
Language and Statistics II

Lecture 16: Going Discriminative
(part two)

Noah Smith

Lecture Overview
• Quick review
• Maximum margin training

– Nonseparable data
– Hinge loss
– Training

• Dual
• Sparsity and support vectors
• Factored structure prediction with SVMs

– Kernels
– MIRA

• Discriminative methods in general:
– Bringing in “global” features
– Reranking

Note: Much
material was
adapted from
the Klein &
Taskar ACL
2005 tutorial.
Highly
recommended
reading!

Quick Review

• Motivation: only model/discriminate what is
necessary.

• Perceptron: find a linear separator.
• Exp-loss and boosting
• Log-loss

= conditional estimation of a log-linear model
= maximum “softmax” margin

• Maximum margin, arbitrary loss function
A QP with way too many constraints!

(Multiclass) Support Vector
Machines

First form:
Note constraint on w. This

prevents us from cheating
by using really big weights.
(Can think of it as built-in
regularization.)

Second form: change of
variable.

Note that the objective is
quadratic (indeed, psd!),
and the constraints are
linear.

!

min
w

1

2
w "w

s.t.#i,#y $ GEN xi(),

w " f xi,yi() %w " f xi,y() & l y,yi;xi()

!

max
w:
1

2
w"w#1

$

s.t.%i,%y & GEN xi(),

w " f xi,yi() 'w " f xi,y() ($l y,yi;xi()

(Multiclass) Support Vector
Machines

Intuition: find weights that make alternative,
incorrect y “as far away as they are bad.”

badness = loss
far-away-ness = margin

!

min
w

1

2
w "w

s.t.#i,#y $ GEN xi(),

w " f xi,yi() %w " f xi,y() & l y,yi;xi()

(Multiclass) Support Vector
Machines

Bad news: one constraint for every wrong y for
every example!

(Think about parsing or sequences …
exponentially bad!)

Bad news: what if the data aren’t separable?

!

min
w

1

2
w "w

s.t.#i,#y $ GEN xi(),

w " f xi,yi() %w " f xi,y() & l y,yi;xi()

Slack Variable for Non-Separability

“Cut the constraints some slack” - loss on ith example
diminished by ξi.

Objective pays proportional to the amount of slack.
C is “capacity.” Larger C = more smoothing.

!

min
w

1

2
w "w

s.t.#i,#y $ GEN xi(),

w " f xi,yi() %w " f xi,y() & l y,yi;xi()

!

min
w,"

1

2
w #w+ C " i

i

$

s.t.%i,%y & GEN xi(),

w # f xi,yi() 'w # f xi,y() (l y,yi;xi() '" i

Solving for ξi

!

"i,"y # GEN xi(),

w $ f xi,yi() %w $ f xi,y() & l y,yi;xi() %' i
' i & l y,yi;xi() %w $ f xi,yi() + w $ f xi,y()

"i, ' i = max
y#GEN xi()

l y,yi;xi() + w $ f xi,y()[] %w $ f xi,yi()

!

min
w

C'

2
w "w# w " f xi,yi() # max

y$GEN xi()
w " f xi,y() + l y,yi;xi()[]

%
&
'

(
)
*

i

+

Having solved for the slack variable, we can substitute for it!

“Min-max” formulation …

Compare with Log-loss (again)

!

min
w

C'

2
w "w# w " f xi,yi() # max

y$GEN xi()
w " f xi,y() + l y,yi;xi()[]

%
&
'

(
)
*

i

+

“Min-max” formulation of the SVM objective.

!

min
w

C'

2
w "w# w " f xi,yi() # log exp

y$GEN xi()

% w " f xi,y()[]
&

'
((

)

*
+ +

i

%

Conditional training for log-linear models (with
quadratic regularizer/Gaussian prior)

Loss Functions for Binary
Classificationloss

p(yi | xi)

continuous?
differentiable?
convex?

hinge loss
once yi
wins by
“enough,”
objective
stops
pushing
for greater
separation

Making Training Tractable

• Let’s use the slack variable formulation for
now.

• To get rid of the exponentially many
constraints, we must use Lagrange
multipliers.

!

min
w,"

1

2
w #w+ C " i

i

$

s.t.%i,%y & GEN xi(),

w # f xi,yi() 'w # f xi,y() (l y,yi;xi() '" i

Mini-course on Lagrange
Multipliers

• These shouldn’t be too new to you.
• We have used them twice before!

– To prove that relative frequencies maximize
likelihood for multinomials.

– To derive (unconstrained) maximum likelihood
from (constrained) maximum entropy.

• This should not be scary!

Lagrange Duality

f

w

!

f w
*() = min

w:g w()"0
f w()

g

Lagrange Duality

f

w

!

f w
*() = min

w:g w()"0
f w() α

!

" w,#() = f w() $# % g w()

Λ

g≥0

f

w

!

f w
*() = min

w:g w()"0
f w() α

!

" w,#() = f w() $# % g w()

Λ
!

f w
*() =min

w

max
":"#0

$ w,"() =max
":"#0

min
w

$ w,"()

g≥0

f

w

!

f w
*() = min

w:g w()"0
f w() αg≥0

!

" w,#() = f w() $# % g w()

Λ
!

f w
*() =min

w

max
":"#0

$ w,"() =max
":"#0

min
w

$ w,"()

!

f w
*() =min

w

" w() =min
w

max
#:#$0

" w,#()

!

" w() =max
#:#$0

f w() %# & g w()[]

primal

f

w

!

f w
*() = min

w:g w()"0
f w() αg≥0

!

" w,#() = f w() $# % g w()

Λ
!

f w
*() =min

w

max
":"#0

$ w,"() =max
":"#0

min
w

$ w,"()

!

f w
*() =min

w

" w() =min
w

max
#:#$0

" w,#()

!

" w() =max
#:#$0

f w() %# & g w()[]

primal

f

w

!

f w
*() = min

w:g w()"0
f w() αg≥0

!

" w,#() = f w() $# % g w()

Λ
!

f w
*() =min

w

max
":"#0

$ w,"() =max
":"#0

min
w

$ w,"()

!

f w
*() =min

w

" w() =min
w

max
#:#$0

" w,#()

!

" w() =max
#:#$0

f w() %# & g w()[]

Inside the feasible
region, the
maximizing α is 0.
Λ(w) tracks f(w).

Outside the feasible
region, the
maximizing α goes to
∞. So does Λ(w)!

primal

f

w

!

f w
*() = min

w:g w()"0
f w() α

!

" w,#() = f w() $# % g w()

Λ
!

f w
*() =min

w

max
":"#0

$ w,"() =max
":"#0

min
w

$ w,"()

g≥0

!

f w
*() =max

":"#0
$ "() =max

":"#0
min
w

$ w,"()

!

" #() =min
w

f w() $# % g w()[]

dual

f

w

!

f w
*() = min

w:g w()"0
f w() α

!

" w,#() = f w() $# % g w()

Λ
!

f w
*() =min

w

max
":"#0

$ w,"() =max
":"#0

min
w

$ w,"()

g≥0

!

f w
*() =max

":"#0
$ "() =max

":"#0
min
w

$ w,"()

!

" #() =min
w

f w() $# % g w()[]

What do we know
about the α that
maximizes Λ(α)?

dual

f

w

!

f w
*() = min

w:g w()"0
f w() α

!

" w,#() = f w() $# % g w()

Λ
!

f w
*() =min

w

max
":"#0

$ w,"() =max
":"#0

min
w

$ w,"()

g≥0

!

f w
*() =max

":"#0
$ "() =max

":"#0
min
w

$ w,"()

!

" #() =min
w

f w() $# % g w()[]

If the constraint is
inactive (g > 0) at the
minimum, then the
solution is α = 0.

dual

f

w

!

f w
*() = min

w:g w()"0
f w() α

!

" w,#() = f w() $# % g w()

Λ
!

f w
*() =min

w

max
":"#0

$ w,"() =max
":"#0

min
w

$ w,"()

g≥0

!

f w
*() =max

":"#0
$ "() =max

":"#0
min
w

$ w,"()

!

" #() =min
w

f w() $# % g w()[]

If the constraint is
active (g = 0) at the
minimum, then …

dual

!

" #() =min
w

f w() $# % g w()[]

α

dual

Gradient of f(w) is never
0 when g(w) ≥ 0

But for some α,
gradient of Λ(α) is 0
and the minimizing w is
such that g(w) = 0!

w

dual

Primal and Dual
Primal:
• Infinite penalty for not

meeting the
constraints.

• Optimizing α* will
always be zero in
feasible region.

Dual:
• Solve analytically for w

in terms of α.
• Gradient of constraint

“makes up for” nonzero
gradient of f, if
necessary … pushing
w to feasible boundary.

• Maximizing w.r.t. α
gives a feasible,
optimal solution.

• Then go back and
solve for w.

Back to SVMs

• Just like in the example, the max margin
objective has primal and dual forms.

• Slack variable version:

• Primal:

• Dual:

!

min
w,"

1

2
w #w+ C " i

i

$

s.t.%i,%y & GEN xi(),w # f xi,yi() 'w # f xi,y() (l y,yi;xi() '" i

!

max
":"#0

min
w,$

1

2
w %w+ C $ i & " i,y w % f xi,yi() &w % f xi,y() & l y,yi;xi() + $ i[]

y'GEN xi()

(
i

(
i

(

!

min
w,"
max
#:#$0

1

2
w %w+ C " i & # i,y w % f xi,yi() &w % f xi,y() & l y,yi;xi() + " i[]

y'GEN xi()

(
i

(
i

(

The Key Trick
• Think of the Lagrange multipliers (αi,y) as

constants.
• Solve for w and ξ analytically in terms of the αi,y.

(How?)
• Then optimize over values of αi,y only.
• You should be able to then show that:

!

" i,y

y#GEN xi()

$
i

$ = C

w = " i,y f xi,yi() % f xi,y()()
y#GEN xi()

$
i

$

& "() =min
w,'

& w,',"() = %
1

2
" i,y f xi,yi() % f xi,y()()

y#GEN xi()

$
i

$
2

+ " i,yl y,yi;xi()
y#GEN xi()

$
i

$

The Dual Problem
• So solve for the αs and then compute w.
• Each αi,y corresponds to a constraint

– αi,y is only positive if the (i, y) constraint is active; then y
is a support vector.

• Now only have nonnegativity constraints on αi,y.
• But for exponential-sized GEN, still too many

variables!

!

w = " i,y f xi,yi() # f xi,y()()
y$GEN xi()

%
i

%

& "() =min
w,'

& w,',"() = #
1

2
" i,y f xi,yi() # f xi,y()()

y$GEN xi()

%
i

%
2

+ " i,yl y,yi;xi()
y$GEN xi()

%
i

%

Factored Models

• Recall that features become more expensive
as they become less local.
– Bigram vs. trigram HMM
– Vanilla PCFG vs. parent-annotated PCFG

• Very common assumptions:
factored features factored loss

!

f x,y() = fp xp,yp()
p

"

w # f x,y() = w # fp xp,yp()
p

"

!

l " y ,y;x() = " y p # yp[][]
p

$

Factored Models

• Are we giving anything up?
(The question returns in assignment 4!)

!

f x,y() = fp xp,yp()
p

"

w # f x,y() = w # fp xp,yp()
p

"

!

l " y ,y;x() = " y p # yp[][]
p

$

Back to Min-Max

!

min
w

1

2
w "w # C w " f xi ,yi() # max

y$GEN xi()
w " f xi ,y() + l y,yi ;xi()[]

%

&
'

(

)
*

i

+

!

f x,y() = fp xp,yp()
p

"

w # f x,y() = w # fp xp,yp()
p

"

assumptions

!

l " y ,y;x() = " y p # yp[][]
p

$

Back to Min-Max

!

min
w

1

2
w "w # C w " f xi ,yi() # max

y$GEN xi()
w " f xi ,y() + l y,yi ;xi()[]

%

&
'

(

)
*

i

+

!

f x,y() = fp xp,yp()
p

"

w # f x,y() = w # fp xp,yp()
p

"

assumptions
!

min
w

1

2
w "w#C w " f xi,yi() # max

y$GEN xi()
w " fp xip ,yp() + yp % yip[][]

p

&
'

(
)
)

*

+
,
,

-

.
/
/

0

1
2
2

i

&

!

l " y ,y;x() = " y p # yp[][]
p

$

Convert Inner “Max” to a Linear
Program

!

min
w

1

2
w "w # C w " f xi ,yi() # max

y$GEN xi()
w " f xi ,y() + l y,yi ;xi()[]

%

&
'

(

)
*

i

+

!

min
w

1

2
w "w#C w " f xi,yi() # max

y$GEN xi()
w " fp xip ,yp() + yp % yip[][]

p

&
'

(
)
)

*

+
,
,

-

.
/
/

0

1
2
2

i

&

!

min
w

1

2
w "w#C w " f xi,yi() # max

z:y z()$GEN xi()
Fi
T
w+

r
l i() " z[]%

&
'

(
)
*

i

+

!

min
w

1

2
w "w#C w " f xi,yi() # max

A i z$b i ,
z%0

Fi
T
w+

r
l i() " z[]

&

'

(
(

)

*

+
+

i

,

Notation

!

Fi = fp1
xi,y z()() fp2

xi,y z()() L fpm
xi,y z()()[]

!

r
l i =

yip
1

" y z()
p
1

[][]
M

yipm " y z()
pm

[][]

$

%
%
%
%

&

'

(
(
(
(

!

A
i
,b

i
,z are defined problem-specifically

Duality Returns!
• Primal LP • Dual LP

!

max
z

c " z

s.t. Az # b

z $ 0

!

min
"

b #
r
"

s.t. A
T
r
" $ c

r
" $ 0

!

c " z = b "
r
at optimum:

Convert Inner “Max” to a
Tractable Linear Program

!

min
w

1

2
w "w # C w " f xi ,yi() # max

y$GEN xi()
w " f xi ,y() + l y,yi ;xi()[]

%

&
'

(

)
*

i

+
…

!

min
w,

r
"

1

2
w #w$C w # f xi,yi() $bi #

r
" i()

i

%

s.t. &i,A i

T
r
" i ' Fi

T
w+

r
l i

r
" i ' 0

Taskar et al. (2004):
polynomial # of
constraints

!

min
w

1

2
w "w#C w " f xi,yi() # max

A i z$b i ,
z%0

Fi
T
w+

r
l i() " z[]

&

'

(
(

)

*

+
+

i

,

Take the Dual®

!

min
w,

r
"

1

2
w #w$C w # f xi,yi() $bi #

r
" i()

i

%

s.t. &i,A i

T
r
" i ' Fi

T
w+

r
l i

r
" i ' 0

!

max
r
µ

r
l i "

r
µ i #

1

2
Cf xi,yi() #Fi

r
µ i

i

$
2

s.t. %i,A i

T r
µ i & Cbi

r
µ i ' 0

How many variables?

What I’ve Skipped

• Training technique: Sequential minimal
optimization (SMO; Platt 1998)
– Breaks big optimization problem into a bunch of

smaller ones.
• Exactly how to express labeling, parsing, and

other NLP problems as LPs.
– Homework problem!

A Word About Kernels
• So far, everything has been linear.

– Dot-products of various things with weight and feature
vectors.

• You can think of the dot-product a⋅b as a similarity
measure between a and b.
– The greater a dot-product is, the more similar.

• Kernels generalize this into more dimensions.
– Still a dot product, but now between φ(a) and φ(b)
– In higher-dimensional spaces, may be possible to find a

separating hyperplane.
• Kernel trick: efficient computation of the new dot

product permits non-linear classification.

Some Kernels

!

k a,b() = a "b+1()
d

= 1+ a
i
b
i

i

#
$

%
&

'

(
)

d

= a "b+ a
1
b
1
a "b() +L+ a

n
b
n
a "b() +L

polynomial:

!

k a,b() = exp "# a "b
2()

radial basis function:

!

k a,b() = tanh "a #b+ c()

sigmoid:

Kernels

• Not widely used in NLP, but a few
specialized kernels have been developed for
trees, sequences, etc.

• Central ideas:
– Maximizing the margin
– Neat math tricks to make it tractable when ported

to NLP problems

Next Time

• MIRA, a useful online training algorithm
• When the features get big, the tough get to

reranking!

