Language and Statistics II

Lecture 13: Deductive Parsing, Especially with Weights

Noah Smith

Remember Prolog?

Invented around 1972 for Al and CL. Horn clauses:

father(X,Y) :- parents(X,_Y),male(X). grandfather (X,Z) :father (X,Y), father(Y, Z).
male(john).
male(joe).
parents(william,jane,john).
parents(joe,mary,william).

Prolog

- Given a query, Prolog tries to prove some instantiation of it.
?- grandpa(X,john).
X=joe;
yes.
- Prolog uses a particular brand of search, which we won't talk about.
- The point: deduction and theorem proving are a useful way to describe algorithms in CL.

Parsing as Deduction (high-level view)

- Axioms: the sentence s, the grammar G
- Inference rules: correspond to the parsing algorithm
- Theorems: partial parses, then stored in chart
- Stopping criterion: "goal" reached or agenda empty
- Output: true iff $s \in L(G)$ (i.e., "goal" is proven), along with a proof

Shieber, Schabes, \& Pereira (1995): use Prolog!

- For efficiency, minimize redundancy in chart and agenda.

Example 1: top-down parsing

Item form:	$[\bullet \beta, j]$
Axioms:	$[\bullet S, 0]$
Goals:	$[\bullet, n]$

Inference rules:
$\begin{array}{ll}\text { Scanning } & \frac{\left\lfloor w_{j+1} \beta, j\right]}{[\beta, j+1]} \\ \text { Prediction } & \frac{[B \beta, j]}{[* \beta, j]} \quad B \rightarrow \gamma\end{array}$
$[\bullet \beta$, j] means: "Starting after word j , I need to build β (a sequence of symbols)."
Scanning: match the next word in the sentence to the next required symbol.
Prediction: use grammar to see how next required symbol could expand.

What would happen if we implemented this?

Example 2: shift-reduce parsing

[$\alpha \cdot$, j] means: "Up to word j, I have begun to build α (a stack of symbols)."
Shift (scanning): move the next word in the sentence to the stack.
Reduce (completion): use grammar to see how the top symbols on the stack can be combined.

Algorithm	Bottom-Up	Top-Doun	Earley's
Item form	$[\alpha \bullet, j]$	- β, j]	$[i, A \rightarrow \alpha \bullet \beta, j]$
Invariant	$\alpha w_{j+1} \cdots w_{n} \Rightarrow w_{1} \cdots w_{n}$	$S \Rightarrow w_{1} \cdots w_{j} \beta$	$\begin{gathered} S \Rightarrow w_{1} \cdots w_{i} A \gamma \\ \alpha w_{j+1} \cdots w_{n} \Rightarrow w_{i+1} \cdots w_{n} \end{gathered}$
Axioms	- 0 , $]$	- $S, 0]$	$\left[0, S^{\prime} \rightarrow\right.$ - $\left.S, 0\right]$
Goals	$[S \bullet, n]$	[\bullet, n]	$\left[0, S^{\prime} \rightarrow S \bullet, n\right]$
Scanning	$\frac{[\alpha \bullet, j]}{\left[\alpha w_{j+1} \bullet, j+1\right]}$	$\frac{\left[\bullet w_{j+1} \beta, j\right]}{[\bullet \beta, j+1]}$	$\frac{\left[i, A \rightarrow \alpha \bullet w_{j+1} \beta, j\right]}{\left[i, A \rightarrow \alpha w_{j+1} \bullet \beta, j+1\right]}$
Prediction		$\frac{[B \beta, j]}{[\gamma \beta, j]} \quad B \rightarrow \gamma$	$\frac{[i, A \rightarrow \alpha \bullet B \beta, j]}{[j, B \rightarrow \cdot \gamma, j]} \quad B \rightarrow \gamma$
Completion	$\frac{[\alpha \gamma \cdot j]}{[\alpha B \bullet, j]} \quad B \rightarrow \gamma$		$\frac{[i, A \rightarrow \alpha \bullet B \beta, k] \quad[k, B \rightarrow \gamma \bullet, j]}{[i, A \rightarrow \alpha B \bullet \beta, j]}$

From Shieber, Schabes, \& Pereira (1995)

Earley's Algorithm, etc.

- A more efficient combination of two naïve algorithms. (A more efficient logic program.)
- SS\&P went on to give logic programs for CCG parsing and TAG parsing.
- McAllester (2002) shows how to automatically derive asymptotic runtime and space bounds for such programs.

The Point

- Logic programs are helpful for
- Algorithm specification
- Prototype implementation
- Finding more efficient algorithms

CKY

CKY

CKY

CKY

$$
X \rightarrow Y Z
$$

CKY

- Runtime reduced
from $O\left(|N|^{3} n^{3}\right)$
to $O\left(|N|^{2} n^{3}+|N|^{3} n^{2}\right)$.
- Related example: lexicalized PCFG parsing (Eisner and Satta, 1999).

Lexicalized CKY

Lexicalized CKY

Lexicalized CKY (Eisner \& Satta, 1999)

Lexicalized CKY (Eisner \& Satta, 1999)

String Alignment

What about weights?

- Goodman (1999): add weights.
- Not limited to just probabilities!
- Semiring weights.

Semirings

		boolean	Viterbi	
set	\vee	-	\{false, true $\}$	\mathbb{R}_{+}
plus	\oplus	associative and commutative	\vee	max
times	\otimes	associative, distributes over \oplus	\wedge	\times
zero	$\mathbf{0}$	\oplus-identity: $x \oplus \mathbf{0}=x$	false	0
one	$\mathbf{1}$	\otimes-identity: $x \otimes \mathbf{1}=x$	true	1

Semirings

	boolean	Viterbi	inside	counting	derivation forest
set	\{false, true $\}$	\mathbb{R}_{+}	\mathbb{R}_{+}	N_{+}	2^{E}
plus	\vee	\max	+	+	\cup
times	\wedge	\times	\times	\times	concatenation
zero	false	0	0	0	\varnothing
one	true	1	1	1	$\{\rangle\}$

Goodman (1999)

- Viterbi-derivation and Viterbi- n-best semirings defined, as well.
- Reverse values can be computed in the same framework!

Forward and Backward Weights

sum over all partial structures
sum over all partial structures

Forward and Backward Algorithms

F

Inside and Outside Weights

Inside and Outside Weights

Inside and Outside Weights

Outside (CKY)

Inside and Outside Algorithms

```
float chart \([1 . . n, 1 . .|N|, 1 . . n+1]:=0\);
for \(s:=1\) to \(n / *\) start position */
    for each rule \(A \rightarrow w_{s} \in R\)
        chart \([s, A, s+1]:=P\left(A \rightarrow w_{s}\right) ;\)
for \(l:=2\) to \(n / *\) length, shortest to longest */
    for \(s:=1\) to \(n-l+1 /^{*}\) start position */
        for \(t:=1\) to \(l-1 / *\) split length */
            for each rule \(A \rightarrow B C \in R\)
                \(\operatorname{chart}[s, A, s+l]:=\operatorname{chart}[s, A, s+l]+\)
                \((\) chart \([s, B, s+t] \times \operatorname{chart}[s+t, C, s+l] \times P(A \rightarrow B C)) ;\)
return chart \([1, S, n+1]\);
float outside \([1 . . n, 1 .|N|, 1 . . n+1]:=0\);
outside \([1, S, n+1]:=1\);
for \(l:=n\) down to \(2 /^{*}\) length, longest to shortest */
    for \(s:=1\) to \(n-l+1 /{ }^{*}\) start position */
        for \(t:=1\) to \(l-1 /^{*}\) split length */
            for each rule \(A \rightarrow B C \in R\)
                outside \([s, B, s+t]:=\) outside \([s, B, s+t]+\)
                    (outside \([s, A, s+l] \times\) inside \([s+t, C, s+l] \times P(A \rightarrow B C)\) );
                outside \([s+t, C, s+l]:=\) outside \([s+t, C, s+l]+\)
                    (outside \([s, A, s+l] \times\) inside \([s, B, s+t] \times P(A \rightarrow B C)\) );
```


Beyond Goodman (1999)

- Algorithm: carry out deduction to build the chart (i.e., fill in items with nonzero value); then compute their values.
- Tough part: efficient ordering of items.
- For Forward/Viterbi: order by position
- For CKY: order by width
- In general?
- Need efficient execution strategy for arbitrary programs.
- Key idea: avoid unnecessary work and repropagation.

Unnecessary Work

- If you only want the best derivation, you don't want to build items that aren't in it!
- But you don't know which items to build until you have the best parse.
- Key idea: agenda.
- Order updates to items' weights.
- Roughly analogous to trading depth and breadth in search.
- Note: for exact inside/outside, all of the work is necessary!

Repropagation

- Suppose (NP, 4, 7) currently has a weight of 0.3 , constructed by (DT, 4, 5) $\otimes(N P, 5,7)$.
- Now suppose we find that a better way to build $(N P, 4,7):(D T, 4,5) \otimes(N N P, 5,6) \otimes(N N P, 6,7)$ with value 0.31 .
- Maybe now we have a better way to build (VP, 3, 7)! (Or anything else that used (NP, 4, 7).
- Have to re-build all of those consequents, and compare again, and recursively repropagate to consequents of any item whose value changes.
- May not be $O\left(n^{3}\right)$ anymore!

Agenda

S $\rightarrow .^{8}$ NP VP

NNS $\rightarrow .0002$ quitters
VP $\rightarrow .{ }^{6} \mathrm{RB}$ VB NP $\rightarrow .{ }^{1}$ NNS

Agenda

Agenda

$$
S \rightarrow .8 \mathrm{NP} \mathrm{VP}
$$

NNS $\rightarrow .0002$ quitters

$$
\mathrm{VP} \rightarrow{ }^{6} \mathrm{RB} \text { VB } \quad \mathrm{NP} \rightarrow{ }^{1} \text { NNS }
$$

```
RB }->.04\mathrm{ never
```

$$
\mathrm{VB} \rightarrow .006 \mathrm{win}
$$

$\mathrm{NN} \rightarrow .00002$ win

Agenda

$\mathrm{VP} \rightarrow{ }^{6} \mathrm{RB}$ VB $\mathrm{NP} \rightarrow{ }^{1} \mathrm{NNS}$

RB $\rightarrow .04$ never
VB $\rightarrow .006$ win $N N \rightarrow .00002$ win
chart

Agenda

$$
S \rightarrow .8 \mathrm{NP} \mathrm{VP}
$$

NNS $\rightarrow .0002$ quitters

$$
\mathrm{VP} \rightarrow .6 \mathrm{RB} \text { VB } \quad \mathrm{NP} \rightarrow{ }^{1} \mathrm{NNS}
$$

```
RB }->.04\mathrm{ never
```

VB $\rightarrow .006$ win $N N \rightarrow .00002$ win

$$
\text { VB } \rightarrow .006 \mathrm{win} \quad \mathrm{NN} \rightarrow .00002 \mathrm{win}
$$

Agenda

$$
S \rightarrow .8 \mathrm{NP} \mathrm{VP}
$$

NNS $\rightarrow .0002$ quitters

$$
\mathrm{VP} \rightarrow{ }^{6} \mathrm{RB} \mathrm{VB} \quad \mathrm{NP} \rightarrow{ }^{1} \mathrm{NNS}
$$

```
RB }->.04\mathrm{ never
```

VB $\rightarrow .006 \mathrm{win} \quad \mathrm{NN} \rightarrow .00002 \mathrm{win}$

$$
\text { VB } \rightarrow .006 \mathrm{win} \quad \mathrm{NN} \rightarrow .00002 \mathrm{win}
$$

Agenda

```
VP }->\mp@subsup{}{}{6}\textrm{RB}\mathrm{ VB
```


NP $\rightarrow{ }^{1}$ NNS

```
RB }->.04\mathrm{ never
```

VB $\rightarrow .006$ win $\mathrm{NN} \rightarrow .00002$ win

Agenda

NNS $\rightarrow .0002$ quitters
NP $\rightarrow{ }^{1}$ NNS
$R B \rightarrow .04$ never
VB $\rightarrow .006$ win $N N \rightarrow .00002$ win

Agenda

```
NP ->. }\mp@subsup{}{}{1}\mathrm{ NNS
```

$$
\mathrm{VP} \rightarrow{ }^{6} \mathrm{RB} \text { VB }
$$

NNS $\rightarrow .0002$ quitters chart

```
RB }->.04\mathrm{ never
```


Agenda

VP $\rightarrow .6$ RB VB
NP $\rightarrow .{ }^{1}$ NNS

```
RB }->.04\mathrm{ never
```

VB $\rightarrow .006$ win $N N \rightarrow .00002$ win

$$
\text { VB } \rightarrow .006 \mathrm{win} \quad \mathrm{NN} \rightarrow .00002 \mathrm{win}
$$

Agenda

$$
\text { VB } \rightarrow .006 \mathrm{win} \quad \mathrm{NN} \rightarrow .00002 \mathrm{win}
$$

Agenda

VP $\rightarrow{ }^{6} \mathrm{RB}$ VB
NP $\rightarrow .{ }^{1}$ NNS
NNS $\rightarrow .0002$ quitters
RB $\rightarrow .04$ never

$$
\text { VB } \rightarrow .006 \mathrm{win} \quad \mathrm{NN} \rightarrow .00002 \mathrm{win}
$$

$$
\text { VB } \rightarrow .006 \mathrm{win} \quad \mathrm{NN} \rightarrow .00002 \mathrm{win}
$$

Agenda

NNS $\rightarrow .0002$ quitters

$\mathrm{NN} \rightarrow .00002$ win

Agenda

VB $\rightarrow{ }^{.006}$ win

$\mathrm{NN} \rightarrow .00002$ win
chart

Agenda

$\mathrm{NN} \rightarrow .00002$ win

Agenda

$\mathrm{NN} \rightarrow .00002$ win

Agenda

$\mathrm{NN} \rightarrow .00002$ win

Agenda

NNS $\rightarrow .0002$ quitters

NN $\rightarrow .00002$ win

Agenda

win
$S \rightarrow .8$ NP VP

$\xrightarrow[\mathrm{NP}]{\mathrm{VB} \rightarrow .006}$ win

$\mathrm{NN} \rightarrow .00002$ win

Agenda

Agenda

win
S $\rightarrow .^{8}$ NP VP

NP $\rightarrow{ }^{1}$ NNS

vD- win ${ }^{3} \mathrm{VB}_{3}$ $\mathrm{RB} \rightarrow .04$ never ${ }^{\mathrm{NNS}} .0002$
chart

Agenda

win
S $\rightarrow .8$ NP VP

NP $\rightarrow{ }^{1}$ NNS

$\rightarrow v L^{1} \quad$ win $\mathrm{RB} \rightarrow .04$ never $N N S, 006$.0002
$\mathrm{NN} \rightarrow .00002$ win .00002

Agenda

$\mathrm{RB} \rightarrow .04$ never \uparrow NNS
.0002
$\mathrm{NN} \rightarrow .00002$ win .00002

Agenda

$\mathrm{NN} \rightarrow .00002$ win

Agenda

$N N \rightarrow .00002$ win
win

$\mathrm{S} \rightarrow .8 \mathrm{NP} \mathrm{VP}$
$\mathrm{NNS} \rightarrow .0002$ quitters $/ 2 \mathrm{RB}_{2}$

RE $\rightarrow .04$ never ${ }^{\text {NNS }} 0000$

Best-First Parsing

- Viterbi semiring (find the best parse)
- Cf. Goodman, build the chart and fill in weights at the same time.
- Order items by their weights.
- "Uniform cost search"
- Guarantee: the first time goal is popped, you have the optimal parse.
- Charniak et al., 1998: heuristics to speed this up. "Figures of Merit" (big speed payoff).
- Klein and Manning (2003): admissible heuristics to guarantee optimal parse is found (big speed payoff).

Dyna

- Dyna is a high-level programming language (like Prolog) for weighted deduction.
- Source code looks like Prolog.
- Compiles into C++.
- Core algorithms:
- Generalized weighted, prioritized agenda.
- Allows the use of heuristics, including A^{*}
- Efficient "tape" mechanism for reverse computation.
- Very similar to backpropagation.

Dyna Programs

```
constit(X,I,J) += word(W,I,J) * rewrite(X,W).
constit(X,l,J) += constit(Y,l,Mid) * constit(Z,Mid,J) * rewrite(X,Y,Z).
goal += constit("s",0,N) whenever length(N).
```

```
constit(X,I,J) max= word(W,I,J) * rewrite(X,W).
constit(X,I,J) max= constit(Y,I,Mid) * constit(Z,Mid,J) * rewrite(X,Y,Z).
goal max= constit("s",0,N) whenever length(N).
```

```
constit(X,I,J) max= word(W,I,J) * rewrite(X,W).
constit(X,l,J) max= constit(Y,l,Mid) * inter(X, Z, Mid, J).
inter(X, Z, Mid, J) max= constit(Z,Mid,J) * rewrite(X,Y,Z).
goal max= constit("s",0,N) whenever length(N).
```


Dyna Debugger

File Display Selection Preferences

Parting Shots

- Weighted deduction as a convenient way to design, improve, understand,
analyze, unify,
and implement
otherwise tricky dynamic programming algorithms.

