This file contains a summary of all the Personal Rover Project code written by Rachel Gockley (rgockley@andrew.cmu.edu).

Control

The control package provides the low-level control for the Rover.  It contains two sub-packages, CMUcam and comm.


Comm

The comm package has two java files, netPort and serialPort.  SerialPort provides, with sserial.lib and sserial.dll, direct access to serial ports on a Windows computer.  While everything in theory can be run directly through serial, some functionality hasn’t been tested, and the serial port stuff should probably be removed eventually.  NetPort provides wireless access to the iPAQ; if the iPAQ protocols are changed, this file will need to be modified.


CMUcam

The CMUcam package, as one would expect, contains the code to control CMUcam.  The TypeA, TypeC, and TypeM classes are parsers and storage for the camera’s three main return packets (TypeA is really an S packet; the name changed somewhere along the line but the java code was never updated).  GrabThread provides asynchronous frame dumping, which is useful because frame dumps take a long time (on the order of 10s).  GrabFrame has a member field called progress that can be accessed through CMUcam.getImageProgress() and indicates how many bytes of the current frame grab have arrived, so that the GUI can indicate this with a progress bar or the like.


The camera is currently set up by calling the resetCamera() function, which resets the board, turns OFF autogain and auto white balance, turns on mass mode and poll mode, and so on.  (We turn off auto gain and white balance so that an object will always appear the same in similar lighting, despite surrounding changes in color.)  Most important camera functionality is provided in functions such as setWindow, getMean, trackColor, and grabFrame, though all functions can be called by passing them as string arguments to commandNoResponse or commandStringResponse, as in commandStringResponse(“GM”) returns the result of a get mean command as a string.  The iPAQ tracking functions can be accessed through startTrack and stopTrack, though it is preferable to call these through the RoverController class, as some other camera setup commands must be called first.

The Control package contains the following files:

RoverController:  setup and direct command of the Rover.  Usage is pretty straightforward; read the comments/javadoc to get the idea.

RoverCommand:  a parser for the Rover commands, in the format expected by the Cerebellum.

RoverResponse:  a parser for responses from the Cerebellum, which generates the Rover’s stateArray.  This file will have to change when (if) the Rover base is switched from using encoders to using back-EMF.

TrackThread:  continuously reads tracking output from the iPAQ.  The class has no concept of whether tracking is on or off, but rather just waits for data to be received and updates the public variables in RoverController appropriately.

Calibration:  a small dialog interface that allows the user to modify the minimum and maximum values for pan, tilt, and boom.  This is useful for correcting boom and servo slippage.

All other code in the package was written by Eric Porter (see RoverControl.doc).

Teachable

The teachable package provides the Rover with the functionality to keep track of its current location, and remember paths from one place to another.  Much of teaching the Rover centers on the concept of a “landmark.”  A landmark is, essentially, anything fairly brightly colored and unlikely to move much.  The Rover tracks landmarks by using the head-tracking loop on the iPAQ, and can use series of landmarks in combination with dead-reckoning or the IR rangefinders to navigate a house.

Action:  anything basic task that the Rover can perform.  Actions include things such as pure dead-reckoning, driving to landmarks, turning in place, and checking for the presence of landmarks.  Action is an interface; implementing classes include:

· ClimbAction:  climb up or down a stair

· DriveToAction:  dead-reckon driving

· DriveTowardMarkAction:  drive toward a landmark, stopping after a set distance

· LookLandmarkAction:  check for the presence of a landmark

· PrintAction:  this is for debugging purposes; merely prints to the screen

· SendMessageAction:  send the user a message, currently by displaying a JDialog

· StopAtMarkAction:  drive toward a landmark, stopping at a location relative to the landmark (e.g. two feet to the left, twelve inches in front, etc)

· TurnToAction:  turn a set number of degrees

· TurnToMarkAction:  turn until facing a landmark

LandmarkView:  what a landmark looks like; its “view.”  This can be thought of as a landmark “type,” that is, it contains information about a landmark but not positional information.  It keeps track of the camera track color parameters, a name for this type of landmark, and an image of the landmark.

Landmark:  a landmark with positional information.  A Landmark object contains a LandmarkView object as well as pan and tilt values for where the Rover expects to see this landmark.

Location:  a location is identified by a set of Landmarks and a unique name.  A Location also stores the known paths leading away from that location.  The Rover neither independently determines where it is, nor compares stored images with what the camera currently sees.  Rather, the user must initially tell the Rover where it is, at which point it can verify whether it can see the landmarks associated with that location.

Path:  a series of Actions, used to get the Rover from one Location to another.  A Path executes linearly; one action is performed, and if it completes successfully, the next executes.  Paths actually have a tree structure, so that they have the (currently unused) capability of having alternate Actions specified.  Thus, for example, a Path from point A to point B might be “drive to the red landmark, but if for some reason you can’t see the red landmark, drive to the green one and then turn ninety degrees.”  Note that typically a Path should be executed by calling the followPath function in TeachableRover, rather that directly from the Path class, so that the Rover keeps track of its current Location.

PathTreeNode:  the nodes of a Path’s tree of Actions.  These provide a binary tree structure, such that each node contains the Action to be performed, as well as the Actions to perform next, depending on whether this Action succeeded.

TeachableRover:  an extension of Control.RoverController, this class controls the Rover and keeps track of everything it has been taught.  The Rover can be controlled directly by calling functions in its public GoTo and Movement members, or by generating Paths and calling followPath.  TeachableRover also has functions to identify new landmarks and recognize predefined landmarks.

RoverGui

The RoverGui package contains the user interface for teaching and scheduling the Rover, as well as an interface for teleoperation.

SelectableImage:  The SelectableImage and related classes deserve special highlighting here.  Several main GUI pieces use a SelectableImagePanel or implement the SelectableImageListener interface.  The panel has the ability to call the camera’s frame dumping function, display a progress bar during the capture, and display the image when it has loaded.  Further, it can perform several functions:

· Head movement:  the panel will respond to mouse clicks by turning the Rover’s head toward the clicked point, and refreshing the image.

· Landmark selection:  the user can click and drag the mouse to highlight a box around a landmark; the panel manages displaying the highlighted parts, calling the Rover functions to pick out the landmark, and asking the user if the correct landmark was selected.

· Listener notification:  objects that implement the SelectableImageListener interface and add themselves to the SelectableImagePanel’s listener list receive notification when the image is clicked, when a landmark has been selected, and when a dump frame completes.

· Movement feedback:  draws marks on the image representing where the Rover thinks itself to be while moving.

Teleoperation:  The TeleopPanel class provides a simple point-and-click teleoperation interface for the Rover.  The user can drive the Rover by clicking on the camera image (a SelectableImagePanel; see above), as well as control the head and boom positions directly.

Path Teaching:  Here is where things get interesting.  The first panel of interest is the SelectPathPanel.  This displays the Rover’s current location, with a button to set/change it, a list of known paths leading away from the current location, as well as a “Go” button to follow a selected path and a “New” button to teach the Rover a new path.  On creation, the SelectPathPanel generates several additional dialogs, which it shows and hides according to user input.  The dialogs it creates are based on the following panels:

· SaveLocationPanel:  This panel allows the user to select landmarks to identify its current location.  It is given dialog buttons “Done” and “Cancel”.

· KnownLocationPanel:  This displays all known locations and allows the user to select the Rover’s current location.  It is given dialog buttons “OK”, “Save new”, and “Cancel”.

· VerifyLocationPanel:  In the event that the Rover does not see all the landmarks it expects to see, given its current location, this is displayed.  It allows the user to delete landmarks, tweak their trackcolor parameters, and change how many landmarks the Rover must see in this location.  It is given dialog buttons “OK”, which requires that the location must check out, “Add landmarks”, which allows the user to select additional landmarks, and “Cancel”.

· TeachPathPanel:  This panel provides the path teaching interface.  It will be described in more detail below.

The interconnections of the dialogs displayed by the SelectPathPanel are outlined in Figure 1, below.  Normal text in the boxes indicates the name of the panel being displayed.  Italicized text in the boxes indicates “internal” questions, information that the Rover is calculating.  Text along the arrows indicates which button was pressed in the previous dialog, or the answer to an internal question.  “Cancel” buttons are not shown; they merely return the user to the previously shown dialog.


The TeachPathPanel includes a “wizard” interface to determine what action to perform next.  All panels in the interface extend the ActionPanel class.  The first panel displayed is always the BasicActionPanel.  The flow of the wizard, as well as which Actions are generated, is outlined in Figure 2.  Actions are shown in purple, panels which request user input are shown in blue, and panels which merely provide information are shown in yellow.

All panels can be accessed by running TestFrame.java in the top directory.

All other GUI code (that is, mission development and scheduling) was developed by Emily Falcone (see MissionsAndScheduling.doc).


[image: image1]
Figure 1: SelectPathPanel display hierarchy


[image: image2]
Figure 2:  ActionPanel flow

Done





Select new landmarks





No





VerifyLocationPanel





Yes





Location verified?





New path





TeachPathPanel





Yes





No





KnownLocationPanel





Set Location





SaveLocationPanel





Any known locations?





SelectPathPanel





Done





Done





DriveToAction





DriveToPointPanel





DriveToPointNotesPanel





TurnToMarkAction





MinMaxTurnPanel





StopAtMarkAction





DriveTowardMarkAction





DriveToMarkPanel





TurnToAction





AbsoluteTurnPanel





SelectLandmarkPanel





SelectLandmarkNotesPanel





ClimbAction





ClimbWarningPanel





ClimbPanel





TurnPanel





DrivePanel





BasicActionPanel








