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Abstract

Network, web, and disk I/O traffic are usually bursty,
self-similar [9, 3, 5, 6] and therefore can not be modeled ad-
equately with Poisson arrivals[9]. However, we do want to
model these types of traffic and to generate realistic traces,
because of obvious applications for disk scheduling, net-
work management, web server design.

Previous models (like fractional Brownian motion,
FARIMA etc) tried to capture the ‘burstiness’. However,
the proposed models either require too many parameters
to fit and/or require prohibitively large (quadratic) time to
generate large traces. We propose a simple, parsimonious
method, the � -model , which solves both problems: It re-
quires just one parameter, and it can easily generate large
traces. In addition, it has many more attractive properties:
(a) With our proposed estimation algorithm, it requires just
a single pass over the actual trace to estimate � . For ex-
ample, a one-day-long disk trace in milliseconds contains
about 86Mb data points and requires about 3 minutes for
model fitting and 5 minutes for generation. (b) The resulting
synthetic traces are very realistic: our experiments on real
disk and web traces show that our synthetic traces match
the real ones very well in terms of queuing behavior.

1 Introduction

A number of different types of traffic (e.g. Ethernet [9],
web [3], video [5] and disk [6] traffic) are self-similar for
a wide range of time scales. Such traffic also typically ex-
hibits significant burstiness. Given these relatively recent
observations, many standard methods for traffic generation
are fundamentally flawed, since they do not incorporate
these basic facts.

Of these standard methods, the Poisson arrival model is
by far the most commonly and widely used. It has the highly
desirable properties of being relatively straightforward and
easy to grasp. It is also very concise, since it relies on very
few parameters that can be easily estimated from real data.
Unfortunately, the traffic it generates is neither self-similar,
nor bursty.

A number of other methods have been proposed recently,
such as the multiple ON/OFF source aggregation process.
Many others draw from and combine self-similar processes
from statistics. However, many of these methods are quite
complicated or ad-hoc and they employ models that are
fine-tuned only to particular classes of traffic. Others suf-
fer from a very large number of parameters. As a result, the
parameter estimation and traffic generation processes often
require significant computational effort.

We propose a simple and elegant model which has the
same desirable properties as the Poisson model. Namely, it
is based on a simple and straightforward fundamental pro-
cess. It relies on very few parameters, which can be easily
estimated from actual data. However, although simple, it is
powerful enough to successfully characterize self-similar,
bursty traffic for a wide range of time scales. It is general
enough to be applicable to a wide range of domains. The
main goal of the present paper is to describe our model and
demonstrate its usefulness in a variety of domains.

An important problem we chose to demonstrate our
method is I/O traffic modeling, which is a very difficult
problem [4]. Besides being useful for accurate evaluation
of disk subsystem performance, a good model is crucial in
the very design of such a system. If a scheduling algorithm
is to be successful, an understanding of the common traf-
fic patterns is necessary. Furthermore, a simple and fast
model could be incorporated directly in access prediction
and prefetching subsystems and we are currently working
towards that goal.

Furthermore, previous work seldom used domain-
specific metrics for evaluation. Most comparisons are based
on intrinsic statistical properties of the traces themselves
(such as variance, autocorrelation, etc.). Although these are
important properties, what matters in the end is how a real
system behaves under any given workload. Choosing a par-
ticular application domain allows us to compare the real and
synthetic traces using detailed simulation. Based on these
simulations, we show how the synthetic traces match the
real ones in terms of queueing delay and interarrival time
distributions.



Our model has only one parameter. Compared to other
models, the algorithms involved in our model are extremely
efficient. Model fitting is linear and our implementation
gives an accurate estimation in less than 3 minutes for a
one day-long disk trace in millisecond resolution (more than
86Mb data points). Generation of synthetic traces scales
linearly to the trace length and it generates a realistic one-
day-long disk trace in 5 minutes.

The � -model is closely related to the well-known “80/20
law” in databases: 80% of the queries access 20% of the
data. In fact, most of the distributions in the real world fol-
low the “80/20 law” [7], even in other domains (such as
ore and population distributions, highway traffic patterns, or
photon distributions in electro-magnetic cavity radiation).

The paper is organized as follows. We give a brief
overview of related work in the next section. Section 3
provides some background information on self-similarity.
The � -model is introduced in section 4, which also presents
the model fitting algorithm and its derivation, as well as the
trace generation algorithm. We evaluate the model using
several real data sets in section 5. Section 6 presents our
conclusions.

2 Survey

Modeling of bursty time sequences has recently received
considerable attention in the literature. Most real-world
traffic is self-similar and bursty (e.g. Ethernet [9], web [3],
video [5] and disk [6] traffic). This renders many standard
methods (such as Poisson arrivals) useless. A comprehen-
sive overview of the area can be found at [14].

A number of models that use self-similar processes have
been proposed. For example, Gartett and Willinger [5] used
a fractional ARIMA process to generate synthetic Variable
Bit Rate (VBR) video traces. Since the model itself is not
intrinsically bursty, it is fed with the logarithm of the data
in order to create the requisite burstiness.

Barford and Crovella [1] took another approach in the
SURGE web trace generator. They aggregate a large num-
ber of ON/OFF heavy tailed distributions to synthesize self-
similar web traffic. Gomez [6] employed a similar method
to synthesize I/O access traces.

All the models mentioned above require the estimation
of a large number of parameters from the original traces.
This usually results in high computational costs for model
fitting and synthetic trace generation. Also, the evaluation
done in this previous work focuses on intrinsic, statistical
properties of the real and synthesized workloads.

Another approach similar to ours is taken by Ribeiro et
al. [10]. Their Multifractal Wavelets used a similar multi-
plicative cascading process to generate web traces. Their
evaluation is based on the queuing behavior from a simula-
tor. However, their model requires fitting more parameters
than ours.
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(a) A one-hour disk trace col-
lected on a Unix workstation
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(b) Part of the trace, from ����������	��

�
, length � ������

� .

Figure 1. Self-similarity of disk traffic. Shown in (b) is a portion
of the trace in (a) (total number of disk requests per millisec-
ond). Note that is very similar to the original trace. Self-similar
sequences have this property across all (or, in practice, a very
wide range) of time scales. Each disk request is of 1 KB.

The � -model presented here is very concise; only one pa-
rameter is enough to describe the entire trace. The model is
accurate in terms of domain-specific properties such as in-
terarrival time distribution and queuing behavior. Further-
more, the model fitting and trace generation algorithms are
linear and require only a single pass on the data. It would
therefore be possible to integrate them in network or disk
devices (which typically have constrained resources) and
use them to collect data on the fly and “learn” the traffic
characteristics in real-time.

3 Background: Self-Similarity

After the initial discovery that Ethernet traffic is self-
similar [9], a high degree of self-similarity has been ob-
served in many other types of traffic (e.g. TCP [11],
video [5], web [3], file system [8], and disk I/O [6] traf-
fic). In this section we give a brief overview of self-similar
processes.

Informally, self-similarity means invariance with respect
to scaling across all time scales. “Invariance” may mean
exact identity, in which case we speak of deterministic
self-similarity. However, it may imply identical statistical
properties, in which case we have statistical self-similarity.
Figure 1 shows the self-similarity in the cello disk traces
from [12]. The particular trace records the activities on 8
disks and the figure shows an hour-long trace from disk 2.
The number (or volume) of disk requests is plotted against
time in millisecond resolution in (a) and portion of it in (b);
the enlarged portion in a finer scale is statistically similar to
the entire trace viewed in a larger time scale.

For these bursty I/O workloads, the traditional Pois-
son arrival assumption fails horribly because it generates
smooth traffic and fails to capture the peaks and troughs of
the real data. If we assume the arrival process is Poisson
with the same total volume of disk requests, the traffic is
very smooth with just 1 or 2 disk requests occurring most
of the time.



Symbol Definition�
A time series data (e.g., no. of disk requests)�������
Aggregated

�
at aggregation level � .�

Hurst exponent	
Length of

�
(i.e., number of time ticks)


Total volume of
�

(e.g., total number of disk
requests)

� Bias in the � -model� ���
�
Entropy of

�
at aggregation level ���� � �����
�
� � ������� �������
��� ����� ���

Table 1. Important symbols.

A common measure of self-similarity in the literature
is the Hurst exponent

�
[2]. A value of

�
between  �

and 1 indicates the degree of self-similarity. It is also
used as a global1 index for burstiness [9]. There are sev-
eral exploratory analytic tools to estimate

�
, such as R/S

plots, variance plots, autocorrelation functions, and peri-
odograms [2].

We will very briefly explain the R/S and variance plots,
since we will use them to detect self-similarity in the real
traces. The R/S plot shows the average rescaled range
against the window size in log-log scale by aggregating the
original data set into equal-sized windows. The variance
plot show the variance of the data against the window size
in log-log scale. The points should approximate a line for a
self-similar signals and the slope of both plots can be used
to estimate the Hurst exponent.

However, self-similar processes don’t always generate
bursty time sequences. The parameter

�
focuses more on

the behavior across large time scales. In the next section,
we will introduce the � -model , which is intrinsically bursty
and matches the irregularity of the original data at fine time
scales.

4 Modeling I/O Workloads with the ! -model

The � -model has two main advantages. The model is
concise; it requires only one parameter, bias � , to describe
the burstiness of the entire traces. More importantly, model
fitting and synthetic trace generation are very efficient and
scale linearly with respect to the data set size.

In the following sections we first introduce the � -model
and then present our main theoretical results. The deriva-
tion of the model fitting and synthetic trace generation al-
gorithms is presented last. Table 1 lists important symbols
used in the paper.

4.1 The " -model

The � -model is closely related to the “ #
$�%�&�$ law” in
databases[7]: 80% of the queries involve 20% of the data.

1Other quantities, such as the Hölder exponent (also known as the irreg-
ularity index), are used to characterize the burstiness around a particular
point in a signal.

In the � -model , a ‘bias’ parameter �(')$+* # means that,
within a given time interval, 80% of the accesses happen on
one half of the time interval (and the remaining 20% in the
other half) and this continues recursively. More specifically,
the whole construction begins with a uniform interval and
recursively subdivides the number of accesses to each half,
quarter, eighth, etc. according to the bias � .

Thus, step �-, � ends with a total of & ��.  time intervals,
which are obtained by splitting each of the & � points from
step � according to the formula:

� ����.  � � &0/��1' � � ����� � /��� ���
.  � � &0/2, � �3' ����� ��� � ���
� � /��
for /4'5$+6 � 67*7*8*96:& � �;� and ��<>= $?*A@B6 � � . The superscript of� �����

indicates the current step and is also called the aggre-
gation level. The above formulae are for the deterministic
version of the model, where the split is always done in the
same direction. The value of

�
after step � is

� ���
� � /��C' �ED ����� �7� ��F D
6 /G'5$?68*7*8*96:& � �H�
(1)

where I is the number of times the data point falls into the
left half of the split. Figure 2 (a) gives the first 3 steps of the
construction process and (b) shows a sample trace with ��'$?*KJ of length

� $L&�M with total volume of 4096 with � always
on the left. In real trace generation, we let � go randomly
to left or right to create some randomness in the synthetic
trace.

Note that all the data points always sum up to 1 (or, in
general, the total volume



—we omit this factor for sim-

plicity here):

�EN F  O P
Q9R � ����� � /��3' �EN F  O P

QSR � D ����� ���ET F D
' ������� ���U, ��� �' � *

The recursive construction process guarantees the self-
similarity of the � -model data. The closer � is to 1, the
higher the irregularity of the data. A � value of 0.5 gives
a uniform data.

4.2 Theoretical Results

We will now discuss our main theoretical results. The
central relation we derive is between entropy and the bias

� . This is a fundamental result and the basis for our model
fitting algorithm. We also present the relationship of our
model to previous work, and in particular to the Hurst ex-
ponent.



1

b

b^2

1 1 11/2 1/2

(a) � -model generation

40

80

0 200 400 600 800 1000

Y
_t

(x
)

time

(b) A sample � -model data

0

3

6

9

0 5 10

en
tr

op
y 

va
lu

e

aggregation level

"test.enp"
0.881*x

(c) Entropy plot for (b)

Figure 2. B-model. The sample data of bias 0.7 shows a slope of 0.881 in entropy plot.

4.2.1 Entropy and Bias

First, we briefly re-introduce the concept of entropy. En-
tropy measures the uniformity of a discrete probability func-
tion. Equation 2 gives the entropy value of the probability
function � , where ��� �

P��
'��

P
, $	� /
� � , � �P Q9R �

P
' �

.�
P

is the probability that event
� P

will happen.

� � � �C' �O P
Q  �

P
���L�L� ��

P * (2)

Given fixed number of events, � , the entropy reaches the
maximum value when all the �

P
s have the same value. The

entropy approaches 0 when one event dominates. There-
fore, the entropy indicates the degree of unevenness of the
probabilities.

Entropy can be used to describe the burstiness of the
traffic data. Given a � -model data, the

� �����
values can be

viewed as �
P
s for a probability function since � � ����� � /��C'� 2. The burstiness of the data at aggregation level � , then,

can be found by calculating the entropy value of the
� �����

.

� ���
� ' � �:N F  O P
Q9R � ���
� � /������
� � � ����� � /�� * (3)

Plotting the entropy values against the aggregation levels
gives the entropy plot.

Theorem 1 The entropy of the & � data points at aggrega-
tion level � generated by the � -model with bias � is� ����� ' � ��� *
where

� �
� � �  � ' � �����L�
� � �5����� �7�����L�L� ��� � ��� is the
entropy at aggregation level 1.

Proof: See [13] for proof.
2In general, 
���� ��� , the total volume, in which case we can simply

take � ��� � .

The above theorem suggests linear entropy plots for � -
model . Figure 2(c) shows the entropy plot for the synthetic
trace in Figure 2(b). The points form a line of slope 0.881,
which corresponds to bias 0.7 according to Equation 2.

4.2.2 Hurst Exponent

Previous work on self-similar processes, both in com-
puter science and in a number of other fields (e.g., physics,
hydrology, etc.), depends heavily on Hurst exponent as a
measure of burstiness. Therefore, it is expected that the bias
in � -model is closely related to Hurst exponent.

Theorem 2 The Hurst exponent
�

(as estimated from the
variance plot) of a trace generated with the � -model using
bias � follows the following approximate relation:�� ��� �

& �
�
& ���
� � � � � , ����� ��� � ��* (4)

Proof: See [13] for proof.
The above theorem provides a method to find the bias �

for a given trace. Solving Equation 4 gives the bias after the
Hurst exponent is estimated from the R/S plot or variance
plot. However, the approximation in the equation requires

� to be close to 1. Thus, the estimation is not accurate for
lower degrees of burstiness. Instead, we use entropy plot
for model fitting.

4.3 Model Fitting

The close relationship between the bias and
� �

given by
Equation 2 provides yet another way to find the best bias for
a given trace. The bias can be solved from the equation after���

is estimated from the trace. The slope of the entropy
plot for a given data set is a good estimation for

� �
when

the entropy plot is linear. Fortunately, self-similarity of real
world traffic data ensures linear entropy plots because the
burstiness of the data is stable across all the aggregation
levels.

Computing the entropy plot for a given trace is to find
the entropy value of the trace by aggregating it in different
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Figure 3. Comparison between the � -model and Poisson arrival in entropy plot, interarrival time distribution, and queuing behavior.
Poisson arrival, having a slope close to 1 in the entropy plot, generates smooth traffic and results in short queue length. The � -model
, on the other hand, produces bursty traffic and simulates the original traffic very well.

bucket sizes. Suppose that the original trace has & � data
points (for simplicity, we truncate the traces so their length
is a power of 2). We can aggregate it into 2, 4, 8, etc. buckets
(corresponding to aggregation levels 1, 2, 3, etc.) and cal-
culate the entropy for each number of buckets. Once again,� �����

is the entropy for at aggregation level � (i.e., for & �
buckets).

A naive implementation needs one scan for each ag-
gregation level. However, note that all the passes are in-
dependent. Thus, they can be integrated into one and� �  � 6 � � � � 67*8*7*96 � ����� can be calculated simultaneously, in
a single pass.

In Figure 3 (a), we show the entropy plot for the sample
data shown from Figure 1(a). We should note that the en-
tropy plot tail is flat because we are using integer values for�

. The entropy plot shows a perfect fit for a line with slope
0.73. This indicates that the irregularity of the data stays the
same for all aggregation levels. Otherwise, the slope would
change at each aggregation level. Given Theorem 1, we can
use the slope to estimate the bias � . The bias turns out to
be 0.795 for the sample trace. In contrast, a Poisson arrival
process with the same total volume of data works like the

� -model with bias 0.5. The entropy value scales linearly in
this case as well, but with a slope close to 1 which means
an essentially uniform trace.

We compare the Poisson arrival process to the � -model
using several different tools in Figure 3. The synthetic trace
is generated using the � -model with bias 0.795. The interar-
rival time distribution and queuing behavior of the synthetic
data is similar to the original trace, while the Poisson arrival
gives really smooth traffic, thus, exhibiting markedly differ-
ent behavior in both the interarrival time and queue length.
In fact, the Poisson process could be viewed as a “special
case” of the � -model . When we use bias close to 0.5, the
generated data is very close to Poisson arrivals, particularly
in terms of burstiness.

Algorithm 1 Efficient � -model Data Generation
INPUT: Bias � , aggregation level � , total volume



OUTPUT:

���
with & � points following the � -model

ALGORITHM: A stack is used to keep track of the data
points.

1. Initialize the stack and push pair (0,



) onto the stack.

2. If the stack is empty, all the & � data points have been
generated and the process ends.

3. Pop a pair (
�

, � ) from the stack. If
� ' � , output � as

the next data point and go back to Step 2.

4. Flip a coin. If heads, push pairs
� � , � 6���� ��� and� � , � 6���� ����� ���E� onto the stack. Otherwise, push

pairs
� � , � 6��	� ����� ����� and

� � , � 6��	� ��� onto the
stack. Go back to Step 2.

Figure 4. Data generation using the � -model

4.4 Trace Generation

Although the � -model requires estimation of only one pa-
rameter ( � ), two more parameters are needed to generate the
traces: total volume



and aggregation level � .



is sim-

ply the total number of requests in the output trace. The
aggregation level � determines the number of data points
that will be generated; that is,

	 ' & � . In practice, we can
easily extend the algorithm to generate traces of arbitrary
length.

A straightforward implementation is to build the model
by exactly following the construction in subsection 4.1,
step-by-step for each aggregation level. In this case, the
time required, expressed in terms of multiplication opera-



tions, is

������� �	� � 	 �C' � , & ,�
�
�
 ,(���L� � 	 '�
 � 	 � *
To output & � data points, we need to keep track of the & ��F  
data points in the next-to-last aggregation level. Thus, the
space is at least is at least & ��F  , i.e.

� ����� ��� � 	 �C' 	 %�&-'�
 � 	 � *
A more efficient way is to use a stack, as described in

Figure 4. First, the total volume



(which is the value of
the trace at aggregation level 0) is pushed onto the stack. At
each step, the algorithm examines the value at the top of the
stack. Conceptually, each point is associated with an aggre-
gation level (although, in practice, that can be deduced from
the size of the stack and does not need to be stored). The al-
gorithm outputs the data point, if its aggregation level is � .
Otherwise, the top data point is split according to the bias �
and replaced by the two new points of a higher aggregation
level.

At any time during the process, the aggregation level of
the data points in the stack is 1, 2, etc., from bottom up. The
size of the stack reaches its maximum when the aggregation
level of the top data point is � . Therefore, the maximum size
of the stack is � .

Lemma 1 The time and space requirements of the efficient
generation algorithm are

��������� ���	� � 	 �C' 	 %�&-'�
 � 	 �
� ������� ���	� � 	 �C'5� '�
 � ���
��� 	 �

Proof: Follows from the previous observations.
Although the time requirements are the same, the space

requirements are just logarithmic with respect to the data set
size.

5 Experiments

In this section, we evaluate our model on two kinds of
data sets: disk and web traces. Summary of the data sets
are in Table 2. All show high degrees of self-similarity and
burstiness. We use the entropy plot to estimate � and com-
pare the generated traces to real ones in terms of domain-
specific properties: interarrival time and queue length dis-
tribution.

The disk traces were captured on an HP-UX worksta-
tion with 8 drives [12]. All traces are one day long. From
these we use the following: Disk-a aggregates all ac-
cesses on all disks. Disk-r aggregates only reads-accesses
and Disk-w only write-accesses. Disk0, Disk2, Disk7
are the activities on three individual disks (the remaining 5
disks are almost always idle and thus not particularly inter-
esting). The disk traces are in resolution of milliseconds, so

Name Description � ��
Disk-a all disks aggregated 4,575,798 0.837
Disk-r reads on all disks 1,822,781 0.748
Disk-w writes on all disks 3,300,628 0.763
Disk0 requests on disk 0 1,101,416 0.800
Disk2 requests on disk 2 1,396,649 0.726
Disk7 requests on disk 7 371,320 0.837

(a) Disk trace summary (length 86,400,000)

Name Description � (in Kb)
��

lbl-all All activities 28,678,088,807 0.705
lbl-nntp nntp activities 11,564,204,118 0.619
lbl-smtp smtp activities 989,984,211 0.747
lbl-ftp ftp activities 10,268,918,659 0.789

(b) Web trace summary (length 2,592,000,000)

Table 2. Description of the data sets.

all the traces have about 86M data points in it. We use the
number of requests in the experiment. Each request is for a�������! �"

block. The resolution of milliseconds for disk I/O
workloads is good enough, since the service time is usually
a couple of milliseconds.

The web traffic is from public Internet traces available
on http://repository.cs.vt.edu/ named lbl-
conn-7. It contains thirty days’ worth of all wide-area
TCP connections between the Lawrence Berkeley Labora-
tory (LBL) and the rest of the world. Four web traces are
used(Table 2) and they are in millisecond resolution as well.

The main questions for our experimental investigation
are the following: To what extent are the real traces self-
similar and bursty? How realistic are the traces generated
by the � -model ? How efficient is the � -model in generating
the traces based on the real data? We proceed to answer
these questions in each of the following sections.

5.1 Self-similarity and Model Fitting

All the data sets show strong self-similarity and are very
bursty. This can be easily verified by simply looking at the
data sets. Figure 5 (a) and (e) show Disk-a and lbl-a.
The linear behavior of R/S plots and variance plots gives
an estimated Hurst exponent around 0.75 to 0.85, confirm-
ing strong self-similarity. We only show the R/S plots and
variance plots for the two traces due to space limitations—
all the data sets and their R/S and variance plots are very
similar.

We use the entropy plot to fit our model. In all the data
sets, the points in the entropy plots approximate a line very
well (Figure 5 (d) and (h)). The slope of the entropy plots
and the estimated bias � are listed in Table 2. All the traces
have bias ranging from 0.63 to 0.8. The traditional Poisson
arrival is not able to deal with these traces.
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Figure 5. Raw data, R/S plots, variance plots, and entropy plots for disk and web traces.

The entropy plots show a plateau at the tail part for LBL
web traces. To simulate this, we can use the truncated � -
model : beyond certain aggregation level, we set � to 1 to
force no further splitting on the value of the data points.

5.2 Domain-specific evaluation

The � -model is further evaluated by comparing the syn-
thetic traces with the real workloads in terms of domain-
specific properties. The synthetic traces are generated by
the � -model with bias estimated from the entropy plots.

Domain-specific properties include queuing behavior
and interarrival time distribution. These properties are more
important than the statistical properties, because the ulti-
mate goal of modeling is to help to develop better systems.
For the these workloads, interarrival time distribution and
queuing behavior are critical to the throughput of the disk
subsystems and networks. Bursty workloads often cause
unusually long queues, requiring larger buffer pools and
making the end users suffer long response times. The � -
model should be able to replicate these behavior.

Figure 6 and 7 compare the interarrival time and queue
length distributions in negative cumulative format and in
log-log scale for disk traces. A simple disk model assuming
a uniform service time of 10 milliseconds is used to pro-
duce the queue length distribution because only timestamps
of the disk requests are available.

Overall, the interarrival time distributions of the syn-
thetic traces and the original ones agree very well as shown
by Figure 6. For the real workloads, about 90 per cent of

the disk requests have interarrival time of 0, which means
they are sent to the disk within 1 millisecond after the pre-
vious ones. Here 1 millisecond is the resolution of the data
set. Another 10 per cent of the disk requests have differ-
ent interarrival times, ranging from

����� "��
to
� $
$L$ � "�� . The

synthetic traces capture this irregularity very well.
Figure 7 compares the queuing behavior. Most of disk

requests can be served immediately without waiting in the
queue. But sometimes, there are so many disk requests in a
short period of time that the queue becomes extremely long.
A few disk requests experience a queue length of about 1
million disk requests. This is caused by the burstiness of
workloads. The synthetic data capture the bad queuing be-
havior and exhibit similarly bad queuing behavior.

Results of similar experiments on the web traces are
shown in Figure 8. Different request sizes exist in web
traces. Again, we assume that the service time is the trans-
mission time and is proportional to the request size — in
particular, we assume

� $
$�� � "�� for every
�������  "��

. The
queue length is the number of bytes waiting to be sent.
While the interarrival time distributions are not so close,
the queue length distributions agree very well, which in-
dicates a good approximation of the mean response for the
end users.

5.3 Computation Effort

The efficiency and the scalability of the algorithms are
also major concerns because of large data set sizes. Efficient
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Figure 6. Interarrival time distribution in negative cumulative form.

Size Entropy plot Generation
1 M 20.50 13.54
2 M 40.52 26.40
4 M 80.51 51.62
8 M 167.49 100.34

16 M 262.12 140.75
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Figure 9. Computation time against data set size.

model fitting makes it possible to incorporate the � -model in
scheduling subsystems.

subsection 4.4 has already discussed the time and space
needed for synthetic trace generation. Requirements of time
and space are 
 � 	 � and 
 � ���
�B� 	 � respectively. In this sec-
tion, we show that all the other tools require only one scan
of the data set, thus, offering good scalability, too.

It is straightforward to show that tools like interarrival
time distribution and queuing behavior need one pass on
the data. A naive implementation for the entropy plot needs
one scan for each aggregation level. However, note that all
the passes are independent. Thus, they can be integrated
into one and

� �  � 6 � � � � 67*7*8*S6 � ����� can be calculated simul-
taneously. All the experiment results are calculated using
one-pass algorithms. This is extremely important when for
very large data sets.

The actual processing time also depends heavily on the
total volume of requests. In practice, all the data points have
integer values instead of real values. When the volume is
small, some of the data points will become zero before the
required aggregation level is met, thus, no further compu-
tation is needed on them. In fact, in our experiments, gen-
erating a one-day-long disk trace in millisecond resolution
usually takes less than 5 minutes and the entropy plot re-
quires less than 3 minutes when implemented in Perl. We
expect that a C implementation will perform much faster.

Figure 9 shows the actual wall-clock time for the entropy
plot and trace generation. Both scale well with respect to
the data set size. We test our tools using traces of different
length with the same density. That is, the 1M long trace has
1 million disk requests and 10M long trace has 10 million
disk requests. We use a bias of 0.7. Both the algorithms
show linear scalability.
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Figure 7. Queue length distribution in negative cumulative form.

6 Conclusions

Our proposed method is very general in the sense that
such self-similar, bursty time sequences arise very often in
real-world data. This was recently observed in numerous
settings, like TCP [11], video [5], web [3], file system [8],
and disk I/O [6] traffic.

The main contribution of this work is the introduction of
the � -model as an effective tool for finding and characteriz-
ing patterns in real, bursty time sequences. The model is ex-
tremely compact, as it effectively needs only one parameter,
the bias � . Additional contributions include the following:

� Introduction of the entropy plot to accurately estimate
� .

� Fast, single pass, novel algorithms to estimate � and
synthesize traces.

� A fast algorithm to generate synthetic and realistic
bursty time sequences. The algorithms are extremely
efficient: less than 5 minutes for one hour-long disk
traces in millisecond resolution and less than 3 min-
utes for model fitting (implemented in Perl).

� Experiments on real sequences, that showed (a) they
are self-similar and (b) they are approximated well by
our synthetic traces, both in terms of instrinsic mea-
sures, as well as in terms of queue length behavior.

We are currently working on expanding the model to in-
corporate spatial information (eg. disk block number), be-
sides temporal information. Another possible direction for
future work is the analysis of co-evolving, bursty time se-
quences, like disk traffic on units of a RAID box (or auto-
mobile traffic from multiple, nearby highway lanes).
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