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PCFGs and HMMs

PCFG:
• Alphabet Σ
• Nonterminal set N
• Start nonterminal S
• Rules X →p α

HMM (special case):
• Alphabet Σ
• State set N
• Start state S0

• Rules
 X →η(s | X) s X’
 X’ →γ(Y | X) Y
 X’ →γ(stop | X) ε



PCFGs and Log-Linear Models

Log-linear model:
• Set of inputs X
• Set of outputs Y

• Set of feature functions
fi : (X, Y) → R≥0

• Set of weights θi
corresponding to fi

PCFG:
• Σ*
• Derivable productions

given the rules
• Counts of rules
• Logarithms of rule

probabilities



Major Research Questions

What’s the right representation?
What’s the right model?

(We’ve talked about one representation
and one model.)

• How to learn to parse empirically?
• How to make parsers fast?
• How to incorporate structure downstream?



Learning from Data

1. Where do the rules come from?
2. Where do the rule probabilities come from?

First answer:  Look at a huge collection of trees
(a treebank).

X → α is in the grammar iff it’s in the treebank.
p(α | X) is proportional to the count of X → α.



Penn Treebank
(Marcus et al., 1993)

• A million words (40K sentences) of Wall
Street Journal text (late 1980s).

• Parsed by experts; consensus parse for each
sentence was published.

• The structure is basically what you’d expect
from a PCFG.
– Tends to be “flat” where there’s controversy.
– Some “traces” for extraposed elements.



Example Tree
( (S
    (NP-SBJ
      (NP (NNP Pierre) (NNP Vinken) )
      (, ,)
      (ADJP
        (NP (CD 61) (NNS years) )
        (JJ old) )
      (, ,) )
    (VP (MD will)
      (VP (VB join)
        (NP (DT the) (NN board) )
        (PP-CLR (IN as)
          (NP (DT a) (JJ nonexecutive) (NN director) ))
        (NP-TMP (NNP Nov.) (CD 29) )))
    (. .) ))



( (S
    (NP-SBJ-1
      (NP (NNP Rudolph) (NNP Agnew) )
      (, ,)
      (UCP
        (ADJP
          (NP (CD 55) (NNS years) )
          (JJ old) )
        (CC and)
        (NP
          (NP (JJ former) (NN chairman) )
          (PP (IN of)
            (NP (NNP Consolidated) (NNP Gold) (NNP Fields) (NNP PLC) ))))
      (, ,) )
    (VP (VBD was)
      (VP (VBN named)
        (S
          (NP-SBJ (-NONE- *-1) )
          (NP-PRD
            (NP (DT a) (JJ nonexecutive) (NN director) )
            (PP (IN of)
              (NP (DT this) (JJ British) (JJ industrial) (NN conglomerate)

))
))))
    (. .) ))



Evaluating Parsers

• Take a sentence from the test set.
• Use your parser to propose a hypothesis

parse.
• Treebank gives you the correct parse.
• How to compare?

– {unlabeled, labeled} × {precision, recall}
– crossing brackets statistics
– evalb (http://nlp.cs.nyu.edu/evalb)

• Significance testing …



The Dark Side

• This is the way to train and test an English
parser.

• There are some inconsistencies.
• Other treebank builders haven’t always been

as diligent; often tag labels, nonterminal
labels, conventions are assumed to port to
other languages.

• Better way of handling disagreement:  publish
different annotators’ trees (not consensus)?



Training Parsers In Practice

• Transformations on trees
– Some of these are generally taken to be crucial
– Some are widely debated
– Lately, people have started learning these

transformations
• Smoothing (crucial)
• We will come back to this as we explore some

current state-of-the art parsers.
– Collins (1999; 2003)
– Charniak (2000)
– Klein and Manning (2003)
– McDonald, Pereira, Ribarov, and Hajic (2005)



Decoding Algorithms

• Suppose I have a PCFG and a sentence.
• What might I want to do?

– Find the most likely tree (if it exists).
– Find the k most likely trees.
– Gather statistics on the distribution over trees.

• Should remind you of FS models!



Probabilistic CKY

Input:  PCFG G = (Σ, N, S, R) in CNF and
sequence w ∈ Σ*

Output:  most likely tree for w, if it exists, and its
probability.

! 

C X,i,i( ) = p X " wi( ),null

C X,i,k( ) =

max
Y ,Z #N, j# i+1,k$2[ ]

C(Y,i, j) %C(Z, j +1,k) % p(X "Y,Z),

&argmax
Y ,Z #N, j# i+1,k$2[ ]

C(Y,i, j) %C(Z, j +1,k) % p(X "Y,Z)

goal = C S,1,w( )



Resist This Temptation!

• CKY is not “building a tree” bottom-up.
• It is scoring partial hypotheses bottom-up.
• You can assume nothing about the tree until

you get to the end!



Visualizing Probabilistic CKY

Y ZX → Y Z
i j kj + 1

X

i k

X → wi wi

X
i i

w1 w2 wn

S → NP VP N → dog

start = S

S
1 n



Visualizing Probabilistic CKY

1 2 3 n

X
i j Y

i j
Z

i j



Visualizing Probabilistic CKY

1 2 3 n

How do we fill in C(1,2)?



Visualizing Probabilistic CKY

1 2 3 n

How do we fill in C(1,2)?

Put together C(1,1)
and C(2,2).



Visualizing Probabilistic CKY

1 2 3 n

How do we fill in C(1,3)?



Visualizing Probabilistic CKY

1 2 3 n

How do we fill in C(1,3)?

One way …



Visualizing Probabilistic CKY

1 2 3 n

How do we fill in C(1,3)?

One way …
Another way.



Visualizing Probabilistic CKY

1 2 3 n

How do we fill in C(1,n)?



Visualizing Probabilistic CKY

1 2 3 n

How do we fill in C(1,n)?

n - 1 ways!



Visualizing Probabilistic CKY

1 2 3 n

O(|N|n2) cells to fill
O(|N|2n) ways to fill each



Probabilistic Earley’s

Input:  PCFG G = (Σ, N, S, R) and
sequence w ∈ Σ*

Output:  most likely tree for w, if it exists, and its
probability.



Probabilistic Earley’s

! 

C(X /",i,i) = p X #"( ),null  

                    if $Z,h :C Z /X,h,i( ) > 0( )% X = S& i = 0( )( )
C X /",i, j +1( ) = C X /w j",i, j( ),&C X /w j",i, j( )

C X /",i,k( ) =
max

j' i+1,k(2[ ] ,Y 'N
C X /Y",i, j( ) )C Y /*, j +1,k( )

&argmax...

goal = C S /*,0,w( )



predict

Probabilistic Earley’s

! 

C(X /",i,i) = p X #"( ),null  

                    if $Z,h :C Z /X,h,i( ) > 0( )% X = S& i = 0( )( )
C X /",i, j +1( ) = C X /w j",i, j( ),&C X /w j",i, j( )

C X /",i,k( ) =
max

j' i+1,k(2[ ] ,Y 'N
C X /Y",i, j( ) )C Y /*, j +1,k( )

&argmax...

goal = C S /*,0,w( )



Probabilistic Earley’s

scan

! 

C(X /",i,i) = p X #"( ),null  

                    if $Z,h :C Z /X,h,i( ) > 0( )% X = S& i = 0( )( )
C X /",i, j +1( ) = C X /w j",i, j( ),&C X /w j",i, j( )

C X /",i,k( ) =
max

j' i+1,k(2[ ] ,Y 'N
C X /Y",i, j( ) )C Y /*, j +1,k( )

&argmax...

goal = C S /*,0,w( )



complete

Probabilistic Earley’s

! 

C(X /",i,i) = p X #"( ),null  

                    if $Z,h :C Z /X,h,i( ) > 0( )% X = S& i = 0( )( )
C X /",i, j +1( ) = C X /w j",i, j( ),&C X /w j",i, j( )

C X /",i,k( ) =
max

j' i+1,k(2[ ] ,Y 'N
C X /Y",i, j( ) )C Y /*, j +1,k( )

&argmax...

goal = C S /*,0,w( )



Probabilistic Earley’s (Corrected!)

! 

C(X /",i,i) = p X #"( ),null  

                    if $Z,h :C Z /X,h,i( ) > 0( )% X = S& i = 0( )( )

C X /",i,k( ) =
max

max
j' i+1,k(2[ ] ,Y 'N

C X /Y",i, j( ) )C Y /*, j +1,k( ),

C X /wk",i,k (1( )

+ 

, 

- 
- 

. 

/ 

0 
0 

&argmax...

goal = C S /*,0,w( )



Visualizing Probabilistic Earley’s

X/Yα Y

X → α

i j kj + 1

X/α

i k

wk

X/α
i i

S/Ø
0 n

X/wkα

i k - 1

X/α
i k

predict scan

complete

X = S, i = 0
or exists
nonzero ?/X?

? i



CKY vs. Earley’s

• Both O(n3) runtime, O(n2) space
• Earley’s doesn’t require the grammar to be in

CNF
• Earley’s usually moves left-to-right; CKY

usually moves bottom-to-top.
• Earley’s ≈ on-the-fly binarization + CKY

• Thought question:  Does either remind you of
Viterbi?



CKY and Earley’s vs. The World

• Tomita parsing - shift and reduce operations, with a
stack - inspired by search in AI.
– Can make it probabilistic.
– No polynomial guarantees (could be exponential if lots of

stack splitting).
– In practice usually fast.

• CKY and Earley’s algorithms can be generalized to
use an agenda, rather than filling in all cells.
– “Best-first” tricks; sometimes optimality is not sacrificed!

• Remember the Forward algorithm?
– We’ll come back to “inside” algorithms in a couple of

weeks.


