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Abstract

In this paper we propose a unified action recognition
framework fusing local descriptors and holistic features.
The motivation is that the local descriptors and holistic
features emphasize different aspects of actions and are
suitable for the different types of action databases. The
proposed unified framework is based on frame differencing,
bag-of-words and feature fiision. We extract two kinds of
local descriptors, i.e. 2D and 3D SIFT feature descriptors,
both based on 2D SIFT interest points. We apply Zernike
moments to extract two kinds of holistic features, one is
based on single frames and the other is based on motion
energy image. We perform action recognition experiments
on the KTH and Weizmann databases, using Support
Vector Machines. We apply the leave-one-out and pseudo
leave-N-out setups, and compare our proposed approach
with state-of-the-art results. Experiments show that our
proposed approach is effective. Compared with other
approaches our approach is more robust, more versatile,
easier to compute and simpler to understand.

1. Introduction

Acton recognition has been widely researched and
applied in many domains, such as visual surveillance,
human computer interaction and video retrieval etc.
Aggarwal and Cai [1] give an overview of the various tasks
involved in the motion analysis of human body. Hu et al. [2]
review the visual surveillance in dynamic scenes and
analyze possible research directions. Generally speaking,
action recognition framework contains three main steps
namely feature extraction, dimension reduction and pattern
classification. The feature extraction can be broadly
divided into two categories, one is based on local
descriptors [3-18] and the other is based on holistic features
[7, 16, 19-31]. As to the dimension reduction approaches,
there are PCA [3, 26], LDA [7], LLE [32], LPP [23,31] and
LSTDE [29] etc. The pattern classifier can be divided into
two categories, one is based on the stochastic model such as
HMM [33] and pLSA [12, 17], etc., and the other is based
on the statistical model such as ANN [7, 31], NNC[3, 12],
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SVM [4, 8-10, 12-15, 26], LPBoost [ 10] and AdaBoost [25]
etc.

There are several available action databases, among
which the Weizmann database (see Figure 1(a)) [28] and
the KTH database (see Figure 2(a)) [4] have been widely
used to evaluate action recognition approaches and many
results have been reported on them (see Tables 4 and 5).
Some approaches are evaluated on both (e.g. [13, 15, 25,
26] ) while others either only on the Weizmann (e.g. [27-31,
34] ) or the KTH database (e.g. [7-12, 14, 24] ). Most
existing action descriptors can be divided into two
categories of local descriptors [3-17] and holistic features
[7, 16, 19-31]. However, some approaches do not neatly
fall into these categories, e.g. Ali ef al. [34] is based on the
theory of chaotic systems.

Table 5 shows that action recognition rates, on the
Weizmann database for the top existing approaches (above
90%) are not based on local descriptors, except [15] which
is based on a biologically-motivated system, but most are
based on holistic features [25-31]. Our proposed local
descriptor approach (see row “2D + 3D SIFT” in Table 5)
only gives a recognition rate of 90.3%, which is less than
the result of our holistic feature approach of 94.6% (see row
“FRM ZNK + MEI ZNK” in Table 5). That is to say, on the
Weizmann database holistic feature approaches are
superior to local descriptor approaches. In Table 4, among
the results above 90% on the KTH database, five are based
on local descriptors [7-9, 13, 15], three are based on holistic
features [7, 25, 26] and one [7] is based on both. It is
notable that the approaches in [25, 26] are based on human
centered alignment. On the KTH database our proposed
local descriptor approach gives an accuracy of 91.4% (see
row “2D + 3D SIFT” in Table 4), however the result of our
holistic feature approach is only 87.7% (see row “FRM
ZNK + MEI ZNK” in Table 4). So it can be said that local
descriptor approaches work very well on the KTH set and
are slightly better than holistic feature approaches.

Why does the same approach have the different
performance on the different database? Or, why are local
descriptors more suitable for KTH, while the holistic
features are more suitable for Weizmann? The answer lies
in the different characteristics of these two databases. KTH
has a larger data scale, four different scenarios, changing
backgrounds due to the camera zoom, more persons



Figure 1: The Weizmann database

performing actions, and more intra-class dissimilarity in the
shape of figures. In contrast, the Weizmann data has a much
lower data scale, only one scenario, static background,
more action classes and more inter-class similarity in the
local motion, e.g. the jump and skip actions are very similar
to each other. Local descriptor approaches extract the
neighborhood information of interest points and focus more
on local motion than on the figure shape. But figure shape
is an advantage of holistic features as they focus more on
global information. That may be the reason why local
descriptor approaches deal with KTH very well while they
cannot deal with Weizmann as well, even though KTH
appears more challenging.

Since local descriptors and holistic features emphasize
different aspects of actions and are suitable for the different
databases, one natural idea is to combine them to improve
the performance. Obviously this is a multiple information
fusion problem. There have been some similar efforts in the
action recognition field. Liu et al [16] fuse multiple
features for improved action recognition in videos, with a
local descriptor feature and one about spin images.
Mikolajezyk and Uemura [7] use local descriptors and
optical flow information to form a vocabulary forest of
local motion-appearance features to recognize actions.
Compared with [7, 16], we apply different local descriptors
and different holistic features to perform feature fusion and
get better performance on both the KTH and Weizmann
databases (see Table 4 and 5). Actually we use two kinds of
local descriptors and two kinds of holistic features and the
final fusion is based on the four sets of features.
Experiments show that the feature fusion does improve the
action recognition performance.

Fioure 2: The KTH database

2. Related work

The main idea of this paper is to fuse local descriptors
and holistic features to perform action recognition, so we
review representative papers on these two different features
respectively.

2.1. Local descriptors

Dollar et al. [3] use sparse spatiotemporal features to
perform behavior recognition including human and rodent
behavior. Schuldt ez al. [4] construct video representations
in terms of local space-time features and integrate such
representations with SVM classification schemes for
recognition. Laptev and Lindeberg [5] build on the idea of
the Harris and Forstner interest point operators and detect
local structures in space-time. Shechtman and Irani [6]
extend the notion of 2-dimensional image correlation into a
3-dimensional space-time volume, thus enabling them to
correlate dynamic behaviors and actions. Liu and Shah [8]
use the Maximization of Mutual Information (MMI)
technique to select the optimal number of words for
bag-of-words algorithm. Laptev et al. [9] address
recognition of natural human actions in diverse and realistic
video settings. Klaser ef al. [13] present a local descriptor
based on histograms of oriented 3D spatio-temporal
gradients. Wong and Cipolla [12] utilize the global
information to yield a sparser set of interest points for
motion recognition. Willems et al. [14] present the
spatio-temporal interest points that are at the same time
scale-invariant  (both  spatially and  temporally).
Oikonomopoulos et al. [18] detect the spatiotemporal
salient points by measuring changes in the information
content of pixel neighborhoods not only in space but also in
time.



2.2. Holistic features

Bobick and Davis [21] use temporal templates, including
motion-energy images and motion-history images to
recognize human movement. Gorelick et al. [22] exploit a
solution to the Poisson equation to extract various shape
properties from images. Wang and Suter [23] learn explicit
representations for dynamic shape manifolds of moving
humans. Jia and Yeung [29] use a dimensionality reduction
approach called LSTDE to recognize silhouette-based
human action. Gorelick et al. [28] regard human actions as
three dimensional shapes induced by silhouettes in the
space time volume. Weinland et al. [19] use learned 3D
exemplars to produce 2D image information to perform
view-independent action recognition. Rodriguez et al. [24]
use a frequency domain technique, called the Maximum
Average Correlation Height (MACH) filter, to recognize
single-cycle human actions. Wang et al. [31] use the
Discrete Fourier Transform (DFT) and Discrete Wavelet
Transform (DWT) to describe silhouette-based image.

3. Action recognition framework

We extract local descriptors and holistic features based
on the frame differencing, and then use a bag-of-words
approach to compute feature vectors for the feature fusion.
Our approach may be the first to use frame differencing to
extract both local descriptors and holistic features. In the
previous work, most local descriptors approaches use the
spatiotemporal gradient information to extract interest
points and most holistic features are based on the
silhouettes or tracking. In contrast, we present a unified
action recognition framework for local descriptors, holistic
features and their fusion.

3.1. Image segmentation

A key problem is the appropriate image representation to
compute the image or video features for action recognition.
The role of image segmentation is to get such an image
representation and to give prominence to the object
information interesting to users. In video with static
background, like the Weizmann data, the silhouette [22,
28-32, 34] is a good image representation, which can be
obtained by background subtraction. But for video without
static background, like KTH, the background subtraction
technique doesn’t work. In this case one feasible option is
to use the difference image between adjacent frames, which
has been used to extract temporal templates by Bobick and
Davis [21]. In some approaches based on local descriptors
[4, 5], the lack of a static background can be solved by
localizing the interest points with spatiotemporal gradient
information from the original video, which cannot be done
for holistic features.

Our goal in image segmentation is to find a relatively
common image representation which can be used either

with or without static background, both for local
descriptors and for holistic features. The solution is to use
the difference video, which is made up of all the difference
images between adjacent frames, as illustrated in Figure
1(b) for Weizmann and in Figure 2(b) for KTH. The
difference video just captures motion information and the
silhouette contains both still shape and dynamic motion
information. But it is difficult to judge which representation
is superior over another. For example, for the two actions of
waving one hand and waving two hands, the most
discriminative part of silhouette should be around the arms
while the torso could be considered noise. The main
advantage of difference video is that it can be applied
without requiring a static background. Of course, the
difference video approach cannot be applied to video with
dramatic background change (e.g. moving camera).

3.2. Bag of words

The bag-of-words approach has been widely used and
the simplest output is a histogram reflecting the distribution
of all the words. The central part is a sequence of
predefined words, denoted as {w;}(1 < j < K), where K is
the number of words. Here each word is just a feature
vector. For each feature vector d we compute its distance to
each predefined word and get the minimum distance. Then
the feature vector d is assigned to the word w;, having the
minimum distance to d, i.e. j; = argmin;cj<x D(d, w;).
Here D(*) is a distance function. After all feature vectors
have been assigned to words, we get a histogram H =
{h;}(1 < j < K) whose bin represents how many feature
vectors each word contains, i.e. the histogram H is the
output of bag-of-words and can then be concatenated with
other histograms in the fusion of multiple features, or just
used directly as the input to classifiers to perform the action
recognition.

The motivation for applying a bag-of-words approach to
action recognition was to deal with the variable number of
interest points produced by the local descriptors for
different videos. Of course the holistic feature doesn’t have
an interest point related problem, but it has the problem of
being sensitive to varying action duration time. The
bag-of-words aggregates the statistical temporal
information of a video event and therefore can deal with
long-term or multiple-cycle action video. Given a video
V={fi}(1 <i £ N), holistic features are computed on
each frame or its variant frame (e.g. MEI, see Section 5),
resulting in a sequence of feature vectors D = {d;}(1 <
i < N), where f is a single frame (or its MEI), d is the
holistic feature, e.g. Zernike moments, which forms the
input to the bag-of-words.

3.3. Feature fusion

The basic idea of feature fusion is to concatenate all the



feature vectors produced by different approaches to form a
larger feature vector as input to a classifier such as Support
Vector Machine (SVM). The prerequisite to effective
feature fusion is that each individual feature vector has the
same physical meaning, which is guaranteed with the
bag-of-words technique here. Given M approaches to
action recognition based on bag-of-words, there is a
sequence of feature vectors {H'|H' = {h{}(1 < j < K"},
where 1 <1 < M. Then the larger feature vector can be
denoted as HFYSION = {h1, h, ... hyt, ..., hKY, RY, .., hiw ).
It should be noted that each feature vector’s dimension K'
is not necessarily the same in each approach.

4. Local descriptors

We use frame differencing to localize interest points and
extract local descriptors. Considering that the SIFT features
have very desirable characteristics such as invariance to
transformation, rotation and scale, and robustness to partial
occlusion etc., we use 2D SIFT interest points to extract 2D
and 3D SIFT feature descriptors. The interest points are
localized based on each frame differencing, so the resulting
interest points are quite dense. The 2D and 3D SIFT feature
descriptors emphasize the still shape and dynamic motion
respectively. Note that our local descriptors only provide
spatial scale invariance, not the temporal and spatial scale
invariance demonstrated in [14].

4.1. 2D SIFT interest point

To be scale invariant, SIFT features need to consider all
the scales of an image. Lowe [35] uses the Gaussian
function as the scale-space kernel to produce the scale
space of the image. Given an image I(r, ¢) the scale space
is produced as L(r,c,0) = G(r,c,0) * I(r,c) where * is
the convolution operation in r and ¢, and G(r,c,0) =

r24c2
e 202 . The whole scale space is divided into a

2mo?
sequence of octaves and each octave is divided into a

sequence of intervals. Here each interval is a scale image.
The relationship between two adjacent octaves is that the
first interval in the latter octave is gotten by down-sampling
the last interval in the former octave by a factor of 2. The
first interval in the first octave is just I(r, ¢). This yields a
pyramid-like structure of Gaussian space.

After the pyramid-like structure of scale space is created,
in each octave every interval is subtracted from its adjacent
interval to compute the difference-of-Gaussian (DOG)
function, i.e. D(r,c,0) = L(r,c, ko) — L(r,c,0). Thus we
get a pyramid-like structure of DOG space. Given a pixel in
the DOG space, the DOG intensity is compared with its
eight neighbors in the same interval and its nine neighbors
in the interval above and below. If the DOG intensity is
larger than all of these neighbors or smaller than all of them,
the pixel is selected as an interest point. Figure 1(c) and
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Figure 3: Computation of the 2D SIFT feature descriptor
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Figure 4: Computation of the 3D SIFT feature descriptor

Figure 2(c) give examples of interest points for Weizmann
and KTH respectively. We use a green circle to represent an
interest point with the center reflecting the position and the
radius reflecting the gradient magnitude.

4.2. 2D SIFT feature descriptor

The SIFT feature descriptor is extracted based on
Gaussian space. The gradient magnitude m(r,c) and
orientation 8(r, c) (see Figure 3(a)) is computed at each
scale image. For an interest point, the gradient magnitude
and orientation of all the pixels in its neighborhood are used
to produce an orientation histogram, where the magnitude
is used as a weight to calculate each bin. With the
orientation histogram, dominant orientations can be
detected in the largest bins. For each dominant orientation,
the neighborhood of the interest point will be rotated to get
rotation invariance. The size of the neighborhood region in
[35] is set to be 16 x 16 in pixels. Then the whole region is
divided into multiple sub-regions whose size is 4 x 4 in
pixels and the total number of sub-regions is 16, as
illustrated in Figure 3(b). In each sub-region, an orientation
histogram is produced with each orientation histogram
having 8 bins. All the histograms of these 16 sub-regions
are combined to form a 128 (= 16 x 8) dimensional feature
vector, which is just the 2D SIFT feature descriptor.

4.3. 3D SIFT feature descriptor

Similar to 2D, the 3D SIFT feature descriptor is based on
Gaussian space. Here each interest point has five
dimensions. The gradient information in the video contains
one magnitude (m(f,r,c)) and three orientations. These
three orientations reflect the angles between row and
column (a(f,r,c)), between row and time (S(f,7,c)),
between column and time (y(f,r,c)), respectively, as



illustrated in Figure 4(a). According to the neighborhood
gradient information, the orientation histogram is produced
and the dominant orientations are detected. For each
dominant orientation the neighborhood of interest point is
rotated to get rotation invariance. Here the neighborhood is
a cube, whose size is set to be 8 x 8 x 8 in pixels. The whole
cube will be divided into multiple sub-cubes whose size is 4
x 4 x 4 in pixels and the total number of sub-cubes is 8, as
illustrated in Figure 4(b). For each sub-cube and each
orientation, the orientation histogram with 8 bins is
produced. Thus we have 24 orientation histograms in the
whole cube. All these histograms are combined to form a
192 (= 24 x 8) dimensional feature vector, which is the 3D
SIFT feature descriptor.

5. Holistic features

We use the frame differencing to compute holistic
features, avoiding object tracking (which is often not
reliable) and silhouette extraction (which needs a static
background). We compute two kinds of holistic features
with Zernike moments, one is based on a single fame and
the other is based on the image motion energy, where the
former is focused on spatial patterns and the latter is
focused on temporal constraints.

5.1. Zernike moments

Hu moments [36] have been widely used in pattern
recognition as holistic features. Prokop and Reeves [37]
proved that Zernike moments are best among multiple
invariant moments in terms of overall performance. So in
this paper we use Zernike moments as holistic features to
perform the action recognition instead of Hu moments. As
the essential action information, motion is depicted with
temporal templates including MHI and MEI in [21]. The
bag-of-words technique is also an effective tool for
representing motion information, although it just captures
implicit motion information. Thus, the holistic features of a
single frame can be used in the bag-of-words framework.
To deal with the long-term or multiple-cycle action, the
temporal granularity for the computation of holistic
features should be less than one action cycle. The extreme
case is to choose a single frame as the computational
granularity. The combination of bag-of-words with Zernike
moments based on single frame is used as the holistic
approach component to our action recognition, called FRM
ZNK.

5.2. Motion energy image

The shortcoming of the bag-of-words approach for
describing motion is that the temporal -constraint
information between frames cannot be preserved. Of course,
this shortcoming is an inherent characteristics of histogram
techniques, they just provide statistical temporal

information, which is the reason they are robust to noise. To
complement the bag-of-words based on the holistic features
of a single frame, we also extract the Motion Energy Image
(MEI, illustrated in Figure 1(d) for Weizmann and in Figure
2(d) for KTH) and compute the corresponding Zernike
moments as holistic features for the bag-of-words. We call
this part MEI ZNK.

The reasoning behind MEI ZNK is that the MEI can
provide temporal constraint information. One advantage of
MEI is that it can provide robustness to some kinds of noise
motion. For example, depending on the texture of the
people, several "inside" regions may or may not produce
motion (consider a person wearing a black shirt as
compared to a striped shirt). MEI aggregates the motion
information across several frames and the above noise
motion produced by "inside" regions will be overlaid by the
torso motion. The time duration for extracting MEI is
critical and must be less than a single action cycle.
Empirical observations show that a single action cycle in
KTH and Weizmann can be as short as 5 frames. So in
experiments the duration is set to 5. FRM ZNK and MEI
ZNK together constitute our holistic approach to action
recognition.

6. Experiments

We use KTH and Weizmann to evaluate action
recognition. We perform leave-one-out experiments and
the result is reported as the average. K-means clustering is
applied to the descriptor bag-of-words to get the predefined
words. In both databases, we use the data of 2 persons to
perform clustering. We use Support Vector Machines
(SVM) as the classifier and try two kinds of kernels, the
polynomial kernel (POLY SVM) and the radial basis
function kernel (RBF SVM). With the aid of LibSVM [38],
the parameters for RBF kernel is optimized and the
normalization of features is needed.

For the bag-of-words the number of words is a key
parameter. We use POLY SVM to test 10 numbers for both
databases, as illustrated in Figure 5. The results for the
optimal number of words are listed in Table 1. It can be
seen that the optimal number of words depends on two
aspects, the type of feature and the scale of the database.
With the same feature, a larger database means a larger
optimal number of words. We use these configurations of
optimal numbers of words for all other experiments,
including RBF SVM and feature fusion.

Local Holistic
2D 3D FRM MEI
SIFT | SIFT | ZNK | ZNK
KTH 500 400 200 500
Weizmann 60 50 30 100

Table 1. Optimal number of words



Tables 2 and 3 give the feature fusion results on KTH
and Weizmann data respectively. The performance after
fusing two local descriptors is larger than the maximum
individual by about 3% on KTH (Table 2(a)) and 12% on
Weizmann (Table 3(a)). The fusion of holistic features can
bring a performance improvement of about 3% on KTH
(Table 2(b)) and 1% on Weizmann (Table 3(b)). The best
action recognition rate results from the fusion of local
descriptors and holistic features, i.e. 94% on KTH (Table
2(c)) and 97.8% on Weizmann (Table 3(c)), both of which
are larger than the maximum individual by about 3%. These
two tables clearly show that fusing different categories of
features, such as local descriptors and holistic features does
improve action recognition performance.

2D SIFT | 3D SIFT | 2D+ 3D SIFT
POLY 83.1 86.8 90.5
RBF 86.3 88.6 91.4
(a)
FRM MEI FRM ZNK +
ZNK ZNK MEI ZNK
POLY 84.7 82.6 85.0
RBF 85.1 83.5 87.7
(b)
SIFT ZNK SIFT + ZNK
POLY 90.5 85.0 89.5
RBF 91.4 87.7 94.0
(©)

Table 2. Feature fusion results on KTH data

2D SIFT | 3D SIFT | 2D+ 3D SIFT
POLY 78.5 69.9 753
RBF 78.5 76.3 90.3
(a)
FRM MEI FRM ZNK +
ZNK ZNK MEI ZNK
POLY 83.9 87.1 88.2
RBF 87.1 93.5 94.6
(b)
SIFT ZNK SIFT + ZNK
POLY 753 88.2 92.5
RBF 90.3 94.6 97.8
(©)

Table 3. Feature fusion results on Weizmann data

On KTH data SIFT features result in better performance
than Zernike moments, ie. 91.4% vs. 87.7%. On
Weizmann data the Zernike moments are superior to SIFT
features with a recognition rate of 94.6% vs. 90.3%. From
this observation, we conclude that no one single category of
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Figure 5: Action recognition rates with different numbers of
words for bag-of-words, where (a) is for KTH and (b) is for
Weizmann. The peak of each line means the optimal number of
words.
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Figure 6: Confusion matrixes, where (a) is for KTH
and (b) is for Weizmann

feature can deal with all kinds of action databases equally
well. So it is quite necessary and useful to fuse different
categories of features to improve the action recognition
performance. Figure 6 gives the confusion matrices of our
best results on (a) KTH and (b) Weizmann data. Instead of
simple concatenation, we also try a weighted concatenation
in the feature fusion. The weights are assigned according to
the recognition rate of individual feature (higher rate,
higher weight) and the dimension of histogram (larger
dimension, lower weight). The resulting recognition rate on
KTH is 93.3%, without any improvement as compared to
the simple concatenation.

Tables 4 and 5 compare our action recognition result
with state-of-the-art results on KTH and Weizmann data
respectively. The basic description of the compared
approaches can be found in Section 2. On KTH, our final
recognition rate is 94.0%, just barely less than the current
best rate by 0.2%. Due to the relatively small amount of
data, the performance on Weizmann data tops out at 100%
and our rate of 97.8% is very close to that. It should be
noted that different approaches have different experimental
configurations. Some approaches divide the database into
two parts for training and testing respectively [4, 9-11,
13-15, 25, 26] instead of leave-one-out. Some use human
tracking techniques to align the image with a human center
[25-27, 30] and others use supervised training approaches.
Our approach is focused on an automatic training and
testing process without any human involvement, e.g. no
normalization is taken to make all sequence segments have
the same length. The bag-of-words model is used for the
representation of the whole sequence without any feature
selection.



Approaches Rates (%)
SIFT + ZNK 94.0
2D + 3D SIFT 914
FRM ZNK + MEI ZNK 87.7
Liu and Shah [8] 94.2
Mikolajczyk and Uemura [7] 93.2
Schindler and Gool [26] 92.7
Laptev et al. [9] 91.8
Jhuang et al. [15] 91.7
Klaser et al. [13] 91.4
Fathi and Mori [25] 90.5
Gilbert et al. [11] 89.9
Rodriguez et al. [24] 88.7
Nowozin et al. [10] 87.0
Wong and Cipolla [12] 86.6
Willems et al. [14] 84.3
Niebles et al. [17] 81.5
Dollar et al. [3] 81.2

Table 4. Performance comparison on KTH

Approaches Rates (%)
SIFT + ZNK 97.8
2D + 3D SIFT 90.3
FRM ZNK + MEI ZNK 94.6
Schindler and Gool [26] 100.0
Fathi and Mori [25] 100.0
Weinland and Boyer [30] 100.0
Gorelick et al. [28] 99.6
Jhuang et al. [15] 98.8
Wang et al. [31] 97.8
Thurau and Hlavac [27] 94.4
Ali et al. [34] 92.6
Jia and Yeung [29] 90.9
Liu et al. [16] 89.3
Klaser et al. [13] 84.3

Table 5. Performance comparison on Weizmann

Considering that the leave-one-out experimental setup is
easier than the standard setup based on the training/test split
of the database used originally in [4], we give the results
based on a pseudo leave-N-out setup (see Table 6). For
example, in the KTH database 25 persons form a loop. Each
person and sequential N-1 persons in the loop are used for
testing with the remainder for training. So the experiment
will be performed by 25 times and the result is reported as
the average (AVG), maximum (MAX) and minimum (MIN)
of 25 runs. In Table 6, the first line means the different N
for pseudo leave-N-out, (a) is for KTH and (b) is for
Weizmann. From the gap between MAX and MIN in Table
6, it can be seen that the different selection of training and
testing sets often lead to the different recognition rate. From
this viewpoint the pseudo leave-N-out setup is more
reasonable than the standard setup used in [4].

To compare with other approaches that split the datasets,
we also perform the experiment based on the standard setup
in [4] (with the rate of 89.8%) and the experiment based on
the pseudo leave-9-out setup. In the latter case the
validation set (involving 8 persons) in [4] is used to
optimize the SVM models and the residual 17 persons are
used to perform the pseudo leave-9-out experiment. The
result is reported as the average (AVG = 89.1%), maximum
(MAX =93.5%) and minimum (MIN = 85.5%) of 17 runs,
each of which is just one experiment based on the standard
setup in [4]. Experiments show that our proposed approach
is effective. Compared with other approaches our approach
is more robust, more versatile, easier to compute and
simpler to understand.

1 5 10 15 20

AVG | 94.0 92.1 |91.0 | 88.7 | 813
MAX | 99.0 96.5 | 94.1 | 90.8 | 87.3
MIN | 78.9 87.5 | 88.8 | 86.1 | 71.9

(@)
1 3 6
AVG | 978 94.6 81.0
MAX | 100.0 | 100.0 | 87.3
MIN | 90.0 90.0 74.6
(b)

Table 6. The results based from the pseudo leave-N-out setup

7. Conclusions

In this paper we reviewed existing action recognition
approaches’ performance on the KTH and Weizmann
databases, and analyzed why local descriptors seem more
suitable for KTH while the holistic features seem more
suitable for Weizmann. Based on our analysis we proposed
a unified action recognition framework fusing local
descriptors and holistic features. Experiments show that our
proposed approach is effective and its final performance is
comparable to other published results. The fusion approach
adopted in this paper is a rather simplistic manner of fusion
and in the future we will try the more flexible fusion
approach and feature selection approaches to get a best
subset of features. Due to the usage of difference video, our
approach will fail with the dramatic background change,
which often appears in movies. So we will investigate the
performance of our approach in the Hollywood data
presented in [9].
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