
Language and Statistics II

Lecture 10: Parsing
(Treebanks, Algorithms)

Noah Smith

PCFGs and HMMs

PCFG:
• Alphabet Σ
• Nonterminal set N
• Start nonterminal S
• Rules X →p α

HMM (special case):
• Alphabet Σ
• State set N
• Start state S0

• Rules
 X →η(s | X) s X’
 X’ →γ(Y | X) Y
 X’ →γ(stop | X) ε

PCFGs and Log-Linear Models

Log-linear model:
• Set of inputs X
• Set of outputs Y

• Set of feature functions
fi : (X, Y) → R≥0

• Set of weights θi
corresponding to fi

PCFG:
• Σ*
• Derivable productions

given the rules
• Counts of rules
• Logarithms of rule

probabilities

Major Research Questions

What’s the right representation?
What’s the right model?

(We’ve talked about one representation
and one model.)

• How to learn to parse empirically?
• How to make parsers fast?
• How to incorporate structure downstream?

Learning from Data

1. Where do the rules come from?
2. Where do the rule probabilities come from?

First answer: Look at a huge collection of trees
(a treebank).

X → α is in the grammar iff it’s in the treebank.
p(α | X) is proportional to the count of X → α.

Penn Treebank
(Marcus et al., 1993)

• A million words (40K sentences) of Wall
Street Journal text (late 1980s).

• Parsed by experts; consensus parse for each
sentence was published.

• The structure is basically what you’d expect
from a PCFG.
– Tends to be “flat” where there’s controversy.
– Some “traces” for extraposed elements.

Example Tree
((S
 (NP-SBJ
 (NP (NNP Pierre) (NNP Vinken))
 (, ,)
 (ADJP
 (NP (CD 61) (NNS years))
 (JJ old))
 (, ,))
 (VP (MD will)
 (VP (VB join)
 (NP (DT the) (NN board))
 (PP-CLR (IN as)
 (NP (DT a) (JJ nonexecutive) (NN director)))
 (NP-TMP (NNP Nov.) (CD 29))))
 (. .)))

((S
 (NP-SBJ-1
 (NP (NNP Rudolph) (NNP Agnew))
 (, ,)
 (UCP
 (ADJP
 (NP (CD 55) (NNS years))
 (JJ old))
 (CC and)
 (NP
 (NP (JJ former) (NN chairman))
 (PP (IN of)
 (NP (NNP Consolidated) (NNP Gold) (NNP Fields) (NNP PLC)))))
 (, ,))
 (VP (VBD was)
 (VP (VBN named)
 (S
 (NP-SBJ (-NONE- *-1))
 (NP-PRD
 (NP (DT a) (JJ nonexecutive) (NN director))
 (PP (IN of)
 (NP (DT this) (JJ British) (JJ industrial) (NN conglomerate)

))
))))
 (. .)))

Evaluating Parsers

• Take a sentence from the test set.
• Use your parser to propose a hypothesis

parse.
• Treebank gives you the correct parse.
• How to compare?

– {unlabeled, labeled} × {precision, recall}
– crossing brackets statistics
– evalb (http://nlp.cs.nyu.edu/evalb)

• Significance testing …

The Dark Side

• This is the way to train and test an English
parser.

• There are some inconsistencies.
• Other treebank builders haven’t always been

as diligent; often tag labels, nonterminal
labels, conventions are assumed to port to
other languages.

• Better way of handling disagreement: publish
different annotators’ trees (not consensus)?

Training Parsers In Practice

• Transformations on trees
– Some of these are generally taken to be crucial
– Some are widely debated
– Lately, people have started learning these

transformations
• Smoothing (crucial)
• We will come back to this as we explore some

current state-of-the art parsers.
– Collins (1999; 2003)
– Charniak (2000)
– Klein and Manning (2003)
– McDonald, Pereira, Ribarov, and Hajic (2005)

Decoding Algorithms

• Suppose I have a PCFG and a sentence.
• What might I want to do?

– Find the most likely tree (if it exists).
– Find the k most likely trees.
– Gather statistics on the distribution over trees.

• Should remind you of FS models!

Probabilistic CKY

Input: PCFG G = (Σ, N, S, R) in CNF and
sequence w ∈ Σ*

Output: most likely tree for w, if it exists, and its
probability.

!

C X,i,i() = p X " wi(),null

C X,i,k() =

max
Y ,Z #N, j# i+1,k$2[]

C(Y,i, j) %C(Z, j +1,k) % p(X "Y,Z),

&argmax
Y ,Z #N, j# i+1,k$2[]

C(Y,i, j) %C(Z, j +1,k) % p(X "Y,Z)

goal = C S,1,w()

Resist This Temptation!

• CKY is not “building a tree” bottom-up.
• It is scoring partial hypotheses bottom-up.
• You can assume nothing about the tree until

you get to the end!

Visualizing Probabilistic CKY

Y ZX → Y Z
i j kj + 1

X

i k

X → wi wi

X
i i

w1 w2 wn

S → NP VP N → dog

start = S

S
1 n

Visualizing Probabilistic CKY

1 2 3 n

X
i j Y

i j
Z

i j

Visualizing Probabilistic CKY

1 2 3 n

How do we fill in C(1,2)?

Visualizing Probabilistic CKY

1 2 3 n

How do we fill in C(1,2)?

Put together C(1,1)
and C(2,2).

Visualizing Probabilistic CKY

1 2 3 n

How do we fill in C(1,3)?

Visualizing Probabilistic CKY

1 2 3 n

How do we fill in C(1,3)?

One way …

Visualizing Probabilistic CKY

1 2 3 n

How do we fill in C(1,3)?

One way …
Another way.

Visualizing Probabilistic CKY

1 2 3 n

How do we fill in C(1,n)?

Visualizing Probabilistic CKY

1 2 3 n

How do we fill in C(1,n)?

n - 1 ways!

Visualizing Probabilistic CKY

1 2 3 n

O(|N|n2) cells to fill
O(|N|2n) ways to fill each

Probabilistic Earley’s

Input: PCFG G = (Σ, N, S, R) and
sequence w ∈ Σ*

Output: most likely tree for w, if it exists, and its
probability.

Probabilistic Earley’s

!

C(X /",i,i) = p X #"(),null

 if $Z,h :C Z /X,h,i() > 0()% X = S& i = 0()()
C X /",i, j +1() = C X /w j",i, j(),&C X /w j",i, j()

C X /",i,k() =
max

j' i+1,k(2[] ,Y 'N
C X /Y",i, j())C Y /*, j +1,k()

&argmax...

goal = C S /*,0,w()

predict

Probabilistic Earley’s

!

C(X /",i,i) = p X #"(),null

 if $Z,h :C Z /X,h,i() > 0()% X = S& i = 0()()
C X /",i, j +1() = C X /w j",i, j(),&C X /w j",i, j()

C X /",i,k() =
max

j' i+1,k(2[] ,Y 'N
C X /Y",i, j())C Y /*, j +1,k()

&argmax...

goal = C S /*,0,w()

Probabilistic Earley’s

scan

!

C(X /",i,i) = p X #"(),null

 if $Z,h :C Z /X,h,i() > 0()% X = S& i = 0()()
C X /",i, j +1() = C X /w j",i, j(),&C X /w j",i, j()

C X /",i,k() =
max

j' i+1,k(2[] ,Y 'N
C X /Y",i, j())C Y /*, j +1,k()

&argmax...

goal = C S /*,0,w()

complete

Probabilistic Earley’s

!

C(X /",i,i) = p X #"(),null

 if $Z,h :C Z /X,h,i() > 0()% X = S& i = 0()()
C X /",i, j +1() = C X /w j",i, j(),&C X /w j",i, j()

C X /",i,k() =
max

j' i+1,k(2[] ,Y 'N
C X /Y",i, j())C Y /*, j +1,k()

&argmax...

goal = C S /*,0,w()

Probabilistic Earley’s (Corrected!)

!

C(X /",i,i) = p X #"(),null

 if $Z,h :C Z /X,h,i() > 0()% X = S& i = 0()()

C X /",i,k() =
max

max
j' i+1,k(2[] ,Y 'N

C X /Y",i, j())C Y /*, j +1,k(),

C X /wk",i,k (1()

+

,

-
-

.

/

0
0

&argmax...

goal = C S /*,0,w()

Visualizing Probabilistic Earley’s

X/Yα Y

X → α

i j kj + 1

X/α

i k

wk

X/α
i i

S/Ø
0 n

X/wkα

i k - 1

X/α
i k

predict scan

complete

X = S, i = 0
or exists
nonzero ?/X?

? i

CKY vs. Earley’s

• Both O(n3) runtime, O(n2) space
• Earley’s doesn’t require the grammar to be in

CNF
• Earley’s usually moves left-to-right; CKY

usually moves bottom-to-top.
• Earley’s ≈ on-the-fly binarization + CKY

• Thought question: Does either remind you of
Viterbi?

CKY and Earley’s vs. The World

• Tomita parsing - shift and reduce operations, with a
stack - inspired by search in AI.
– Can make it probabilistic.
– No polynomial guarantees (could be exponential if lots of

stack splitting).
– In practice usually fast.

• CKY and Earley’s algorithms can be generalized to
use an agenda, rather than filling in all cells.
– “Best-first” tricks; sometimes optimality is not sacrificed!

• Remember the Forward algorithm?
– We’ll come back to “inside” algorithms in a couple of

weeks.

