
Language and Statistics II

Lecture 15:  Going Discriminative

Noah Smith



Lecture Outline

• Perceptron for training structured models
• Loss functions for structures
• Boosting
• Maximum margin training:  intuition and the

big idea



Beware
• In this lecture, I won’t say much about the form of

the model.
• Assume discrete inputs and discrete outputs.
• If you like, think of parsing or tagging.
• Score = exp f(x, y)⋅w unless otherwise noted.
• Nitpicky point, for correctness:  assume ∀x, ∀y,

f0(x, y) = 1.  (w0 is a bias weight.)
• Subroutines you already know and love:

– Sum scores over all y’s for a given x
– Find maximum-scoring y for a given x



General Idea

• MLE:  max p(x, y) = p(x)p(y|x)
• MCLE:  max p(y|x)

(Why model x?)

Indeed, why estimate densities at all?



Perceptron for Structured Models
(Collins, 2002)

Unlike other training methods we have seen
• (Maximum likelihood
• Maximum condtional likelihood)

the perceptron does not explicitly maximize a
function.

Instead, it simply tries to learn a model that separates
the right answer from the wrong answers.

It’s also really simple.



• “Global linear model” over structures.
– Prediction:

– x is the input
– y is the output
– GEN enumerates all possible y for a given x
– f maps (input, output) to Rd

– w is the weight vector (Rd)

• Learning/training/estimation:  pick w

Perceptron for Structured Models
(Collins, 2002)

! 

ˆ y = argmax
y"GEN x( )

f x, y( ) #w



• Nothing has changed!  Just like log-linear
models!

• Examples:
– x is a sentence, y is a POS tag sequence
– x is a sentence, y is an NP bracketing
– x is a sentence, y is a parse tree
– x is two sentences, y is a word alignment
– x is a sentence, y is its translation

Perceptron for Structured Models
(Collins, 2002)



• Input:  (xi, yi) for i = 1 … n; T
• Output:  w
w ← 0
for t = 1 … T

for i = 1 … n
yhyp ← argmaxy f(xi, y)⋅w
w ← w + f(xi, yi) - f(xi, yhyp)

return w

Perceptron for Structured Models
(Collins, 2002)



Intuition Behind Perceptron
Updates

w ← w + f(xi, yi) - f(xi, yhyp)

• If yi = yhyp, no change.
• Otherwise, for each fj:

– If fj(xi, yi) > fj(xi, yhyp), increase wj

– Else if fj(xi, yi) < fj(xi, yhyp), decrease wj

– Else fj makes no difference on this example, so
don’t change wj



Duck, Duck, Goose
w = decision boundary



Theorems

• If the training data (xi, yi) for i = 1 … n are
separable with margin m, and
R ≥ || f(xi, yi) - f(xi, y) || for all i = 1 … n, y in
GEN(xi) \ {yi}
then

#mistakes ≤ R2 / m2

This extends a classification theorem by
Freund & Schapire (1999).



Comments

• What if the training data are not separable?
– See Collins (2002) for the bound.  Not as tight!
– Does it matter?  Are NLP data separable?

• How long does it take?
– You decide:  T (finite convergence time for

separable data guaranteed)
– Remember:  no function to optimize!

• Dealing with oscillation:
– Averaging:  average each iterate of w
– Voting:  keep each iterate of w, let them all vote



Voted Perceptron
w = decision boundary



Voted Perceptron
w = decision boundary



Estimation Methods:  A Guide

maxy f(x,y)⋅wPerceptron; maxy f(x,y)⋅wRelatively
localPerceptron

maxy f(x,y)⋅wConvex optimization;
∑y ef(x,y)⋅w (sum over y)

Relatively
local

Maximum
Conditional
likelihood

maxy f(x,y)⋅wCount & Normalize®
Must fit
stochastic
“story”

Maximum
likelihood

DecodingTraining?Features?Name



Loss Functions

• At this point it behooves us to talk about loss
functions.

• Maximum conditional likelihood can be said
to minimize -log p(yi | xi).
– This is sometimes called the log loss.

• There are many other loss functions!
– Some are easier to minimize than others, and

some have loftier goals than others.



Loss Functions for Binary
Classificationloss

p(yi | xi)

continuous?
differentiable?
convex?



Boosting and Exp Loss

• Usually refers to “AdaBoost,” another
learning algorithm (Freund & Schapire,
1995).
– The short version:  aims* to minimize exp loss:

*Actually minimizes a bound.

• Exp loss is an upper bound on ranking loss
(the number of alternative y that beat yi).

! 

exp w " f xi,y( ) #w " f xi,yi( )( )
y$GEN xi( )

%
i

%

=
1

p
w
yi xi( )

#1



Estimation Methods:  A Guide

maxy f(x,y)⋅w
Convex optimization or
boosting;
∑y ef(x,y)⋅w (sum over y)

Relatively
local

Minimum
exp-loss

maxy f(x,y)⋅wPerceptron; maxy f(x,y)⋅wRelatively
localPerceptron

maxy f(x,y)⋅wConvex optimization;
∑y ef(x,y)⋅w (sum over y)

Relatively
local

Maximum
Conditional
likelihood

maxy f(x,y)⋅wCount & Normalize®
Must fit
stochastic
“story”

Maximum
likelihood

DecodingTraining?Features?Name



See Also

• Altun, Johnson, & Hoffman (EMNLP 2003)
– Comparison among {log loss, exp loss} ×

{sequence loss, pointwise loss}.
– Sequence loss:  pay for getting the whole tag

sequence or tree wrong
– Pointwise loss:  pay for each word you got wrong



From Loss to Margin

• You can think of loss functions as trying to
improve the score of (xi, yi) as compared to
scores of alternative outputs with xi.
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“softmax margin” = 
margin to 
softmaxy w⋅f(xi, y) 

! 

softmax a,b( ) = log ea + eb( ) a"b #$
% # % % % max a,b( )
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Desiderata

• Don’t really want 0-1 loss
– Tagging accuracy
– Parseval accuracy
– MT evaluation scores

• Core idea of maximum margin methods:

Maximize the (hard) margin under a particular
loss function.



(Multiclass) Support Vector
Machines

First form:
Note constraint on w.  This

prevents us from cheating
by using really big weights.
(Can think of it as built-in
regularization.)

Second form: change of
variable.

Note that the objective is
quadratic (indeed, psd!),
and the constraints are
linear.   

! 

min
w

1

2
w "w

s.t.#i,#y $ GEN xi( ),

w " f xi,yi( ) %w " f xi,y( ) & l y,yi;xi( )
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Estimation Methods:  A Guide

maxy f(x,y)⋅wQuadratic program
(exponentially many constraints)

Relatively
local

Maximum
margin (I)

maxy f(x,y)⋅w
Convex optimization or
boosting;
∑y ef(x,y)⋅w (sum over y)

Relatively
local

Minimum
exp-loss

maxy f(x,y)⋅wPerceptron; maxy f(x,y)⋅wRelatively
localPerceptron

maxy f(x,y)⋅wConvex optimization;
∑y ef(x,y)⋅w (sum over y)

Relatively
local

Maximum
Conditional
likelihood

maxy f(x,y)⋅wCount & Normalize®
Must fit
stochastic
“story”

Maximum
likelihood

DecodingTraining?Features?Name



Coming Soon
• Maximum margin training:

– Allowing for nonseparable data
– Hinge loss
– Making maximum margin training tractable

• Dual form
• Factored dual form

– Sparsity and support vectors
– Examples on NL tasks
– Kernels

• Discriminative methods in general:
– Bringing in “global” features
– Reranking


