
maxy z C(Y, i, 1) x C(Z, |+1 K) x r(X, (Y, Z)))

goal = C(N,, 1, |s])
priority(C(X, 1,) = |s| - (j - 1)

(0, (s,q))=e(q,s) tq,q)ifqg" &€ F
q <S> = () maxqqut(q,q’)

A Parsing Algorithm for PCFGs
(with rank < 2)

C(s;, i, 1) =1

C(X, i, k) = max(maxy C(Y, i, k) x r(X, (Y)),
maxy > C(Y, i, i) x C(Z, i+1, k) x r(X, (Y, Z)))

goal = C(N,, 1, |s])

priority(C(X, 1,])) = [s]| - (J - 1)

Notice: When binary rule fires, Y always = s

(0, (s,q))=e(q,s) tq,q)ifqg &F
q <S> = () maxqqut(q,q’)

A Parsing Algorithm for PCFGs
(with rank < 2)

C(s, i, i)=1
C(X, i, k) = max(maxy C(Y, i, k) x r(X, (Y)),
max, C(s,, i, i) x C(Z, i+1, k) x r(X, (s, Z)))
goal = C(N,, 1, |s])
priority(C(X, 1,) = |s| - (j - 1)

Notice: When binary rule fires, Y always = s

So substitute.

(0, (s,q))=e(q,s) tq,q)ifqg &F
q <S> = () maxqqut(q,q’)

A Parsing Algorithm for PCFGs
(with rank < 2)

C(s, i, i)=1
C(X, i, k) = max(maxy C(Y, i, k) x r(X, (Y)),
max, &&= C(Z, i+1, k) x r(X, (s, Z)))
goal = C(N,, 1, |s])
priority(C(X, 1,])) = [s]| - (J - 1)

Notice: When binary rule fires, Y always = s

And C(s, i, i) = 1.

(0, (s,q))=e(q,s) tq,q)ifqg &F
q <S> = () maxqqut(q,q’)

A Parsing Algorithm for PCFGs
(with rank < 2)

C(s;, i,1) =1
C(X, i, k) = max(maxy C(Y, i, k) x r(X, {Y)),
max, C(Z, i+1, k r(X, (s;, 2)))
goal = C(N,, 1, |s])
priority(C(X, 1,))) = |s| - (j - 1)

(0, (s,q))=e(q,s) tq,q)ifqg" &€ F
q <S> = () maxqqut(q,q’)

A Parsing Algorithm for PCFGs
(with rank < 2)

C(s, i, i)=1
C(X, i, k) = max(maxy C(Y, i, k) x r(X, (Y)),
max, C(Z, i+1, k) x r(X, (s;, Z)))
goal = C(N,, 1, |s])
priority(C(X, 1,) = |s| - (j - 1)

Notice: \When unary rule fires, Y is always in £ and =
S.

(0, (s,q))=e(q,s) tq,q)ifqg &F
q <S> = () maxqqut(q,q’)

A Parsing Algorithm for PCFGs
(with rank < 2)

C(s;, i,1) =1
C(X, i, k) = max(C(s;, i, k) x r(X, (s))),
max, C(Z, i+1, k) x r(X, (s;, Z)))
goal = C(N,, 1, |s])
priority(C(X, 1, J)) = |s| - (j - 1)

Notice: \When unary rule fires, Y is always in £ and =
S.

So substitute.

(0, (s,q))=e(q,s) tq,q)ifqg &F
q <S> = () maxqqut(q,q’)

A Parsing Algorithm for PCFGs
(with rank < 2)

C(s;, i, i) =1
C(X, i, k) = max(C(s;, i, k) x r(X, (s))),
max, C(Z, i+1, k) x r(X, (s;, Z)))
goal = C(N,, 1, |s])
priority(C(X, 1, J)) = Is| - (j - 1)

(0, (s,q))=e(q,s) tq,q)ifqg" &€ F
q <S> = () maxqqut(q,q’)

A Parsing Algorithm for PCFGs
(with rank < 2)

C(s;, i,1) =1
C(X, i, k) = max(C(s;, i, k) x r(X, (s))),
max, C(Z, i+1, k) x r(X, (s;, Z)))
goal = C(N,, 1, |s])
priority(C(X, 1, J)) = |s| - (j - 1)

Notice: k either =i (in the unary case) or |s| (in the
binary case).

(0, (s,q))=e(q,s) tq,q)ifqg &F
q <S> = () maxqqut(q,q’)

A Parsing Algorithm for PCFGs

(with rank < 2)

C(s, 1,1)=1

C(X,i,i)=C(s, i, i) x r(X, (s))

C(X, i, |s|) = axZ C(Z,i+1, |s|) x r(X, (s;, Z))
goal = C(No, 1, |s])

priority(C(X, L) =|s|-(-1)

Notice: k either =i (in the unary case) or |s| (in the
binary case).

(0, (s,q))=e(q,s) tq,q)ifqg &F
q <S> = () maxqqut(q,q’)

A Parsing Algorithm for PCFGs
(with rank < 2)

C(s, i, i)=1

C(X,i,i)=C(s, i, i) x r(X, (s))

C(X, i, |s|) = max, C(Z, i+1, [s]|) x r(X, (s;, Z))
goal = C(N,, 1, |s])

priority(C(X, 1, J)) = [s| - (j - 1)

(0, (s,q))=e(q,s) tq,q)ifqg" &€ F
q <S> = () maxqqut(q,q’)

A Parsing Algorithm for PCFGs

(with rank < 2)

C(s, 1,1)=1

C(X,i,i)=C(s, i, i) x r(X, (s))

C(X, i, |s|) = axZ C(Z,i+1, |s|) x r(X, (s;, Z))
goal = C(No, 1, |s])

priority(C(X, L) =|s|-(-1)

Notice: C(s, I, 1) is unnecessary in general; only
used when i = [s|.

(0, (s,q))=e(q,s) tq,q)ifqg &F
q <S> = () maxqqut(q,q’)

A Parsing Algorithm for PCFGs
(with rank < 2)

C(X, Isl, Isl) = r(X, (s,.))

C(X, i, |s|) = max, C(Z, i+1, [s]|) x r(X, (s;, Z))
goal = C(N,, 1, |s])

priority(C(X, 1, j)) = |s| - (- 1)

Notice: C(s, I, 1) is unnecessary in general; only
used when i = [s|.

(0, (s,q))=e(q,s) tq,q)ifqg &F
q <S> = () maxqqut(q,q’)

A Parsing Algorithm for PCFGs
(with rank < 2)

C(X, Isl, Isl) = r(X, (syy)

C(X, i, |s|) = max, C(Z, i+1, [s]|) x r(X, (s;, Z))
goal = C(N,, 1, |s])

priority(C(X, 1, j)) = |s| - (- 1)

(0, (s,q))=e(q,s) tq,q)ifqg" &€ F
q <S> = () maxqqut(q,q’)

A Parsing Algorithm for PCFGs
(with rank < 2)

C(X, Isl, Isl) = r(X, (s,.))

C(X, i, |s|) = max, C(Z, i+1, [s]|) x r(X, (s;, Z))
goal = C(N,, 1, |s])

priority(C(X, 1, J)) = [s| - (- 1)

Notice: third term of C(...) is always |s|.

(0, (s,q))=e(q,s) tq,q)ifqg" &€ F
q <S> = () maxqqut(q,q’)

A Parsing Algorithm for PCFGs
(with rank < 2)

C(X, Isl) = r(X, (s;s))

C(X, i) =max, C(Z, i+1) x r(X, (s, Z))
goal = C(N,, 1)

priority(C(X, 1)) = |s| - (|s]| - 1) =1

Notice: third term of C(...) is always |s|.

(0, (s,q))=e(q,s) tq,q)ifqg" &€ F
q <S> = () maxqqut(q,q’)

A Parsing Algorithm for PCFGs
(with rank < 2)

C(X, Is]) = r(X, (s5)))

C(X, i) =max, C(Z, i+1) x r(X, (s, Z))
goal = C(N,, 1)

priority(C(X, 1)) = |

(0, (s,q))=e(q,s) tq,q)ifqg" &€ F
q <S> = () maxqqut(q,q’)

Equivalent to Back-Viterbi!

C(X, Is]) = r(X, (ssp)

C(X, i) =max, C(Z, i+1) x r(X, (s, Z))
goal = C(N,, 1)

priority(C(X, 1)) = |

C(X, Is]) =e(q, s) x maxz, c ¢ H(X, Z)
C(X, i) = maxzge C(Z, i+1) x e(X, s;) x (X, Z)
goal = C(qy, 1)

priority(C(X, i)) =i "(a, (s,) =e(a,s) tq, q) ifq &F
q<S>= () maxquFt(q q)

Kernels and Dual Weights

* Recall that a kernel is a way of implicitly expanding
our feature set by replacing the dot-product with
new function of two vectors.

K(F(x) E(x5)) = £(x,y) 1/ (+',y)

* Recall also that dual formulation of linear models
uses “support vectors” (sparse in SVMs, but holds
for most parameter estimation methods):

WEEOCW xy K EEOCK xy xy))

i y'€GEN(y i y'€GEN(y

Specialized Kernels

* The kernel function K'is just a measure of
similarity.
— Higher = more similar.

A function of two objects (any objects!) is a

kernel if it equates to taking a dot product in
some feature space.

* Let's reason backwards ...
— What feature spaces would we like?

Tree Kernels
(Collins and Dufty, 2002)

The feature vector implied by the use of a
CFG is a vector of rule counts.

Implied kernel:

K(t,7,)= Ecount(r;rl) xcount(r;t,)
reG

Rules are just “bits” of structure.

Scaling up: what if we could match up all
subtree types?

Subtree Features

2(A(CB)) 1(A((CDA)B)
1(C(DA) 1(A(CDA)(BwW)

1 (D x) 1 (A ((C (D x) A) B)
1(Cy) T(A((C(Dx)A)(Bw))
1(B2z) T(A(CD(ACB))

1 (B w) (B w))
0(D(BB) 1(A((C(Dx)(ACB))
0 (A (B C) (B w))

0 (B (C C)

1 (A(CDx ACY)®B
2))) (B w))

“All Subtrees”

* Not a new idea.
— Bod (1998 and before): “data-oriented parsing”

* many tricks required - not efficient

— Goodman (1996): convert DOP model to an
approximating PCFG

* Collins and Duffy (2002): can implement this as a
kernel!
— Avoid the Really Big feature representation.
— Train using discriminative methods.

* Note: subtrees contain full rules; can’t break just
anywhere.

The All-Subtrees Kernel

K(t,7,) = Ecount(r;rl) x count(7;T,)

3t 3]

7, C14

= 2 2 2nn)nn)
7, Cr 1,C7, T

— E E [# of matching subtrees rooted at nl’ ,nzj]

. J/

ni Ct; nj Cr, Y

A(nfni)
4?

Summing over nodes
In the two trees!

Dynamic Program

0 if different productions at roots
1 if same production and preterminal roots

H(l + A(nlkid("’k),nfd(j #))) if same production and not preterminal roots
L &

Thought question: what's the runtime?

9 X
y £ ¢ :
O 00@ matches at (higher) C: 2
X

matches at (higher) C: 2
matches at (higher) B: 1

matches at (higher) C: 2
matches at (higher) B: 1

A(A14 Ag4) = (1+A(Cy 3, Cy3))x (T + A(Bygy Byy)) =6

NB

» Labeled sequences are trees, too.
— As we saw!

* S0 you can define an “all-fragments” kernel
for labeled sequences in exactly the same

way.
. Try it!

Problem with the Dual
Representation

* Decoding for parsing and tagging models usually
involves dynamic programming (max-times).

— For that, we need w.
— Need to convert back to the primal.

 How many different a?
— Exponential! (Size of 2 ,GEN(x).)

WEEOC EEany xy))

i y'€GEN(y i y'€GEN(y

Discriminative Reranking

 Reduce the size of GEN.

» Use a base model to propose a list of the top
N structures.
— Usually done approximately until 2005.
— Goodman (1999): N-best semiring (not efficient)

— Huang and Chiang (2005): general solution to
N-best lists for (max-plus) dynamic programming
algorithms.

* Train a model to discriminate correct
structure from other top-N structures.

Discriminative Reranking

Collins (2000):

— Exp-loss evaluated
— Log-loss defined, not tested (more expensive)

See Riezler et al. (2002) and Charniak and
Johnson (2005) for log-loss results.

Don’t need kernels for this!
— Still unclear how easily we can mix kernels with log-loss.
Great way to throw in features that are too

expensive to put into a dynamic programming
algorithm.

Everything That's Old is New
Again
Brill (1992). “transformation-based learning”

No model and no weights.

Transformation: a rule that modifies the structure.

— E.g., “if the word is dog and the word before it is the, tag
the word NOUN.”

— Think of these as “find-replace” operators.

What is learned?
— A sequence of deterministic transformations.

Applied to tagging, NER, parsing, ...
Application: apply transformations in sequence.
— Really fast!

Training ...

TBL Training

Specify all rule templates.
* Apply baseline to training data.

L=0
Iterate until performance decreases on dev set:

— Choose the rule R that increases net accuracy by the
most (if it exists; else quit). (Expensive search!)
— Add the rule to the end of L.

— Apply R to the training data.
* Return L.

Notes:
This is a greedy learner.
Error rate on training data is guaranteed to decrease until termination.

Recap of Discriminative Methods:
Attacking Error Directly

Linear separation and the perceptron

Conditional estimation, Boosting, Maximum Margin
training

— 0-1 loss, log-loss, exp-loss, hinge loss

Lagrange duality

Support vector machines

Kernels
— Tree kernels

Reranking
Transformation-based learning

Next Time ...

Unsupervised learning: models gone wild!

