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Lecture Outline

Perceptron for training structured models
Loss functions for structures
Boosting

Maximum margin training: intuition and the
big idea



Beware

In this lecture, | won’t say much about the form of
the model.

Assume discrete inputs and discrete outputs.

If you like, think of parsing or tagging.

Score = exp f(x, y)'w unless otherwise noted.
Nitpicky point, for correctness: assume Vx, Vy,
fo(x, ¥) = 1. (w, is a bias weight.)

Subroutines you already know and love:

— Sum scores over all y's for a given x
— Find maximum-scoring y for a given x



General Idea

* MLE: max p(x, y) = p(x)p(y[x)
« MCLE: max p(y|x)

(Why model x?)

Indeed, why estimate densities af all?



Perceptron for Structured Models
(Collins, 2002)

Unlike other training methods we have seen

* (Maximum likelihood
« Maximum condtional likelihood)

the perceptron does not explicitly maximize a
function.

Instead, it simply tries to learn a model that separates
the right answer from the wrong answers.

It's also really simple.



Perceptron for Structured Models
(Collins, 2002)

* “Global linear model” over structures.

— Prediction:  § = argmax f(x,y). -
yEGEN(x)

— x 1s the input

— y is the output

— GEN enumerates all possible y for a given x
— f maps (input, output) to R?

— w is the weight vector (R?)

» Learning/training/estimation: pick w



Perceptron for Structured Models
(Collins, 2002)

* Nothing has changed! Just like log-linear
models!

 Examples:
— X Is a sentence, yis a POS tag sequence
— X IS a sentence, y is an NP bracketing
— X IS a sentence, y is a parse tree
— X Is two sentences, y is a word alignment
— X IS a sentence, y is its translation



Perceptron for Structured Models

(Collins, 2002)
* Input: (x;, y;)fori=1...n; T
* Output: w
w<20
fort=1...T
fori=1...n

Yhyp <= a@rgmax,, f(x;, y)-w

w — w + f(x; y;) - (X, Vi)
return w



Intuition Behind Perceptron
Updates

W< W+ f(X,-, y,) - f(Xi’ yhyp)

* If y; = y,yp: NO change.

» Otherwise, for each
— I £{X;, ¥;) > f(X;; Ypyp)s iINCrease w,
— Else if £(x;, y;) < f(X;, ¥1yp)> decrease w;

— Else f; makes no difference on this example, so
don’'t change w;



\ >

w = decision boundary

Duck, Duck, Goose



Theorems

» |If the training data (x;, y;) fori=1 ... n are
separable with margin m, and
R=z||f(x, y;)-f(x,y)]||foralli=1...n,yin
GEN(x) \ {yi}
then
#mistakes < R? | m?

This extends a classification theorem by
Freund & Schapire (1999).



Comments

* What if the training data are not separable?

— See Collins (2002) for the bound. Not as tight!
— Does it matter”? Are NLP data separable?

 How long does it take?

— You decide: T (finite convergence time for
separable data guaranteed)

— Remember: no function to optimize!
* Dealing with oscillation:
— Averaging: average each iterate of w
— Voting: keep each iterate of w, let them all vote
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w = decision boundary

Voted Perceptron



Estimation Methods: A Guide

Name Features? Training? Decoding
Maximum Must fit
I i7a® .

likelihood ftochizstlc Count & Normalize max, f(x,y)-w

story
Maximum . Y

Convex optimization;

Conditional IReIaItlver fo_ PHmization, max, f(x,y)w
ikelihood | 0C2 2., €W (sum over y)

Relatively _
Perceptron ocal Perceptron; max, f(x,y)w max, f(x,y)-w




L. oss Functions

« At this point it behooves us to talk about loss
functions.

 Maximum conditional likelihood can be said
to minimize -log p(y; | X;).
— This is sometimes called the log loss.

* There are many other loss functions!

— Some are easier to minimize than others, and
some have loftier goals than others.



Loss Functions for Binary
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Boosting and Exp Loss

« Usually refers to “AdaBoost,” another
learning algorithm (Freund & Schapire,
1995).

— The short version: aims™* to minimize exp loss:

E Eexp(wf(xi,y)—w-f(xl.,y,-))

i yEGEN(x,)
—_ 1 1
pw(yi‘xi) *Actually minimizes a bound.

* Exp loss is an upper bound on ranking loss
(the number of alternative y that beat y).




Estimation Methods: A Guide

Name Features? Training? Decoding
Maximum Must fit
I i7a® .

likelihood ftochizstlc Count & Normalize max, f(x,y)-w

story
Maximum . Y

Convex optimization;

Conditional IReIaItlver f X_ plrizat max, f(x,y)w
ikelihood | 0C2 2., €W (sum over y)

Relatively _
Perceptron Perceptron; max, f(x,y)w max, f(x,y)w

local Y y

. _ Convex optimization or

Minimum Relatively boosting: max. f(x,y)w
exp-loss local y

2., e'W (sum over y)




See Also

 Altun, Johnson, & Hoffman (EMNLP 2003)

— Comparison among {log loss, exp loss} x
{sequence loss, pointwise loss}.

— Sequence loss: pay for getting the whole tag
seqguence or tree wrong

— Pointwise loss: pay for each word you got wrong



From Loss to Margin

* You can think of loss functions as trying to
improve the score of (x;, y;) as compared to
scores of alternative outputs with x..

exp 0ss m‘gx—z Eexp (w-f(x,,y)-w-£(x,,y,))

i yEGEN(x;)

log loss maxz w-f(x,y,)-log Eexp w-f(x,y)

i yEGEN(x,-)
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0-1 loss mv?xz(w'f(xi’)’i)_ye%l&)((xi)w'f(xi’)’))



Desiderata

* Don’t really want 0-1 loss
— Tagging accuracy
— Parseval accuracy
— MT evaluation scores

» Core idea of maximum margin methods:

Maximize the (hard) margin under a particular
loss function.



(Multiclass) Support Vector
Machines

First form: max y

Note constraint on w. This  wowwsl
prevents us from cheating .
by using really big weights. 77 € GEN(x,),
(Can think of it as built-in wef(x,y,)-w-f(x,y)=yl(y,y;x;)
regularization.)

Second form: change of i
variable. min—w- w
Note that the objective is ) ,
quadratic (indeed, psd!), - Vi-Vy € GEN(x,)
Ia'r?gat:]e constraints are w-f(x,y,)-w-f(x,y) = (y,y:x,)
| .



Estimation Methods: A Guide

Name Features? Training? Decoding
Maximum Must fit
I i7a® .

likelihood ftochizstlc Count & Normalize max, f(x,y)-w

story
Maximum . Y

Convex optimization;

Conditional IReIaItlver Vf X_ plrizat max, f(x,y)w
ikelihood | 0C2 2., €W (sum over y)

Relatively _
Perceptron ocal Perceptron; max, f(x,y)w max, f(x,y)-w

Convex optimization or

g/l)inirlgls”sn II(?)?:I:Itively boosting; max, f(x,y)-w
P 2., e'W (sum over y)
Maximum Relatively Quadratic program

max, f(x,y)-w

margin (l) local (exponentially many constraints)




Coming Soon

* Maximum margin training:
— Allowing for nonseparable data
— Hinge loss

— Making maximum margin training tractable
e Dual form
» Factored dual form

— Sparsity and support vectors
— Examples on NL tasks
— Kernels

* Discriminative methods in general:
— Bringing in “global” features
— Reranking



