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Abstract

For large scale automatic semantic video characterization, it is
necessary to learn and model a large number of semantic concepts.
These semantic concepts do not exist in isolation to each other and
exploiting this relationship between multiple video concepts could
be a useful source to improve the concept detection accuracy. In
this paper, we describe various multi-concept relational learning
approaches via a unified probabilistic graphical model represen-
tation and propose using numerous graphical models to mine the
relationship between video concepts that have not been applied be-
fore. Their performances in video semantic concept detection are
evaluated and compared on two TRECVID’05 video collections.

1. INTRODUCTION

Increasingly, the detection of a large number of semantic con-
cepts is being seen as an intermediate step in enabling semantic
video search and retrieval [1, 2]. These semantic concepts cover
a wide range of topics that can be roughly categorized as objects,
sites, events, and specific personalities and named entities. Re-
searchers have developed a large number of automatic concept de-
tection techniques and the most popular approach is to translate the
learning task into multiple binary classification problems with the
presence/absence label of each individual concept. Then for each
concept, its associated video concepts can be detected via multiple
unimodal classifiers based on visual, audio and text features.

However, these binary classification approaches ignore an im-
portant fact that semantic concepts do not exist in isolation to
each other. They are interrelated and connected by their seman-
tic interpretations and hence exhibit certain co-occurrence patterns
in video collections. For example, the concept “car” always co-
occurs in a video shot with the concept “road” while the concept
“office” is not likely to appear with “road”. Such kinds of con-
cept relationships are not rare and it can be expected that mining
multi-concept relationship can serve as a useful source of infor-
mation to improve the concept detection accuracy. Moreover, such
a correlated context could also be used to automatically construct
a semantic network or ontology tailored to the video collection
in a bottom-up manner. This automatic ontology construction are
helpful to discover unknown concept relationship that is comple-
mentary to human prior knowledge.
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To automatically exploit benefits from the multi-concept re-
lationship, several approaches have been proposed before which
are built upon the advanced pattern recognition techniques within
a probabilistic framework. For example, Naphade et al. [3] ex-
plicitly modeled the linkages between various semantic concepts
via a Bayesian network that implicitly offered ontology semantics
underlying the video collection. Cees et al. [4] proposed an se-
mantic value chain architecture including a multi-concept learning
layer called context link. At the top level, it aims at merging the
results of content outputs from concept detectors. Two configura-
tions were explored where one was based on a stacked classifier
upon a context vector and the other was based on ontology with
some common sense rules. Alex et al. [5] fused the multi-concept
predictions and captured the inter-concept causations by construct-
ing an additional logistic regression classifier atop the uni-concept
detection results. Amir et al. [6] concatenated the concept pre-
diction scores into a long vector called model vectors and stacked
a support vector machine on top to learn a binary classification
for each concept. A ontology-based multi-classification algorithm
was proposed by Wu et al. [7] which attempted to model the pos-
sible influence relations between concepts based on a predefined
ontology hierarchy.

Although such a huge effort is made to learn the multi-concept
relationship, a number of well established and successful proba-
bilistic graphical models (especially the undirected graphical mod-
els) such as restricted Boltzman machines(RBM) and conditional
random field(CRF) have never been applied in the domain of video
annotation. Moreover, since extant methods have been evaluated
in different testbeds, the advantages and disadvantages between
these approaches remains unclear. In this paper, we describe sev-
eral multi-concept relational learning approaches via a unified prob-
abilistic graphical model representation and propose using numer-
ous graphical models to mine the relationship between video con-
cepts that have not been applied before. Their effectiveness in
video semantic concept detection is evaluated and compared on
two TRECVID’05 video collections.

2. GRAPHICAL MODEL REPRESENTATIONS FOR
VIDEO CONCEPTS

Many multi-concept learning approaches can be concisely repre-
sented in form of probabilistic graphical models that express de-
pendencies among random variables by a graph in which each ran-
dom variable is a node. There are two types of graphical mod-
els including directed graphical models (a.k.a. Bayesian network)



Fig. 1. Two directed graphical models (a.k.a. Bayesian network)
for multi-concept learning including (a) a generative model assum-
ing concepts generate detection outputs, and (b) a discriminative
model directly modeling the conditional probability of concepts
given detection outputs.

which represents a factorization of the joint probability of all ran-
dom variables and undirected graphical models in which graph
separation encodes conditional independencies between variables.
In this paper, we consider building graphical models between con-
cepts and predictions generated from existing uni-modal seman-
tic detectors rather than the low-level video features, because we
want to reduce the feature dimension and computational efforts
in the learning process. Formally for a specific video shot, let
X; € R denote the observations of i uni-modal semantic detec-
tor, ¥; € {0,1} denote the presence/absence labels of j™ concept.
X, Y represent the vectors of {X;}, {¥;}. For the purpose of para-
meter estimation, we assume there are D training data with truth
annotations {X;,Y,}. In this setting, the purpose of concept de-
tection is to predict the hidden concept labels from visible obser-
vations provided by uni-modal classifiers, i.e., estimate the condi-
tional probabilities of P(Y;|X) under a given model representation.
In the following discussions, we discuss some existing models and
propose several new models for mining the multi-concept relation-
ship using both the directed graphical models and the undirected
graphical models.

2.1. Directed Graphical Models

Most previous approaches belong to the category of directed graph-
ical models. Essentially, all these models can be understood as a
two-layer directed graphical model with one layer of hidden units
and one layer of input units connected by fully-linked edges. Fig-
ure 1 shows several examples of directed graphical models for
video concept mining. Among them, Figure 1(a) corresponds to
a generative model(BNG) that assumes the detection outputs are
generated by concept variables. One such example is the Bayesian
network version of the multi-net model proposed by Naphade [3].
In this model, the hidden layer can be taken as a representation of
the “latent concept aspects” and the input layer corresponds to the
observed predictions of uni-modal semantic detectors. This graph
naturally implies the conditional independence of predictions X;
given the concepts Y. Typically, the prior distribution of ¥; is mod-
eled as a Bernoulli distribution Bernoulli(p;) with a draw proba-
bility p; and the conditional probability of X;|¥; is modeled as a
Gaussian distribution with mean }’;w;jy; and variance Gl-z. The
model parameters can be learned based on the maximum likeli-
hood estimation(MLE),
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Fig. 2. Three undirected graphical models for multi-concept learn-

ing including (c) restricted Boltzmann machines, (d) Markov ran-
dom fields and (e) conditional random fields.

By setting the derivatives of likelihood function with respect to
each parameter to be zero, we can derive the maximum likelihood
estimators in an analytical form where the estimated parameters
are shown as follows,
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Note that the estimation of parameter w;; is equivalent to a lin-
ear regression on X; with underlying variables Y1, ..., Yy. Although
the parameter estimation process is quite simple, it is usually in-
tractable to infer the conditional probability of Y given X due to
lack of conditional independence between Y. Therefore, we adopt
a popular approximate inference technique called Gibbs sampling,
which is applicable when the joint distribution is not known ex-
plicitly but the conditional distribution of each variable is able to
be computed.! According to Gibbs sampling, we can repeatedly
sample the following conditional probability to approximate the
joint distribution and then compute the expectation of labels Y,

P(Y;=1,X,Y)
P(Y;=0,X,Y)+P(Y; = 1,X,Y)

Y;~P(Y;=1X,Y\Y)) =

The model in Figure 3(b) corresponds to another type of di-
rected graphical models which directly model the conditional prob-
ability of Y given X, or called discriminative models(BND). It can
used to describe the approaches proposed in [5, 4]. Unlike the pre-
vious models, this graph reversely implies the conditional indepen-
dence of predictions Y; given the observations X and thus results
in an fast inference process. In practice, the labels Y are usually
modeled by a logistic regression based on observation variables X
where,

P(Y[X) o< exp {Z(oc,- +Zw;-m)w}
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With an additional validation set, the parameters can be estimated
by using any gradient descent methods such as iterative reweighted
least squares(IRLS) algorithm [8].

!"The Gibbs sampling algorithm is to generate an instance from the dis-
tribution of each variable in turn, conditional on the current values of the
other variables. It can be shown that the sequence of samples comprises a
Markov chain, and the stationary distribution of that Markov chain is just
the sought-after joint distribution.



2.2. Undirected Graphical Models

The Bayesian network formalism offers clear causal semantics and
manipulability from a modeling point of view. However, as pointed
out by [9], inference of the latent concepts in such models can be
prohibitively expensive due to the conditional dependencies be-
tween all hidden variables. This drawback could seriously affect
the model performance in real-time prediction tasks and in EM-
based learning. Moreover, directed models have to explicitly re-
tain the casuality between different observed/hidden variables and
thus it can lead to a sophisticated network structure if we want to
incorporate additional dependency between concepts.

As alternatives of directed graphical models, undirected graph-
ical models could be a better formalism for handling the relation
between concepts without explicitly imposing the concept casual-
ity. However to our surprise, the options of applying undirected
models to video annotation have seldom been explored before.
One example of undirected models is shown in the Figure 2(c)
called the restricted Boltzmann machine(RBM)(a.k.a. harmoni-
ums) which can be viewed as an undirected counterpart of the
aforementioned directed concept models with the arrows of the
edges removed. In a RBM model, observations X are fully con-
nected with the concept presence Y in form of a bipartite graph.
According to the undirected model semantics, there is no mar-
ginal independence for either input or hidden variables. However,
it enjoys the advantages of conditional independence between hid-
den variables given observed variables, which is generally violated
in the directed models. This property can greatly reduce infer-
ence cost although it comes at a price of a more difficult learning
process due to the presence of a global partition function. For-
mally, if we want to generate the conditional probabilities as fol-
lows,
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where N(u,o) is a normal pdf function with mean p and variance
o, and S(x) is a logistic function 1/(1+ e™*), then we have to
define the the joint probability of X,Y to be,
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The gradient-descent learning rules can be obtained by taking deriv-
atives of the log-likelihood defined by Eq. 4 with respect to the
model parameters. It can be found that the gradient of each pa-
rameter are equivalent to the difference between expectation of
its corresponding potential under empirical distribution and that
under model distribution [9]. However, the expectations under
the model distribution are usually difficult to compute because of
the intractable normalization factor. Therefore, we have to uti-
lize some approximate inference approaches such as loopy belief
propagation, contrastive divergence(CD) and variational methods.
In practice, we adopt the contrastive divergence as the basic infer-
ence method [9] which approximates the intractable model distri-
bution using a single or a few iterations of Gibbs sampling, and is
therefore highly efficient.

Until now, we have only discussed two-layer bipartite graph-
ical models with the nodes in each layer are fully connected with
the nodes in the other layer. Rather than modeling the concept
relationship in such an indirect way, the flexibility of undirected
models allow us to impose the links directly on the concept nodes

which cannot be easily achieved by a directed model. We con-
sidered two possibilities of such kinds of model designs in the
following discussions. Figure 2(d) corresponds to a Ising-model
like Markov random field(MRF) where the concept nodes are fully
linked and the observations only interact with their corresponding
concepts. Based on the model semantics and similar potential de-
finitions as before, the joint probability of the observations and
labels can be represented as follows,
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The major difference between above equation and Eq. 4 lies in the
pairwise interaction terms of u;;y;y; which directly captures the
concept co-occurrence patterns. The maximum likelihood estima-
tion of this model can also be achieved by contrastive divergence.
Note that an advanced version of the multi-net model based on the
factor graph model [3] can be viewed as a variant of above model
with slight differences in the model presentation. Figure 2(e) plots
a more recently developed graphical model called the conditional
random field(CRF) which is a random field globally conditioned
on the observations X. It means the observations Y, when condi-
tioned on X, obeys the Markov property with respect to the undi-
rected graph in Figure(e). According to the Hammersley Clif-
ford theorem and assuming only the pairwise clique potential are
nonzero, we can define the joint probability as,
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The conditional random field takes the advantage of modeling the
conditional probability of concepts given observations and thus
avoid the problem of learning complex class density. Due to the
space limit, please refer to [10] for the details of learning and in-
ference in the conditional random fields.

3. EXPERIMENTAL RESULTS

We evaluated all five multi-concept detection models using the
TRECVID’05 [1] development data. The development data are
split into three parts, where 70% as the training set to generate the
concept detection outputs, 15% as the validation set to learn the
multi-concept relationship, and remaining 15% as the testing set
to evaluate the detection performance. As mentioned before, one
application of multi-concept learning models is to automatically
discover the co-occurrence patterns in a specific video collection.
To illustrate this, we plotted the Figure 3 which shows the relation-
ships between 17 concepts found by CRF with each grid indicating
a pair of concepts. As can be seen, there are a considerable amount
of strong correlations between semantic concepts in the video col-
lection, including both positive interactions (two concepts are pos-
itively correlated with each other) and negative interactions ((two
concepts are negatively correlated). We believe the concept de-
tection task should be able to benefit from capturing this semantic
context. In more detail, some of the strongest positive/negative
concept pairs are listed below,

Positive Pairs: (outdoor, building), (urban, building), (person, face),

(studio, maps), (car, road), (urban, road), (text, sports)

Negative Pairs: (sports, building), (outdoor, computer tv screen),
(outdoor, maps), (commercial, studio), (waterfront, urban)



Fig. 3. Illustration of inter-concept relationships. Each grid indi-
cates a pair of concepts. Lighter colors stand for stronger positive
relations and darker colors stand for stronger negative relations.

However, we also notice that not every concept can exhibit co-
occurrence patterns with other concepts due to the limited num-
ber of training data. It would be beneficial to remove those iso-
lated concepts in the training data before the learning process. By
conducting the %2 test between every pair of concepts, we elimi-
nated the concepts that do not have any %2 scores exceeding certain
thresholds and thus not strongly correlated to others. Finally, we
constructed a five-concept collection and an eleven-concept col-
lection that include the sets of concepts as follows,

S-concept: car, face, person, text, walking/running

11-concept: building, car, face, maps, outdoor, person, sports,
studio, text, urban, walking/running

Table 1 shows the mean average precision on the testing set
of the five graphical models discussed before and the baseline ob-
tained without taking any conceptual relations into account. We
can observe that the best multi-concept modeling approaches can
usually bring an additional 2-3% improvement over the baseline
performance in terms of mean average precision. Table 1 also lists
the number of concepts that have better and worse performances
than baseline. It can be found that the detection accuracy of each
concept is more likely to be improved with aid of multi-concept
relational modeling, which shows the effectiveness of incorporat-
ing contexts into the detection results. The undirected graphical
models (i.e., RBM, MRF and CRF) demonstrate their promising
potentials in the task of concept detection given the high MAP
on both datasets. But on the other hand, our experimental results
also show the inconsistency of the performance of various models.
For example, in the 5-concept dataset, BND and RBM are among
the best models with similar MAPs around 60%. But in contrast,
in the 11-concept dataset MRF and CRF provide the best perfor-
mance around 52%. After an in-depth analysis on this dataset,
we found that the inferior performances of BND and RBM mainly
come from some significant degradations on one or two concepts
even they can improve on the others, which might indicate their
instabilities in handling a large amount of concepts. However, it is
worth pointing out that so far the differences between models and
baseline are not statistically significant yet. Further evaluations are
suggested to provide more insights on their comparison.

4. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we describe several approaches for mining the rela-
tionship between video concepts via a unified probabilistic graph-

Method 5-concept collection 11-concept collection
Better Worse  MAP | Better Worse MAP
Base - - 0.5715 - - 0.4994
BNG 2 3 0.5742 5 6 0.5187
BND 4 0 0.6036 6 4 0.4996
RBM 4 0 0.6024 5 5 0.4822
MRF 3 1 0.5714 6 4 0.5210
CRF 3 1 0.5882 7 3 0.5211

Table 1. Performance w.r.t. multi-concept relational learning
models and their baseline. Better/Worse means how many con-
cepts have a better/worse performance than baseline. MAP means
the mean average precision of the learning methods.

ical model representation and propose using numerous graphical
models that have not been applied to this task before. Two types
of graphical models have been discussed including two directed
models and three undirected models. While most previous work
can be generalized by the direct graphical models semantics, few
attentions have been paid to the undirected models which do not
need to impose casuality between concept nodes and have gained
their success in the field of machine learning. Our experiments
provide a fair comparison between all these approaches on two
video collections. They show the effectiveness and potentials of
using undirected models to learn the concepts relations. In future,
we would like to conduct more studies to validate our conclusions.
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