This file contains a summary of all the Personal Rover Project code written by Emily Falcone (etf@andrew.cmu.edu).

Summary of Files

The following are the .java files I have written. For the most part, they relate to mission development, scheduling, and execution. Also, under construction are files to display the rover’s current status. The files are separated into logical groups below and explained in more detail in the following pages. Most files are part of the RoverGui package. The five files listed under Classes are in the Teachable package.

Panels

· MissionDevPanel

· SchedulePanel

· StatusPanel

· DetailsPanel

Blocks

· BlockPanel

· Block

· AbstractBlock

· HereToThereBlock

· FollowPathBlock

· SendMessageBlock

· LookForLandmarkBlock

· StartBlock

Dialogs

· Dialog

· HereToThereDialog

· FollowPathDialog

· SendMessageDialog

· LookForLandmarkDialog

· MultiplePathsDialog

· ScheduleDialog

Classes

· Condition

· Mission

· MissionNode

· Schedule

· PrintAction

Panels

The following panels are all part of the RoverGui package.

MissionDevPanel – This is where mission development takes place. After a mission is developed, it can also be run or scheduled from this panel. There are two main sections of the MissionDevPanel, the mission components and the mission plan. The mission components section has a set of blocks (see below) grouped by function. The blocks can be selected one at a time by clicking on them. Then they can be added to a mission by clicking in the gray shadow area (really the branch panel of the last block in the mission) at the end of the developing mission. Blocks can also be placed directly into the mission plan area. Blocks that are in the mission plan area but not part of the mission will be ignored when the mission is run or scheduled.

SchedulePanel – Shows all of the currently scheduled missions. Any mission can be selected to view the details of the schedule. Missions can also be cancelled or their schedules edited.

StatusPanel – [Under construction.] Displays the current status of the rover. Included are such things as the currently running mission and the current step within that mission, or if the rover is stuck or lost.

DetailsPanel – A javax.swing.JPanel that displays a mission's name, length, start date, repeat period, total runs, completed runs, and remaining runs. If the mission is null, the labels will be set to the empty string.

Blocks

Blocks are actually a specific form of panels. The following files are all part of the RoverGui package.

BlockPanel - BlockPanel extend javax.swing.JPanel and overwrites the getPreferredSize() method. This class is used for some of the main panels in blocks so that the blocks will resize correctly as a mission is built.

Block – Block is an interface used for all types of “blocks”. Each block represents an action that can be performed by the rover. All blocks share the same basic design: a) a BlockPanel (or set of BlockPanels) displaying an icon and a description of the action represented, and b) a “branchPanel” which is an empty BlockPanel (or set of BlockPanels) where more blocks can be placed to build a mission. Clicking on a block’s descriptive panel will select the block. Clicking again will unselect it. The simplest type of block is a single descriptive BlockPanel and a single branchPanel. These blocks represent actions with only one outcome, such as taking a picture or sending a message. More complex blocks represent conditional actions and have multiple descriptive panels and multiple branchPanels (one for each possible outcome). An example of this type of action is looking for a landmark. The landmark is either found, or not found.

Each block keeps track of a start location and an end location. Some blocks’ start and end locations depend on the actions associated with them. For example, FollowPathBlock sets the start end location of the block to be the start and end location of the path. Other blocks do not care about location, such as SendMessageBlock. These blocks set their start location to be the end location of the block before them. They set their end location to be the same as their start location.

There is an error in the mission if all of the blocks’ start locations do not match the end locations of the blocks in front of them. An error of this sort will prevent a mission from being run or being scheduled. Any block with errors will display a red X rather than its normal icon to indicate the error. Other possible errors are invalid path or invalid landmark selections in FollowPathBlock and LookForLandmarkBlock, respectively.

AbstractBlock – AbstractBlock extends BlockPanel and implements the Block interface. This class defines some of the basic functions shared by all blocks.

HereToThereBlock – This is a simple block type that does not actually represent a rover action (the associated action is PrintAction). It can be used as a template when creating new simple blocks. (A better template for conditional blocks is LookForLandmarkBlock.)

FollowPathBlock – As the name indicates, this block represents following a path.

SendMessageBlock – As the name indicates, this block represents the SendMessageAction.

LookForLandmarkBlock - As the name indicates, this block represents the LookLandmarkAction. This is a conditional block. A different action can be taken if the landmark is found vs. if the landmark is not found.

StartBlock – StartBlock does not represent a rover action (the associated action is PrintAction). There is a single StartBlock in the MissionDevPanel. It is used as the initial block when building a mission. A StartBlock can not be selected, and therefore it can not be moved or deleted.

Dialogs

The following files are all part of the RoverGui package.

Dialog – Dialog is an interface for the dialogs below. When a block is added to a mission, its associated dialog is displayed. The dialog prompts the user for any information needed for the associated action, such as the staring and ending location for a path.

The following four dialogs are the dialogs for the blocks of the same name.

HereToThereDialog – Can be used as a template for creating dialogs.

FollowPathDialog – Prompts the user for a staring and ending location for a path. After a staring location is selected, ending locations that would result in invalid paths are disabled.

SendMessageDialog – Prompts the user to enter the message text.

LookForLandmarkDialog – Prompts the user to select the desired landmark from all known landmarks. Also prompts the user to indicate the approximate head position the rover should use when looking for the landmark.

MultiplePathsDialog – If there is more than one path between the starting and ending location selected in FollowPathDialog, MultiplePathsDialog will prompt the user to select the desired path.

ScheduleDialog – Prompts the user to enter a name, starting time, and staring date for a mission. Also asks how often and how many times to repeat the mission.

Classes

The following classes are all part of the Teachable package.

Condition – For branching, conditional blocks, we need a way to distinguish between the different branches. Conditions allow us to assign a different value to each branch. Thus when an action (or path or mission) returns during mission execution, we can match the return value to the condition associated with each branch and know what the next step in the mission should be. Most blocks simply use the Boolean condition (check if the return value is equal to 0 or 1). However, support is provided to use operators including equal, greater than, less than, and not equal. An example of how this might be useful is if you wanted to check if the lights were on in a certain room. You could perform an action that would return the light intensity. If the light intensity was greater than a certain value, you could tell that the lights are on. If the light intensity was less than that value, you could tell that the lights were off.

Mission – A Mission is a tree of MissionNodes. Mission names must be unique. Each mission keeps track of the first time it is scheduled to run, how often it should be repeated, how many time it should be run, and how many time it has already run. Each mission also has a MissionTimerTask. This is an internal class extending java.util.TimerTask. When a mission is scheduled, its MissionTimerTask is added to the schedule’s Timer.

MissionNode – A MissionNode contains an action, path, or mission, a MissionNode array of children nodes, and an array of Conditions (one for each child node). Currently the maximum number of children allowed is three. When a node is executed, its action, path, or mission is executed and its return value is saved. NextNode() compares the saved return value to the array of Conditions to determine which child should be executed next. A MissionNode can also return the time it takes to execute its own action, path, or mission, as well as the time it takes to execute this node and its longest (time) branch.

Schedule – A Schedule contains a Timer, which controls mission execution, a HashSet of all scheduled missions, and functions to schedule a mission, unschedule a mission, and return the scheduled mission with a given name.

PrintAction - Instead of performing a rover action, this action simply prints a line to System.out. Use this action for testing or developing a new block as it does not require the rover to be initialized in order to work correctly. This action is also useful for blocks such as StartBlock where no rover action is desired.

