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Abstract

Sorage device performance prediction is a key element
of self-managed storage systems. Thiswork exploresthe ap-
plication of a machine learning tool, CART models, to stor-
age device modeling. Our approach predicts a device's per-
formance as a function of input workloads, requiring no
knowledge of the device internals. e propose two uses of
CART models. onethat predicts per-request response times
(and then derives aggregate values) and one that predicts
aggregatevaluesdirectly fromworkload characteristics. Af-
ter being trained on the device in question, both provide ac-
curate black-box models across a range of test traces from
real environments. Experiments show that these models pre-
dict the average and 90th percentile response time with a
relative error as low as 19%, when the training workloads
are similar to the testing workloads, and interpolate well
across different workloads.

1. Introduction

The costs and complexity of system administration in
storage systems [9, 19, 6] make automation of administra-
tion tasks a critical research challenge. One important as-
pect of administering self-managed storage systems, partic-
ularly large storage infrastructures, is deciding which data
sets to store on which devices. Automatic storage provision
tools, such as Ergastulum [1], rely on efficient and accu-
rate device models in making such decisions. To find an op-
timal or near optimal solution requires the ability to pre-
dict how well each device will serve each workload, so that
loads can be balanced and particularly good matches can be
exploited.

Researchers have long utilized performance models for
such prediction to compare alternative storage device de-
signs. Given sufficient effort and expertise, accurate simu-
lations (e.g., [4, 13]) or analytic models (e.g., [10, 14, 15])
can be generated to explore design questions for a particu-
lar device. Unfortunately, in practice, such time and exper-
tise is not available for deployed infrastructures, which are

often comprised of numerous and distinct device types, and
their administrators have neither the time nor the expertise
needed to configure device models.

This paper attacks this obstacle by providing a black-
box model generation algorithm. By “black box,” we mean
that the model (and model generation system) has no infor-
mation about the internal components or algorithms of the
storage device. Given access to a device for some “train-
ing period,” the model generation system learns a device’s
behavior as a function of input workloads. The resulting de-
vice model approximates this function using existing ma-
chine learning tools. Our approach employs the Classifica-
tion And Regression Trees (CART) tool because of its effi-
ciency and accuracy. CART models, in a nutshell, approxi-
mate functions on a multi-dimensional Cartesian space us-
ing piece-wise constant functions.

Such learning-based black box modeling is difficult for
two reasons. First, all the machine learning tools we have
examined use vectors of scalars as input. Existing work-
load characterization models, however, involve parameters
of empirical distributions. Compressing these distributions
into a set of scalars is not straightforward. Second, the qual-
ity of the generated models depends highly on the quality
of the training workloads. The training workloads should be
diverse enough to provide high coverage of the input space.

This work develops two ways of encoding workloads as
vectors: a vector per request or a vector per workload. The
two encoding schemes lead to two types of device mod-
els, operating at the per-request and per-workload granu-
larities, respectively. The request-level device models pre-
dict each request’s response time based on its per-request
vector, or “request description.” The workload-level device
models, on the other hand, predict aggregate performance
directly from per-workload vectors, or “workload descrip-
tions.” Our experiments on a variety of real world work-
loads have shown that these descriptions are reasonably
good at capturing workload performance from both single
disks and disk arrays. The two CART-based models have a
median relative error of 17% and 38%, respectively, for av-
erage response time prediction, and 18% and 43% respec-
tively for the 90th percentile, when the training and test-



ing traces come from the same workload. The CART-based
models also interpolate well across workloads.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses previous work in the area of storage de-
vice modeling and workload characterization. Section 3 de-
scribes CART and its properties. Section 4 describes two
CART-based device models. Section 5 evaluates the mod-
els using several real-world workload traces. Section 6 con-
cludes the paper.

2. Related Work

Performance modeling has a long and successful history.
Almost always, however, thorough knowledge of the sys-
tem being modeled is assumed. Disk simulators, such as
Pantheon [18] and DiskSim [4], use software to simulate
storage device behavior and produce accurate per-request
response times. Developing such simulators is challenging,
especially when disk parameters are not publicly available.
Predicting performance using simulators is also resource in-
tensive. Analytical models [5, 10, 11, 14, 15] are more com-
putationally efficient because these models describe device
behavior with a set of formulae. Finding the formula set re-
quires deep understanding of the interaction between stor-
age devices and workloads. In addition, both disk simulators
and analytical models are tightly coupled with the modeled
device. Therefore, new device technologies may invalidate
existing models and require a new round of model build-
ing.

Our approach uses CART, which treats storage devices
as black boxes. As a result, the model construction algo-
rithm is fully automated and should be general enough to
handle any type of storage device. The degenerate forms of
“black-box models” are performance specifications, such as
the maximum throughput of the devices, published by de-
vice manufacturers. The actual performance, however, will
be nowhere near these numbers under some workloads.
Anderson’s “table-based” approach [2] includes workload
characteristics in the model input. The table-based models
remember device behavior for a range of workload and de-
vice pairs and interploates among tables entries in predict-
ing. Our approach improves on the table-based models by
employing machine learning tools to capture device behav-
ior. Because of the good scalability of the tools to high di-
mensional datasets, we are able to use more sophisticated
workload characteristics as the model input. As a result, the
models are more efficient in both computation and storage.

3. Background: CART Models

This section gives a brief introduction of the CART mod-
els. A detailed discussion of CART is available in [3].
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Figure 1. A sample CART model.

3.1. CART Models

CART modeling is a machine learning tool that can
approximate real functions in multi-dimensional Cartesian
space. (It can also be thought of as a type of non-linear re-
gression.) Given a function Y = f(X) + ¢, where X € R¢,
Y € R, and € is zero-mean noise, a CART model approxi-
mates Y using a piece-wise constant function, ¥ = f(X).
We refer to the components of X as features in the follow-
ing text. The term, e, captures the intrinsic randomness of
the data and the variability contributed by the unobservable
variables. The variance of the noise could be dependent on
X. For example, the variance of response time often de-
pends on the arrival rate.

The piece-wise constant function f(X) can be visual-
ized as a binary tree. Figure 1(a) shows a CART model con-
structed on the sample one-dimensional data set in (b). The
data set is generated using

yi = 27 + €, i=1,2,...,100,

where z; is uniformly distributed within (0,10), and ¢; fol-
lows a Guassian distribution of N(0,10). The leaf nodes
correspond to disjoint hyper-rectangles in the feature vec-
tor space. The hyper-rectangles are degenerated into inter-
vals for one-dimensional data sets. Each leaf is associated



with a value, f(X), which is the prediction for all X's within
the corresponding hyper-rectangle. The internal nodes con-
tain split points, and a path from the root to a leaf defines the
hyper-rectangle of the leaf node. The tree, therefore, repre-
sents a piece-wise constant function on the feature vector
space.

3.2. CART Model Properties

CART models are computationally efficient in both con-
struction and prediction. The construction algorithm starts
with a tree with a single root node corresponding to the en-
tire input vector space and grows the tree by greedily se-
lecting the split point that yields the maximum reduction in
mean squared error. Each prediction involves a tree traver-
sal and, therefore, is fast.

CART offers good interpretability and allows us to eval-
uate the importance of various workload characteristics in
predicting workload performance. A CART model is a bi-
nary tree, making it easy to plot on paper as in Figure 1(a).
In addition, one can evaluate a feature’s importance by its
contribution in error reduction. In a CART model, we use
the sum of the error reduction related to all the appearances
of a feature as its importance.

4. Predicting Performance with CART

This section presents two ways of constructing device
models based on CART models.

4.1. Overview

Our goal is to build a model for a given storage de-
vice which predicts device performance as a function of
I/0 workload. The device model receives a workload as
input and predicts its aggregate performance. We define
a workload as a sequence of disk requests, with each re-
quest, r;, uniquely described by four attributes: arrival time
(ArrivalTime;), logical block number (LBN;), request
size in number of disk blocks (Size;), and read/write type
(RW};). The storage device could be a single disk, a disk ar-
ray, or some other like-interfaced component. The aggre-
gate performance can be either the average or the 90-th per-
centile response time.

Our approach uses CART to approximate the function.
We assume that the model construction algorithm can feed
any workload into the device to observe its behavior for a
certain period of time, also known as “training.” The algo-
rithm then builds the device model based on the observed
response times. Model construction does not require any in-
formation about the internals of the modeled device. There-
fore, the methodology is general enough to model any de-
vice, even if the modeling approach may not be.

Regression tools are a natural choice to model device be-
havior. Such tools are designed to model functions on multi-

dimensional space given a set of samples with known out-
put. The difficulty is to transform workloads into data points
in a multi-dimensional feature space. We explore two ways
to achieve the transformation as illustrated in Figure 2. A
request-level model represents a request r; as a vector R;,
also known as the “request description,” and uses CART
models to predict per-request response times. The aggre-
gate performance is then calculated by aggregating the re-
sponse times. A workload-level model, on the other hand,
represents the entire workload as a single vector I, or the
“workload description,” and predicts the aggregate perfor-
mance directly from 1. In both approaches, the quality of
the input vectors is critical to the model accuracy. The next
two sections present the request and workload descriptions
in detail.
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Figure 2. Two types of device models.

4.2. Request-Level Device Models

This section describes the CART-based request-level de-
vice model. This model uses a CART model to predict the
response times of individual requests based on request de-
scriptions. The model, therefore, is able to generate the en-
tire response time distribution and output any aggregate per-
formance measures.

Our request description R; for request r; contains the
following variables:

Ri= { TimeDiffi(1), ..., TimeDiffi(k),
LBN,, LBNDiff1), ..., LBNDiffi(l),
Sizei, RWZ',
Seq(i) },

where  TimeDif f;(k) = ArrivalTime; —

ArrivalTime;_oe—1 and LBNDiff;(I) = LBN; —
LBN;_,;. The first three groups of features capture three
components of the response time, and Seq(i) indicates
whether the request is a sequential access. The first (k + 1)
features measure the temporal burstiness of the work-
load when r; arrives, and support prediction of the queuing



time. We allow the TimeDiff features to exponen-
tially grow the distance from the current request to history
request to accommodate large bursts. The next (I + 1) fea-
tures measure the spatial locality, supporting prediction of
the seek time of the request. Size; and RW; support pre-
diction of the data transfer time.

The two parameters, k& and [, determine how far we look
back for request bursts and locality. Small values do not ad-
equately capture these characteristics, leading to inferior de-
vice models. Large values, on the other hand, leads to a
higher dimensionality, meaning the need for a larger train-
ing set and a longer training time. The optimal values for
these parameters are highly device specific, and Section 5.1
shows how we select the parameter values in our experi-
ments.

4.3. Workload-Level Device Models

The workload-level model represents the entire work-
load as a single workload description and predicts aggre-
gate device performance directly. The workload description
W contains the following features.

W = { Averagearrival rate,
Read ratio,
Average request size,
Percentage of sequential requests,
Temporal and spatial burstiness,
Correlations between pairs of attributes  }.

The workload description uses the entropy plot [16] to
quantify temporal and spatial burstiness and correlations
between attributes. Entropy values are plotted on one or
two attributes against the entropy calculation granularity.
The increment of the entropy values characterizes how the
burstiness and correlations change from one granularity to
the next. Because of the self-similarity of 1/0 workloads [7],
the increment is usually constant, allowing us to use the en-
tropy plot slope to characterize the burstiness and correla-
tions. Please refer to [17] for how we apply entropy plot to
quantify the burstiness and correlations.

The workload-level device model offers fast predictions.
The model compresses a workload into a workload descrip-
tion and feeds the description into a CART model to pro-
duce the desired performance measure. Feature extraction
is also fast. To predict both the average and 90th percentile
response time, the model must have two separate trees, one
for each performance metric.

Workload modeling introduces a parameter called “win-
dow size.” The window size is the unit of performance pre-
diction and, thus, the workload length for workload descrip-
tion generation. For example, we can divide a long trace into
one-minute fragments and use the workload-level model to
predict the average response time over one-minute intervals.

Fragmenting workloads has several advantages. First, per-
formance problems are usually transient. A “problem” ap-
pears when a large burst of requests arrive and disappears
quickly after all the requests in the burst are served. Using
the workload in its entirety, on the other hand, fails to iden-
tify such transient problems. Second, fragmenting the train-
ing trace produces more samples for training and reduces
the required training time. Windows that are too small, how-
ever, contain too few requests for the entropy plot to be ef-
fective. We use one-minute windows in all of our experi-
ments.

4.4, Comparison of Two Types of Models

There is a clear tradeoff between the request-level and
workload-level device models. The former is fast in train-
ing and slow in prediction, and the latter is the opposite.

An item for future research is the exploration of the pos-
sibility of combining the two models to deliver ones that are
efficient in both training and prediction.

5. Experimental Results

This section evaluates the CART-based device models
presented in the previous section using a range of work-
load traces.

Devices. We model two simulated devices: a single disk
and a disk array. The single disk is a 9GB Atlas 10K disk
with an average rotational latency of 3 milliseconds. The
disk array is a RAID 5 disk array consisting of 8 Atlas 10K
disks with a 32 KB stripe size. In both cases, the “real”
device is provided by DiskSim [4], which has a validated
model of the Atlas 10K disk. We replay all the traces on the
two devices except the SAP trace, which is beyond the ca-
pacity of the Atlas 10K disk.

Traces. We use three sets of real-world traces in this study.
Table 1 lists the summary statistics of the edited traces. The
first two, cello92 and cell099 capture typical computer sys-
tem research 1/O workloads, collected at HP Labs in 1992
and 1999 respectively [12, 8]. We preprocess cell092 to con-
catenate the LBNSs of the three most active devices from the
trace to fill the Atlas 10K disk. For cello99, we pick the
three most active devices, among the 23 devices, and label
them cello99a, cello99b, and cello99c. The cello99 traces
fit in a 9GB disk perfectly, so no trace editing is necessary.
As these traces are long (two months for cello92 and one
year for cell099), we report data for a four-week snapshot
(5/1/92 to 5/28/92 and 2/1/99 to 2/28/99).

The SAP trace was collected from an Oracle database
server running SAP ISUCCS 2.5B in a power utility com-
pany. The server has more than 3,000 users and disk ac-
cesses reflect the retrieval of customer invoices for updating
and reviewing. Sequential reads dominate the SAP trace.



Trace Length Requests Average %
name (x10°) Size | of reads

| cello92 || 4weeks | 78 | 129KB | 354% |
cello99a 4 weeks 43.7 7.1 KB 20.9%
cello99b 4 weeks 13.9 | 118.0KB 41.6%
cello99c 4 weeks 24.0 8.5 KB 26.4%

[ SAP [ 15 minutes | 11] 151KB | 99.9% |

Table 1. Trace summary.

Evaluation methodology. The evaluation uses the device
models to predict the average and 90th percentile response
time for one-minute workload fragments. We report the me-
dian prediction errors over all the fragments using two met-
rics: absolute error defined as the difference between the
predicted and the actual value, |Y — Y|, and relative error
defined as @

We use the first two weeks of cello99a in training be-
cause of the trace’s relatively rich access patterns. The train-
ing trace is 19,583 minutes long. Because of the large num-
ber of requests, we use a uniform sampling rate of 0.01 to
reduce the number of requests to 218,942 in training the
request-level model.

Predictors in comparison. We evaluate our two CART-
based device models, denoted as CART-r equest and
CART- wor kl oad in the remaining text, against three pre-
dictors.

e const ant makes predictions using the average or
quantile response time of the training trace.

e peri odi c dividesaweek into 24 x 7 x 60 one-minute
intervals and remembers the aggregate performance of
the training workload for each interval. Prediction uses
the corresponding value of the interval with the same
offset within the week.

e | i near does linear regression on the workload de-
scriptions.

Note that the const ant and per i odi ¢ predictors model
workloads rather than devices, because they do not take
workload characteristics as input. Both predictors rely on
the similarity between the training and testing workloads to
produce accurate predictions. The difference between| i n-
ear and CART- wor kI oad, on the other hand, shows the
importance of using non-linear models, such as the CART
models, in device modeling.

5.1. Calibrating Request-L evel Models

This section describes how we select parameter values
for k and [ for the request-level device models.

Figure 3 shows the relative importance of the request de-
scription features in determining per-request response time
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Figure 3. Relative importance of parameters
in the request description for the Atlas 10K
disk.

by setting % to 10 and [ to 5. The feature’s relative impor-
tance is measured by its contribution in error reduction. The
graphs show the importance of request description features
measured on the Atlas 10K disk, trained on two traces
(cello99a and cello99c). We use only the first day of the
traces and reduce the data set size by 90% with uniform
sampling.

We observe that the relative importance is workload de-
pendent. As we expected, for busy traffic such as that which
occurred in the cello99a trace, the queuing time dominates
the response time, and thereby, the TimeDi f f features are
more important. On the other hand, cello99c has small re-
sponse times, and features that characterize the data trans-
fer time, such as Size and RW, have good predictive power
in modeling the single disk.

We set k to 10 for TimeDif f and [ to 3 for LBN Dif f
in the subsequent experiments so that we can model device
behavior under both types of workloads.

5.2. Modeling A Single Disk

Figure 4 compares the accuracy of the five predictors
in modeling an Atlas 10K 9GB disk on real-world traces.
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Figure 4. Comparison of predictors for a sin-
gle 9GB Atlas 10K disk.

model is built for the Atlas 10K disk. The training trace is
the first day of cello99a, and the testing trace is the second
day of the same trace. The actual and predicted average re-
sponse times are 137 ms and 133 ms respectively. The cor-
responding demerit value, defined in [13] as the root mean
square of horizontal distance between the actual and pre-
dicted curves in (b), is 46 milliseconds (33.4%). The long
tail of the distribution is well captured by the request-level
model, indicating that the request description is effective in
capturing request-level characteristics needed to predict re-
sponse times.
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Figure 5. Cumulative response time distribu-
tion comparison.

More graphs can be found in [17]. As mentioned earlier, all
predictors are trained using the first two weeks of cello99a.
Overall, the two CART-based device models provide good
prediction accuracy in predicting both the average and 90th
percentile response times, compared to other predictors.
Several more detailed observations can be made.

First, all of the models perform the best when the train-
ing and testing traces are from the same workload, i.e.,
cello99a, because the models have seen how the device
behaves under such workloads. The peri odi c predictor
also cuts the median prediction error of the const ant
predictor by more than a half because of the strong pe-
riodicity of the workload. CART- r equest and CART-
wor k| oad further reduce the error to 4.84 milliseconds
(19%) and 14.83 milliseconds (47%) respectively for the
average response time prediction, and 20.46 milliseconds
(15%) and 49.50 milliseconds (45%) respectively for the
90th percentile. The performance difference between | i n-
ear and CART- wor k|l oad roughly quantifies the benefit
of using a non-linear model, such as CART, because both
accept the same input. We observe a significant improve-
ment from the former to the latter, suggesting non-linear
device behavior.

Figure 5 further compares the predicted response time
distribution by CART-r equest and the actual one. The

Second, both CART-based device models interpo-
late better across workloads than the other models. con-
stant and peri odi ¢ rely blindly on similarities be-
tween the training and testing workloads to make good pre-
dictions. Consequently, it is not surprising to see huge
prediction errors when the training and testing work-
loads differ. The CART-based predictors, on the other hand,
are able to distinguish between workloads of different char-
acteristics and are more robust to the difference between
the training and testing workloads.

Third, model accuracy is dependent on the train-
ing workload quality even for the CART-based mod-
els. The prediction error increases for workloads other than
cello99a, because of the access pattern differences among
these traces. The CART-based models learn device be-
havior through training; therefore, they cannot predict
performance for workloads that have totally different char-
acteristics from the training workloads. For example,
CART-r equest constantly over-predicts for cello99c,
because the model was never trained with the small se-
quential accesses that are particular to cello99c. Section 5.4
gives an informal error analysis and identifies inade-
quate training being the most significant error source.

Fourth, high quantile response times are more difficult
to predict. We observe larger prediction errors from all the



predictors for 90th percentile response time predictions than
for average response time predictions. The accuracy advan-
tage of the two CART-based models is higher for 90th per-
centile predictions.

In summary, the two CART-based models give accu-
rate predictions when the training and testing workloads
share similar characteristics and interpolate well otherwise.
The good accuracy suggests the effectiveness of the request
and workload descriptions in capturing important workload
characteristics.
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Figure 6. Comparison of predictors for a
RAID 5 disk array of 8 Atlas 10K disks in pre-
dicting average response time.

5.3. Modedling A Disk Array

Figure 6 compares the accuracy of the four predictors in
modeling the disk array. The peri odi ¢ predictor is not
presented because the SAP trace does not provide enough
information on arrival time for us to know the offset within
a week. The overall results are similar to those for the sin-
gle disk. The two CART-based models are the most accurate
predictors. The absolute errors become smaller due to the
decreased response time from the single disk to the disk ar-
ray. The relative accuracy among the predictors, however,
stays the same. Overall, the CART-based device modeling
approach works well for the disk array.

5.4. Error Analysis

This section presents an informal error analysis to iden-
tify the most significant error sources for the CART-based
device models.

A model’s error consists of two parts. The first part
comes from intrinsic randomness of the input data, such as
measurement error, and this error cannot be captured by any
model. The rest of the error comes from the modeling ap-
proach itself. The CART-based models incur error at three

Error comparison

— 250
2 —m— Train: cello99a
E 200 |+ —&— Train: cello99a+cello99b =
5
2 150
>
©
2 100
<
2
z 50
o) ,;x‘._‘_!m;-j‘.l_m_‘—xﬁﬁ@g N

0% 25% 50% 75%
% of sequential requests

100%

Figure 7. Effect of training workload.

places. First, the transformation from workloads to vectors
introduces information loss. Second, the CART-based mod-
els use piece-wise constant functions, which could be dif-
ferent from the true functions. Third, a low-quality train-
ing trace yields inaccurate models because CART relies on
the information from the training data to make predictions.
An inadequate training set has only a limited range of work-
loads and leads to large prediction errors for workloads out-
side of this range. We find that the last error source, inad-
equate training data, causes the most trouble in our experi-
ments.

We conduct a small experiment to verify our hypothe-
sis.  Figure 7 compares the prediction errors for work-
load fragments of different sequentiality. The spectrum of
sequentiality (from 0% to 100% of requests in the work-
load being sequential) is divided into 20 buckets, and the
graph shows the average absolute error for each bucket.
When we train the device model using cello99a, the model
incurs large errors for fragments of high sequentiality be-
cause cello99g has high-sequentiality fragments, while in
cello99a, the sequentiality never goes beyond 0.5. The pre-
diction error is reduced significantly when we include the
first half of cello99b in training. The dramatic error reduc-
tion suggests that prediction errors from the other sources
are negligible when compared with the ones introduced by
inadequate training. We conclude from this evidence that
contributing efforts in black-box device modeling should be
directed toward generating a good training set that covers a
broad range of workload types. Future research work can
use synthetic workload generators to provide training traces
of diverse characteristics.

6. Conclusions

Storage device performance modeling is an important el-
ement in self-managed storage systems and other applica-
tion planning tasks. Our target model takes a workload as
input and predicts its aggregate performance on the mod-



eled device efficiently and accurately. This paper presents
our initial results in exploring machine learning tools to
build device models. A black box predictive tool, CART,
makes device models independent of the storage devices be-
ing modeled, and thus, general enough to handle any type
of devices. This paper presents two ways of applying CART
models, yielding the request-level and workload-level de-
vice models. Our experiments on real-world traces have
shown that both types of models are accurate and efficient.
The error analysis suggests that the quality of the training
workloads plays a critical role in model accuracy. Contin-
uing research can focus on improving the accuracy and ef-
ficiency of the models by investigating synthetic training
workload generation and high-quality workload descrip-
tions.
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