
L&S II: Assignment 4

Prof. Noah Smith

Due: Thursday, November 16 (hardcopy, in class)

1 Dynamic Programming Algorithm

A head automaton (HA) is like a finite-state automaton that generates a pair of sequences,
〈α, β〉 ∈ (Σ∗)2. Often HAs are used to define dependency grammars. For example, a HA is
defined for each word in the vocabulary Σ; whenever a symbol s ∈ Σ is generated, its HA
is called to generate 〈α, β〉. Then α becomes the sequence of left children of s and β its
sequence of right children. In general, the two sequences α and β may not be independent
of each other.

Formally, a weighted head automaton H is a tuple 〈Q, Σ, I, F, δ〉 where Q is a finite set
of states, I ⊆ Q is the set of initial states, F ⊆ Q is the set of final states, and δ is a
nondeterministic function that assigns weights to the transitions:

δ : (Q \ F)× Σ× {←,→}× Q→ R (1)

H generates 〈α, β〉 by following transitions from state to state. Each transition results
in the output of a symbol in Σ along with an arrow (← or→). A ← means that the symbol
is appended to the left end of α, and a → means that the symbol is appended to the right
end of β. Each transition incurs a real-valued weight; the score of a derivation is the sum
of weights of the transitions crossed. (Note that δ(q, t, q′,←) = −∞ means that there is no
transition from q to q′ that appends t to α—or equivalently that the transition has infinite
cost.) In this way, α is generated from right to left, and β is generated from left to right.
The formal derivation relation ⇒ for H is such that:

〈q, v, α, β〉 ⇒ 〈q′, v + δ(q, t,→, q′), α, βt〉 (2)

〈q, v, α, β〉 ⇒ 〈q′, v + δ(q, t,←, q′), tα, β〉 (3)

〈α, β〉 ∈ L(H) iff ∃q0 ∈ I,∃qf ∈ F,∃v > −∞ : 〈q0, 0, ε, ε〉 ⇒∗ 〈qf , v, α, β〉, (4)

Exercise 1 Suppose you are given H and a pair of sequences 〈α, β〉. Let α = 〈αm, αm−1, ..., α1〉
and let β = 〈β1, β2, ..., βn〉. Your job is to write recursive equations defining a dynamic pro-
gramming algorithm that finds the best path (the one with the highest weight) through H
that generates 〈α, β〉, if it exists. What are the asymptotic runtime and space requirements
of your algorithm?

1



Exercise 2 Suppose that H is guaranteed to be “split.” This means1 that there exists a
single state qsplit ∈ Q such that all paths go through qsplit exactly once, all transitions before
qsplit are of the → variety, and all transitions after qsplit are of the ← variety. Informally,
this means β is generated completely before α is generated. Does this improve the runtime
and/or space requirements of your algorithm? If not, can you give an improved algorithm
for this special case?

Exercise 3 (bonus) How would you modify your algorithms in exercises 1.1 and 1.2 to
count paths rather than find the best path?

2 Loss Functions

For each of the following measures of accuracy, show how it can be described as a factored
loss function. That is, give the complete definition of a loss function that, if minimized,
would be equivalent to obtaining maximum accuracy (as defined in each case). You will
need to define some notation to make your answer clear!

• For a POS tagger, the fraction of words correctly tagged (as compared to a gold
standard).

• For a dependency parser, the fraction of words whose parent is correctly identified (as
compared to a gold standard). Assume the root word is linked to an invisible parentless
parent, $, at the left edge of the sentence.

• For a word aligner that links words in English to their corresponding words in French
(given parallel text), the fraction of links that are correct (i.e., in a gold standard).

• For a named entity recognizer, the fraction of named entities (contiguous subsequences
of a sentence) that are correctly bracketed (as compared to a gold standard). You may
assume that named entities are not recursive in the gold standard or the hypothesis.

3 Designing a Linear Program

A linear program in standard form looks like this:

min
x

c · x

s.t. Ax = b

x ≥ 0

Let N be the dimensionality of x and let M be the number of linear constraints (not including
the positivity constraints); A ∈ RM×N and b ∈ RM . It is not terribly difficult to show that
any linear program can be transformed to this form.

1In one definition!

2



You are encouraged at this juncture to take a careful look at the Klein-Taskar tutorial
on maximum margin methods at ACL 2005, linked from the course web page.

Exercise 1 Let 〈w0 = $, w1, w2, ..., wn〉 be a sentence. Let cost(wi, wj) be the cost associ-
ated with making wi the parent of wj, and let the cost of a tree be

∑
j cost(wparent(j), wj).

Your job is to define an LP such that the minimizing x can be converted back into a depen-
dency tree such that

• every word in 〈w1, ...wn〉 has exactly one parent in {w0, w1, ..., wn};

• w0 does not have a parent;

• the solution to the LP will correspond to the lowest-cost dependency tree.

To answer the question, you must define x (in terms of the dependency tree), A, b, and c.
Hint: you should be able to define a solution in which N = O(n2) and M = O(n).

Note: do not worry about cyclicity yet.

Exercise 2 Do exercise 1 again, but this time add an overall projectivity constraint on
the tree:

• if wi is the parent of wj, then ∀k ∈ (i, j) ∪ (j, i), wk is a descendent of wi.

Hint: this will require at least another O(n2) linear constraints.
Note: do not worry about cyclicity yet.

Exercise 3 (bonus) Give the dual of the LP in exercise 3.1.

Exercise 4 (bonus) The dependency structures recovered above have not been con-
strained to be acyclic. In practice we typically want dependency structures to be trees.
Can you define constraints that will enforce cyclicity? You may introduce more variables,
too, if you need to. You may also use non-linear constraints.

3


