Language and Statistics ||

Lecture 10: Parsing
(Treebanks, Algorithms)

Noah Smith

PCFGs and HMMs

PCFG: HMM (special case):
* Alphabet X * Alphabet X
* Nonterminal set N « State set N
« Start nonterminal S « Start state S,
* Rules X =P a * Rules
m X —»n(s|X)g X’
s XX 1Y [X)Y

s X’ —sy(stop | X) €

PCFGs and Log-Linear Models

Log-linear model:
« Set of inputs X

« Set of outputs Y

o Set of feature functions
i (X, Y) =R,

» Set of weights 6,
corresponding to f

PCFG:

2*

Derivable productions
given the rules
Counts of rules

Logarithms of rule
probabilities

Major Research Questions

v What's the right representation?
v What’s the right model?

(We've talked about one representation
and one model.)

 How to learn to parse empirically?
 How to make parsers fast?
« How to incorporate structure downstream?

Learning from Data

1. Where do the rules come from?
2. Where do the rule probabilities come from?

First answer: Look at a huge collection of trees
(a treebank).

X — o Is in the grammair iff it's in the treebank.
p(a | X) is proportional to the count of X — «.

Penn Treebank
(Marcus et al., 1993)

* A million words (40K sentences) of Wall
Street Journal text (late 1980s).

» Parsed by experts; consensus parse for each
sentence was published.

* The structure is basically what you'd expect
from a PCFG.
— Tends to be “flat” where there’s controversy.
— Some “traces” for extraposed elements.

(

(S

Example Tree

(NP-SBJ

(NP (NNP Pierre) (NNP Vinken))

¢, /)

(ADJP
(NP (CD 61)
(JJ old))

G, /))
(VP (MD will)
(VP (VB join)
(NP (DT the)

(NNS years))

(NN board))

(PP-CLR (IN as)

(NP (DT a)

(JJ nonexecutive)

(NP-TMP (NNP Nov.) (CD 29))))

(. .)))

(NN director)))

((s
(NP-SBJ-1
(NP (NNP Rudolph) (NNP Agnew))
G, /)

(UCp
(ADJP
(NP (CD 55) (NNS years))
(JJ old))
(CC and)
(NP

(NP (JJ former) (NN chairman))
(PP (IN of)
(NP (NNP Consolidated) (NNP Gold) (NNP Fields) (NNP PLC)))))
G, /))
(VP (VBD was)
(VP (VBN named)
(S

(NP-SBJ (-NONE- *-1))

(NP-PRD
(NP (DT a) (JJ nonexecutive) (NN director))
(PP (IN of)

(NP (DT this) (JJ British) (JJ industrial) (NN conglomerate)
))

))))
(. .))

Evaluating Parsers

Take a sentence from the test set.

Use your parser to propose a hypothesis
parse.

Treebank gives you the correct parse.

How to compare?

— {unlabeled, labeled} x {precision, recall}

— crossing brackets statistics

—evalb (http://nlp.cs.nyvu.edu/evalb)

Significance testing ...

The Dark Side

This is the way to train and test an English
parser.

There are some inconsistencies.

Other treebank builders haven’t always been
as diligent; often tag labels, nonterminal
labels, conventions are assumed to port to
other languages.

Better way of handling disagreement: publish
different annotators’ trees (not consensus)?

Training Parsers In Practice

« Transformations on trees
— Some of these are generally taken to be crucial
— Some are widely debated

— Lately, people have started learning these
transformations

« Smoothing (crucial)

* We will come back to this as we explore some
current state-of-the art parsers.
— Collins (1999; 2003)
— Charniak (2000)
— Klein and Manning (2003)
— McDonald, Pereira, Ribarov, and Hajic (2005)

Decoding Algorithms

» Suppose | have a PCFG and a sentence.

* What might | want to do?

— Find the most likely tree (if it exists).
— Find the k most likely trees.
— Gather statistics on the distribution over trees.

* Should remind you of FS models!

Probabilistic CKY

Input: PCFG G=(Z, N, S, R)in CNF and
sequence w € ¥

Output: most likely tree for w, if it exists, and its
probability.

C(X,i.i) = (p(X — w,),null)
max C(Y,i,j)-C(Z,j+1k)- p(X = Y,Z),
C(X,i,k) =

Y.ZEN, €[i+1,k-2]

&argmax CY,i,j) C(Z,j+Lk): p(X =Y,7)

Y.ZEN, j€[i+1,k-2]

goal = C(S,l,‘w‘)

Resist This Temptation!

» CKY is not “building a tree” bottom-up.
* It is scoring partial hypotheses bottom-up.

* You can assume nothing about the tree until
you get to the end!

Visualizing Probabilistic CKY

a & & S - NP VP
start =S

N4

N — dog
X—->YZ Y Z
I j j+1 k
X
I k

Visualizing Probabilistic CKY

v ,

<><>>©:«\ A

<§>g<<%©><§g<>§_,
222222

n

~
/ \\\

/ ~
’A h
L & \
\ j- : \

|

Visualizing Probabilistic CKY

How do we fill in C(1,2)? <>
2
CR A
CRA)
860660

1 2

Visualizing Probabilistic CKY

Visualizing Probabilistic CKY

How do we fill in C(12?> <><><>
G55
0000

n

Visualizing Probabilistic CKY

gggg%
QKK
sSrseee

%
27070 ¢
&3

8

—~
3’
—
N
O
£

Visualizing Probabilistic CKY

Visualizing Probabilistic CKY

TR
1 oS 6004

3 n

Visualizing Probabilistic CKY

%@&Q
QLR
600004

3 n

Probabilistic Earley’s

Input: PCFG G =(Z, N, S, R) and
sequence w € ¥

Output: most likely tree for w, if it exists, and its
probability.

Probabilistic Earley’s

C(X /a,i,i) = p(X — a),null)
if (32,71 C(Z/X,h.i) > 0) v (X = S Ai =0))
C(X faij+1) = (C(X Iw i, j) &C(X Iw o0, j))
max C(X/Ya,i,j) C(Y/D,j+ 1,k)>

C(X/a,i,k) _ | j€li+lk-2].YEN
&argmax...

goal = C(S/@,0,/w|)

Probabilistic Earley’s

predict
C(X /a,i,i) = p(X — a),null)
1f((Z.h:C(Z/X,h,i)>0)v(X =S ri=0))
X/al]+1 X/wal])&C(X/wal])>

i) - <m Ty s}

&argmax...

Probabilistic Earley’s

C(X /a,i,i) = p(X — a),null)

if (32,7 : C(Z/X.h,i) > 0)v(X =S ri =0))

scan
(X/(xl]+1) < (X/wja,i,j),&C(X/wja,i,j)>

&argmax...

goal = C(S/@,0,/w|)

Probabilistic Earley’s

C(X /a,i,i) = p(X — a),null)
1f((Z.h:C(Z/X.h,i)>0)v(X =S ri=0))

X/al]+1 X/wal])&C(X/wal])>

complete < max X/Ya,l,])- (Y/@,] +1,k)>
X/Otlk j€li+lk-2],YEN

&argmax

Probabilistic Earley’s (Corrected!)

C(X /a,i,i) = {p(X — a),null)
if (32,7 : C(Z/X.h,i) > 0)v(X =S ri =0))
max C(X/Ya,i,j) C(Y/D,j+1k),

el i+l,k-2|.YE
max J [l+,k], N

C(X/aik) = C(X Iw,anik 1)
&argmax...

goal = C(S/@,0,/w|)

Visualizing Probabilistic Earley's

predict D Gl 2 O — |

complete YIYo y
] j Jj+1 k

Xla S/

CKY vs. Earley’s

Both O(n®) runtime, O(n?) space
Earley’s doesn’t require the grammar to be in
CNF

Earley’s usually moves left-to-right; CKY
usually moves bottom-to-top.

Earley’s = on-the-fly binarization + CKY

Thought question: Does either remind you of
Viterbi?

CKY and Earley's vs. The World

Tomita parsing - shift and reduce operations, with a
stack - inspired by search in Al.

— Can make it probabilistic.

— No polynomial guarantees (could be exponential if lots of
stack splitting).

— In practice usually fast.

CKY and Earley’s algorithms can be generalized to
use an agenda, rather than filling in all cells.

— “Best-first” tricks; sometimes optimality is not sacrificed!
Remember the Forward algorithm?

— We’ll come back to “inside” algorithms in a couple of
weeks.

