Language and Statistics II

Lecture 15: Going Discriminative

Noah Smith

Lecture Outline

- Perceptron for training structured models
- Loss functions for structures
- Boosting
- Maximum margin training: intuition and the big idea

Beware

- In this lecture, I won't say much about the form of the model.
- Assume discrete inputs and discrete outputs.
- If you like, think of parsing or tagging.
- Score = $\exp f(x, y) \cdot w$ unless otherwise noted.
- Nitpicky point, for correctness: assume $\forall x, \forall y, f_0(x, y) = 1$. (w_0 is a bias weight.)
- Subroutines you already know and love:
 - Sum scores over all *y*'s for a given *x*
 - Find maximum-scoring *y* for a given *x*

General Idea

- MLE: max p(x, y) = p(x)p(y|x)
- MCLE: max p(y|x)

(Why model x?)

Indeed, why estimate densities at all?

Unlike other training methods we have seen

- (Maximum likelihood
- Maximum condtional likelihood)
- the perceptron does not explicitly maximize a function.

Instead, it simply tries to learn a model that separates the **right answer** from the wrong answers.

It's also really simple.

• "Global linear model" over structures.

- Prediction:
$$\hat{y} = \underset{y \in \text{GEN}(x)}{\operatorname{arg\,max}} \mathbf{f}(x, y) \cdot \mathbf{w}$$

- -x is the input
- -y is the output
- GEN enumerates all possible *y* for a given *x*
- **f** maps (input, output) to \mathbb{R}^d
- $-\mathbf{w}$ is the weight vector (\mathbb{R}^d)
- Learning/training/estimation: pick w

- Nothing has changed! Just like log-linear models!
- Examples:
 - x is a sentence, y is a POS tag sequence
 - x is a sentence, y is an NP bracketing
 - -x is a sentence, y is a parse tree
 - -x is two sentences, y is a word alignment
 - -x is a sentence, y is its translation

- Input: (x_i, y_i) for i = 1 ... n; T
- Output: w

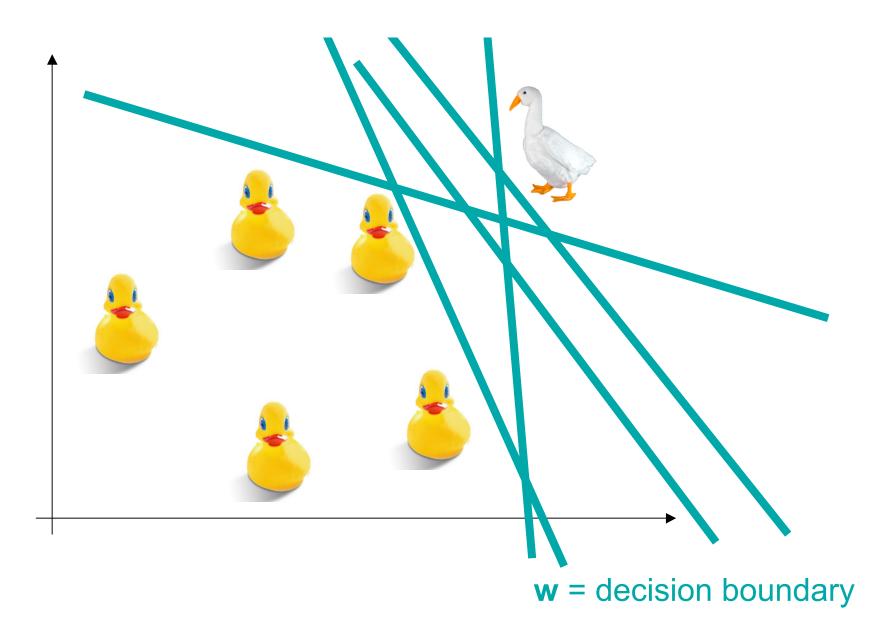
w ← 0

for
$$t = 1 \dots T$$

for $i = 1 \dots n$
 $y_{hyp} \leftarrow \operatorname{argmax}_{y} \mathbf{f}(x_{i}, y) \cdot \mathbf{w}$
 $\mathbf{w} \leftarrow \mathbf{w} + \mathbf{f}(x_{i}, y_{i}) - \mathbf{f}(x_{i}, y_{hyp})$
return \mathbf{w}

Intuition Behind Perceptron Updates $\mathbf{w} \leftarrow \mathbf{w} + \mathbf{f}(x_i, y_i) - \mathbf{f}(x_i, y_{hvp})$

- If $y_i = y_{hyp}$, no change.
- Otherwise, for each f_i :
 - $\text{ If } f_j(x_i, y_i) > f_j(x_i, y_{\text{hyp}}), \text{ increase } w_j$
 - Else if $f_j(x_i, y_i) < f_j(x_i, y_{hyp})$, decrease w_j
 - Else *f_j* makes no difference on this example, so don't change *w_j*



Duck, Duck, Goose

Theorems

• If the training data (x_i, y_i) for $i = 1 \dots n$ are **separable** with margin m, and $R \ge || \mathbf{f}(x_i, y_i) - \mathbf{f}(x_i, y) ||$ for all $i = 1 \dots n$, y in $GEN(x_i) \setminus \{y_i\}$

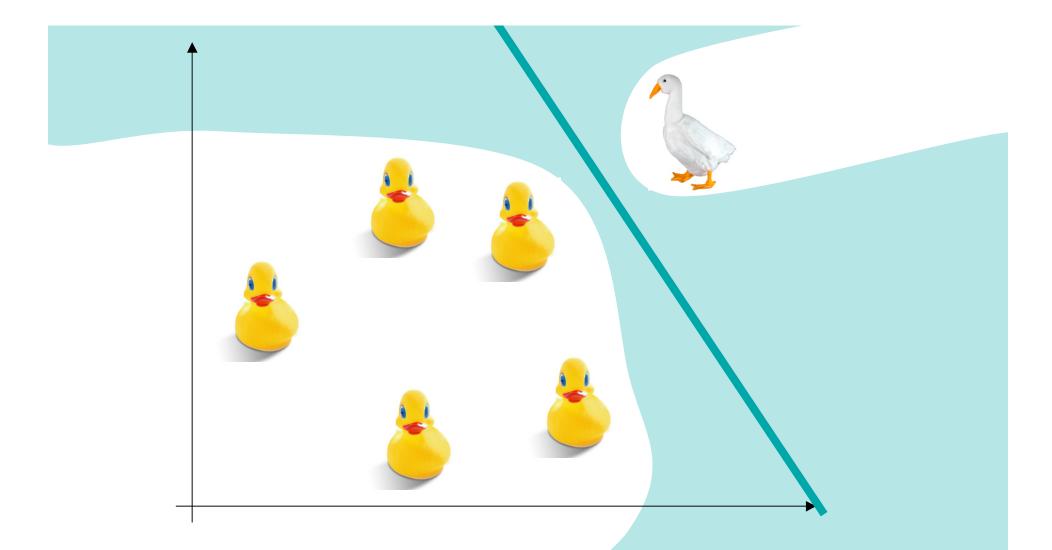
then

#mistakes $\leq \mathbb{R}^2 / \mathbb{m}^2$

This extends a classification theorem by Freund & Schapire (1999).

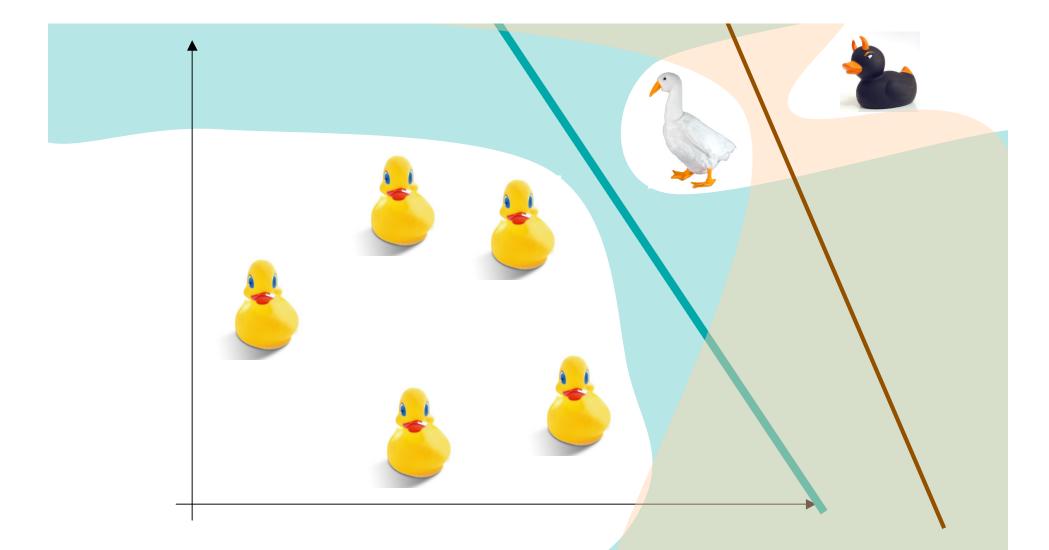
Comments

- What if the training data are **not** separable?
 See Collins (2002) for the bound. Not as tight!
 Does it matter? Are NLP data separable?
- How long does it take?
 - You decide: T (finite convergence time for separable data guaranteed)
 - Remember: no function to optimize!
- Dealing with oscillation:
 - Averaging: average each iterate of w
 - Voting: keep each iterate of w, let them all vote



w = decision boundary

Voted Perceptron



w = decision boundary

Voted Perceptron

Estimation Methods: A Guide

Name	Features?	Training?	Decoding
Maximum likelihood	Must fit stochastic "story"	Count & Normalize®	$\max_{y} \mathbf{f}(x, y) \cdot \mathbf{w}$
Maximum Conditional likelihood	Relatively local	Convex optimization; $\sum_{y} e^{f(x,y) \cdot w}$ (sum over y)	max _y f (x,y)⋅ w
Perceptron	Relatively local	Perceptron; $\max_{y} \mathbf{f}(x, y) \cdot \mathbf{w}$	max _y f (x,y)⋅w

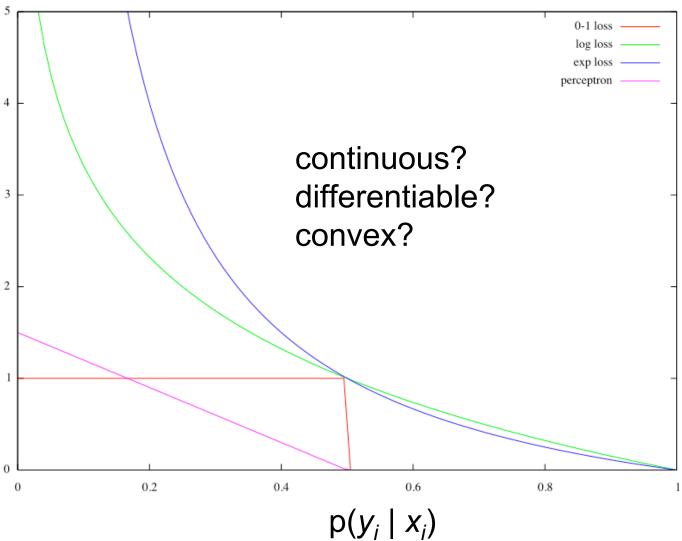
Loss Functions

- At this point it behooves us to talk about loss functions.
- Maximum conditional likelihood can be said to minimize -log p(y_i | x_i).

– This is sometimes called the **log loss**.

- There are many other loss functions!
 - Some are easier to minimize than others, and some have loftier goals than others.

Loss Functions for Binary Classification



loss

Boosting and Exp Loss

- Usually refers to "AdaBoost," another learning algorithm (Freund & Schapire, 1995).
 - The short version: aims* to minimize exp loss:

$$\sum_{i} \sum_{y \in \text{GEN}(x_i)} \exp\left(\mathbf{w} \cdot \mathbf{f}(x_i, y) - \mathbf{w} \cdot \mathbf{f}(x_i, y_i)\right)$$
$$= \frac{1}{p_{\mathbf{w}}(y_i | x_i)} - 1 \qquad \text{*Actually}$$

- *Actually minimizes a bound.
- Exp loss is an upper bound on **ranking loss** (the number of alternative *y* that beat *y_i*).

Estimation Methods: A Guide

Name	Features?	Training?	Decoding
Maximum likelihood	Must fit stochastic "story"	Count & Normalize®	$\max_{y} \mathbf{f}(x, y) \cdot \mathbf{w}$
Maximum Conditional likelihood	Relatively local	Convex optimization; $\sum_{y} e^{f(x,y) \cdot w}$ (sum over y)	max _y f (x,y)⋅ w
Perceptron	Relatively local	Perceptron; $\max_{y} \mathbf{f}(x, y) \cdot \mathbf{w}$	$\max_{y} \mathbf{f}(x, y) \cdot \mathbf{w}$
Minimum exp-loss	Relatively local	Convex optimization or boosting; $\sum_{y} e^{f(x,y) \cdot w}$ (sum over y)	$\max_{y} \mathbf{f}(x, y) \cdot \mathbf{w}$

See Also

- Altun, Johnson, & Hoffman (EMNLP 2003)
 - Comparison among {log loss, exp loss} × {sequence loss, pointwise loss}.
 - Sequence loss: pay for getting the whole tag sequence or tree wrong
 - Pointwise loss: pay for each word you got wrong

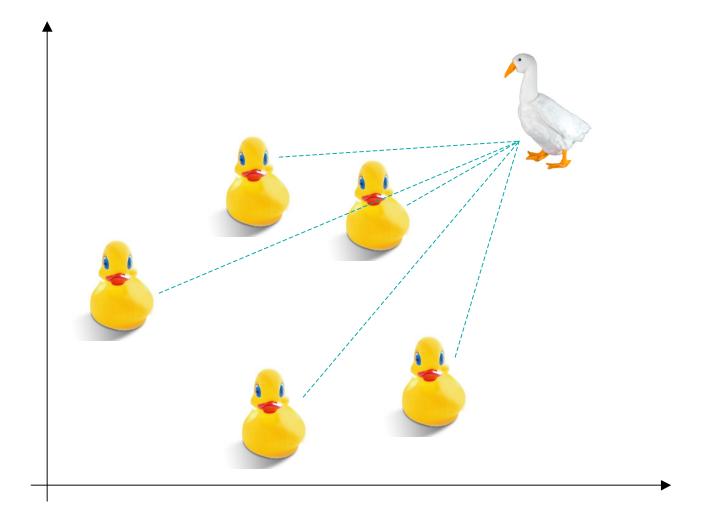
From Loss to Margin

 You can think of loss functions as trying to improve the score of (x_i, y_i) as compared to scores of alternative outputs with x_i.

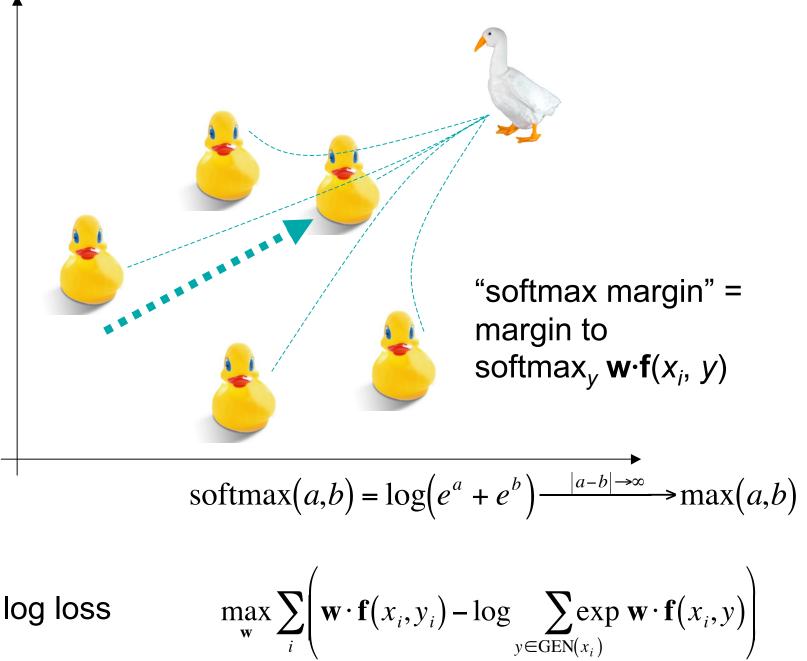
exp loss

$$\max_{\mathbf{w}} - \sum_{i} \sum_{y \in \text{GEN}(x_i)} \exp\left(\mathbf{w} \cdot \mathbf{f}(x_i, y) - \mathbf{w} \cdot \mathbf{f}(x_i, y_i)\right)$$
og loss

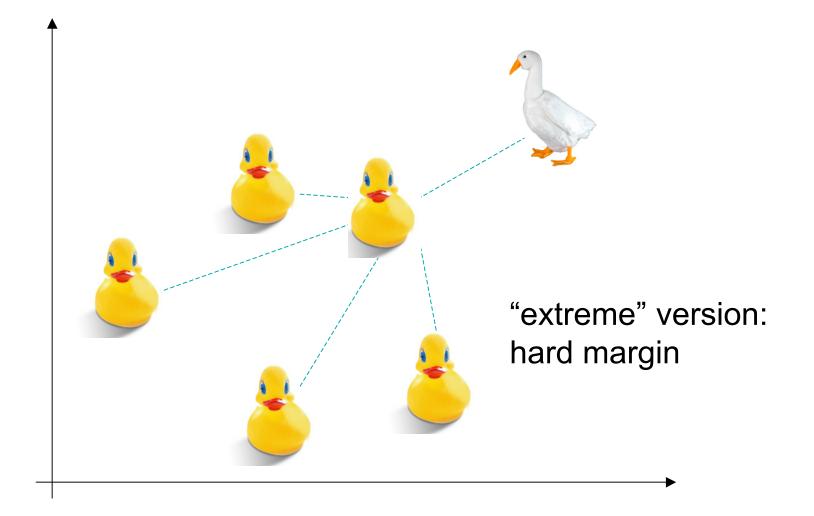
$$\max_{\mathbf{w}} \sum_{i} \left(\mathbf{w} \cdot \mathbf{f}(x_i, y_i) - \log \sum_{y \in \text{GEN}(x_i)} \exp \mathbf{w} \cdot \mathbf{f}(x_i, y)\right)$$



log loss
$$\max_{\mathbf{w}} \sum_{i} \left(\mathbf{w} \cdot \mathbf{f}(x_{i}, y_{i}) - \log \sum_{y \in \text{GEN}(x_{i})} \exp \mathbf{w} \cdot \mathbf{f}(x_{i}, y) \right)$$

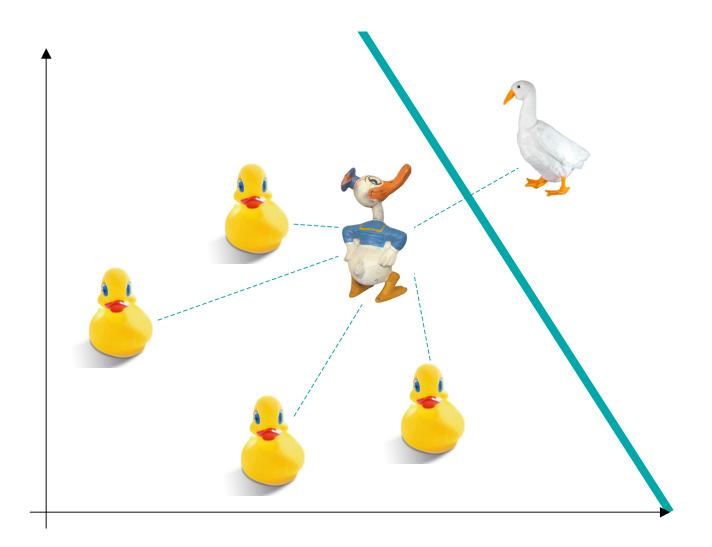


log loss



$$\max_{\mathbf{w}} \sum_{i} \left(\mathbf{w} \cdot \mathbf{f}(x_{i}, y_{i}) - \max_{y \in \text{GEN}(x_{i})} \mathbf{w} \cdot \mathbf{f}(x_{i}, y) \right)$$

0-1 loss



$$\max_{\mathbf{w}} \sum_{i} \left(\mathbf{w} \cdot \mathbf{f}(x_{i}, y_{i}) - \max_{y \in \text{GEN}(x_{i})} \mathbf{w} \cdot \mathbf{f}(x_{i}, y) \right)$$

0-1 loss

Desiderata

- Don't really want 0-1 loss
 - Tagging accuracy
 - Parseval accuracy
 - MT evaluation scores
- Core idea of maximum margin methods:

Maximize the (hard) margin under a particular **loss** function.

(Multiclass) Support Vector Machines

First form:

Note constraint on **w**. This prevents us from cheating by using really big weights. (Can think of it as built-in regularization.)

$$\max_{\mathbf{w}:\frac{1}{2}\mathbf{w}\cdot\mathbf{w}\leq 1} \gamma$$

s.t. $\forall i, \forall y \in \text{GEN}(x_i),$
 $\mathbf{w}\cdot\mathbf{f}(x_i, y_i) - \mathbf{w}\cdot\mathbf{f}(x_i, y) \geq \gamma \ell(y, y_i; x_i)$

Second form: change of variable.

Note that the objective is quadratic (indeed, psd!), and the constraints are linear.

$$\begin{split} \min_{\mathbf{w}} \frac{1}{2} \mathbf{w} \cdot \mathbf{w} \\ s.t. \,\forall i, \forall y \in \text{GEN}(x_i), \\ \mathbf{w} \cdot \mathbf{f}(x_i, y_i) - \mathbf{w} \cdot \mathbf{f}(x_i, y) \geq \ell(y, y_i; x_i) \end{split}$$

Estimation Methods: A Guide

Name	Features?	Training?	Decoding
Maximum likelihood	Must fit stochastic "story"	Count & Normalize®	$\max_{y} \mathbf{f}(x, y) \cdot \mathbf{w}$
Maximum Conditional likelihood	Relatively local	Convex optimization; $\sum_{y} e^{f(x,y) \cdot w}$ (sum over y)	max _y f (x,y)⋅ w
Perceptron	Relatively local	Perceptron; $\max_{y} \mathbf{f}(x, y) \cdot \mathbf{w}$	max _y f (x,y)⋅ w
Minimum exp-loss	Relatively local	Convex optimization or boosting; $\sum_{y} e^{f(x,y) \cdot w}$ (sum over y)	$\max_{y} \mathbf{f}(x, y) \cdot \mathbf{w}$
Maximum margin (I)	Relatively local	Quadratic program (exponentially many constraints)	$\max_{y} \mathbf{f}(x, y) \cdot \mathbf{w}$

Coming Soon

- Maximum margin training:
 - Allowing for nonseparable data
 - Hinge loss
 - Making maximum margin training tractable
 - Dual form
 - Factored dual form
 - Sparsity and support vectors
 - Examples on NL tasks
 - Kernels
- Discriminative methods in general:
 - Bringing in "global" features
 - Reranking

