This file contains a summary of all the Personal Rover Project code written by Eric Porter (eporter@andrew.cmu.edu).

GoToFrame - This contains a frame that lets me test only the low-level moving functions. The Frame will continuously update the rover's position based on encoders.

JoyStick - I wrote this class to fill a void because we can't move the rover freely and continuously with any of the other interfaces. I wanted to be able to move the rover around the room easily without any of the restrictions that the functions put into place. It needs an initialized RoverController to start. It will pop up a frame containing a grid. If you click in the upper portion, the rover will move forward, in the lower portion the rover will move backwards. The speed increases linearly with the vertical distance from the center. Vertically, in the middle I have a dead zone where the rover will move straight. Moving the mouse left or right will cause the rover to do the same. The rover will move as long as you hold down the left mouse button and will stop when you release it. There is 30 pixel buffer surrounding the grid inside which the rover will move as if the mouse were in the closest point in the grid. For the following functions, pressing the lower case key will change the angle by 10 degrees and pressing the upper case key will change the

angle by one degree. Boom - up: q, down: a; Head - up: e, down: d, left: s, right: f. The controls were designed so that a right-handed person could use both features at the same time.

Movement - This class contains advanced functions for moving the rover. There are two main types of functions, demos and functions that involve tracking landmarks. The landmark-lateral will move a set distance toward a landmark. The landmark-relative will move to a point relative to where the landmark is. There is also stair climbing code and a

function for the rover to chase a ball around the room. Each function can either be run in a separate thread, or called directly. For the functions that move relative to the landmarks, the point exactly between the rear wheels is the reference point.

GoToThread - A GoToThread instance only supports two movement functions on the rover, goTo and turnTo. It requires an initialized RoverController to work. For this class to run as a thread, it needs to be opened by GoTo. Then you can take advantage of running this class in a separate thread by killing or replacing the running function. The turning and moving is based on the encoders.

GoTo - This class allows GoTo and TurnTo commands to run in a separate thread and provides a global coordinate frame. After any coordinate frame is reset, x, y and theta will all be 0. The rover starts off pointing along the x-axis. x and y are always in inches and theta is always in radians, from 0 to 2*pi.

Encoder - The purpose of this class is to take the encoder data from all four wheels and integrate it so that we can figure out the position of the rover. After initializing the class, all you have to do is pass it the state array along with the speed and turning angle you used to move the rover.

