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Abstract

In this paper we describe a hybrid approach to
improving semantic extraction from news video.
Experiments show the value of careful parameter

tuning, exploiting multiple feature sets and
multilingual  linguistic  resources, applying text
retrieval —approaches for image features, and

establishing synergy between multiple concepts
through undirected graphical models. No single
approach provides a consistently better result for every
concept detection, which suggests that extracting video
semantics should exploit multiple resources and
techniques rather than a single approach.

1. Introduction

Increasingly, the detection of a large number of
semantic concepts is being seen as an intermediate step
in enabling semantic video search and retrieval [1].
Early video retrieval systems [2, 3] usually modeled
video clips with a set of (low-level) detectable features
generated from different modalities. These low-level
features like histograms in the HSV, RGB, and YUV
color space, Gabor texture or wavelets, structure
through edge direction histograms and edge maps can
be accurately and automatically extracted from video.
However, because the semantic meaning of the video
content cannot be captured faithfully by these low-
level features, these systems had a very limited success
in retrieving video for complex and semantically-rich
queries. Several studies have confirmed the difficulty
of addressing information needs with such low-level
features [4, 5].

To fill this “semantic gap”, one approach is to
utilize a set of intermediate “textual descriptors that
can be reliably applied to visual content (e.g., outdoors,
faces, animals, etc.) [6]. Many researchers have been
developing automatic semantic concept classifiers such
as those related to people (face, anchor, etc), acoustics
(speech, music, significant pause), objects (image
blobs, buildings, graphics), location (outdoors/indoors,
cityscape, landscape, studio setting), genre (weather,
financial, sports) and production (camera motion,
blank frames) [7]. The task of automatic semantic
concept detection has been investigated by many

studies in recent years [8-13], showing that these
classifiers could, with enough training data, reach the
level of maturity needed to be helpful filters for video
retrieval [14, 15].

Since so far only very few high-level concepts can
machine reliably extracted, the quest for developing
better concept classifiers is never ending. Instead of
focusing on single approach we test a wide collection
of approaches in improving video concept extraction.
The hybrid approach described in Section 4 spans a
wide range of classifier development process from
parameter tuning (Section 4.1), combining multiple
features (Section 4.2), exploiting relationship between
multiple concepts (Section 4.3), and fusing multiple
linguistic resources (Section 4.4). The hybrid
approach, unlike previous work that focus on only
developing better features or fusing techniques, may
provide a more holistic answer to the question: at what
level will we obtain most improvement for extracting
video semantics? We tested the hybrid approach on a
well-established testbed, TRECVID (Section 2) using
common low-level features (Section 3). The findings
and future direction are summarized in Section 5.

2. TRECVID Semantic Concept Detection

The main forum for studying video retrieval, and in
the last few years, video retrieval aided by semantic
concepts, has been organized by the National Institute
of Standards and Technology (NIST) in the form of the
TRECVID video retrieval evaluations [16]. In 2001,
NIST started the TREC Video Track (now referred to
as TRECVID [17]) to promote progress in content-
based video retrieval via an open, metrics-based
evaluation, where the video corpora have ranged from
documentaries, advertising films, technical/educational
material to multi-lingual broadcast news. As the largest
video collections with manual annotations available to
the research community, the TRECVID collections
have become the standard large-scale testbeds for the
task of multimedia retrieval [18]. These evaluations
provide a standard collection available to all
participants, separated into training and development
sets.

Currently, TREVID focuses on the video news
domain because it is structured video and contains a



broad range of information. The TRECVID 2006
collection contains three different languages: Arabic,
Chinese and English. The video collection comes from
11 different sources, including different Arabic news, a
variety of Chinese news, CNN, NBC and MSNBC for
English news. The development and test sets each
contains about 160 hours of video. Each video in the
collection is decomposed into shots, which are used as
the basic units of the video content. We use the
keyframes as defined by the TRECVID benchmark
[18], allowing more standardized testing and
comparison. We split this data into two parts, with half
used for training the models (development set) and the
other half is used to evaluate the models (testing set).
Since many experiments require parameter tuning, the
development set is further split into two parts, with
roughly 65% used for training the basic labels
(including cross-validation), and the rest for tuning the
combination parameters.

Since the video contains rich information from
visual, audio, and text extracted from screen and
speech recognition, in our experimental setting, we use
a number of color, texture, and text features extracted
from key-frame images in each shot, described below.

In the following experiments, we utilized the
semantic labels of 39 concepts from Large Scale
Concept Ontology for Multimedia Understanding
(LSCOM) [19] workshop. This set of manual
annotation labels for the development set is publicly
available.

3. Low-level features

Low-level features constitute the most “atomic”
building blocks of our analysis. They are used as the
initial features in a variety of machine learning
approaches.

Our experiments to detect high-level features are
based on 4 different types of low-level features: color
moment feature, Gabor texture feature, local image
features, and text (transcript) feature, briefly described
as follows:

e Color moment & Gabor texture: Columbia
University [20] provided color and texture features.
To generate the color moment feature, each image
(key-frame) is divided into 5x5 grids, and each grid
is described by the mean, standard deviation, and
third root of the skewness of each color channel in
the LUV color space. This results in a 225-
dimension (5x5x3x3) color moment feature. Texture
feature comes from the Gabor filter, which denotes
an image by mean and standard deviation from the
combination of four scales and six orientations [21].

e Local features: The local feature of each image is
computed from the local interest points (as known as
keypoints) detected from the image. We use the
keypoints [22] provided by City University of Hong
Kong, which are detected using the DoG detector
and depicted by SIFT descriptors [23]. Details on
experiments with these keypoints are described later
in this paper.

e Text features: Text features have been shown to
successfully complement visual features in
constructing effective multi-modal visual classifiers.
Extracting text features on a multilingual corpus,
such as TRECVID’06, however, faces an additional
problem: how should we effectively combine
information from multiple languages? One
straightforward solution is to translate multilingual
text (e.g., ASR transcripts) into a common target
language (e.g., English), and we can proceed
classifier learning and evaluation protocols as if
there were no multiple languages. The advantage of
this approach is that number of training examples in
English will be abundant. The disadvantage,
however, is that automatic translation systems
inevitably introduce errors in addition to errors from
automatic speech recognition systems. To leverage
abundant training examples and discriminative
power from native languages, we explored
multilingual text features for learning text-based
visual classifiers. Based on our experience, the
parameter setting of SVM is critical to the
performance. Therefore, we perform grid search of
the parameter space using cross-validation to find
the optimal parameters for each concept in the
training set, particularly the gamma parameter of the
kernel function and the cost parameter.

4. A hybrid approach

4.1. Importance of Classifier Tuning

Our basic approach uses support vector machines
(SVM) with radial basis kernel function (RBF) on the
training set to train baseline classifiers for all concepts
based on various combinations of low-level features.
are used in the training of baseline classifiers.

Table 1 shows that the optimal parameter setting
achieves an average of 27% improvement (0.2633 to
0.3352) over the default setting in terms of mean
average precision (MAP) on 39 concepts.



Table 1: Comparison between default and optimal

SVM parameters.
MAP

Semantic SVM- SVM
Concepts Default Optimal

Parameters | Parameters
Airplane 0.0135 0.1469
Animal 0.3863 0.4978
Boat/Ship 0.2131 0.1699
Building 0.3048 0.3481
Bus 0.0088 0.0778
Car 0.3151 0.4458
Charts 0.1265 0.1815
Computer/TV-
screen 0.3525 0.4971
Corp.-Leader 0.0059 0.0103
Court 0.0879 0.1882
Crowd 0.5288 0.5818
Desert 0.0602 0.109
Entertainment 0.0975 0.2999
Explosion/Fire 0.1413 0.2504
Face 0.7752 0.8634
Flag-US 0.1227 0.1344
Gov'nt-Leader 0.1822 0.2672
Maps 0.4816 0.4805
Meeting 0.1708 0.2578
Military 0.2049 0.2711
Mountain 0.1718 0.2512
Natural-Disaster 0.0403 0.0521
Office 0.0895 0.1181
Outdoor 0.4816 0.7954
People-arching 0.0759 0.1695
Person 0.8531 0.9004
Police/Security 0.0078 0.0121
Prisoner 0.1693 0.1546
Road 0.2481 0.3023
Sky 0.6502 0.6526
Snow 0.1725 0.2232
Sports 0.4481 0.5478
Studio 0.7541 0.8389
Truck 0.0251 0.0341
Urban 0.1127 0.1651
Vegetation 0.3203 0.3969
Walk/Run 0.1635 0.2491
Waterscape/
Waterfront 0.3171 0.4421
Weather 0.5887 0.6869
Average 0.2633 0.3351

Table 1 shows how the optimal SVM parameters
provide improvements for each individual feature set
over the default parameters in the fusion set based only
on color moment feature. Of the 39 semantic concepts,
37 improved as a result, one (Maps) was virtually
unchanged, and only one (Boats/Ships) decreased due
to overfitting. The results underscore the strong need
for careful tuning and parameter normalization.

4.2. Using Multiple Features

In the experiments with the TRECVID 2006 feature
classification data we also explored the use of image
local features as an alterative of the global
color/texture features for detecting semantic concepts
in video data. Local feature points can capture aspects
of an object in a picture, and are often less sensitive to
variations in lighting and viewpoint. Local features
describe the regions around the salient keypoints
detected in an image. We propose to explore a text
categorization approach to the problem of shot
classification based on vector-quantized keypoint
features or visual-word features. That is, we treat
visual words in images as words in documents, and
apply techniques widely used in text categorization (or
generally, in information retrieval) to the concept
classification problems. These include choosing
vocabulary size, feature weighting methods such as tf
and tf-idf, stop word removal, and so on. These
techniques seek for the most effective bag-of-word
representation for text categorization, and in this case
the most effective “bag of visual words” representation
for scene classification. Therefore, a major
contribution of this section is to provide the beginnings
of a comparative study of various implementation
choices related to image representation based on local
keypoint features. Although some of these techniques
have been already adopted in scene classification, such
as stop word removal and tf-idf weighting [22, 24],
their effectiveness has been so far taken for granted
without empirical evidence showing that they indeed
enhance the performance.

Each image is represented as an unordered
collection of real-valued keypoint descriptors with
varying cardinality. This representation, however,
creates difficulties for supervised classifiers which
demand feature vectors of fixed dimension as input.
The solution is to cluster the keypoint descriptors in
their feature space into a large number of clusters using
clustering algorithms such as K-means [25], and
encode each keypoint by the index (an integer) of the
cluster it is assigned to. This process is described as the
generation of a vocabulary (or codebook), where the
index of each cluster can be seen as a visual word in



the vocabulary. Each image can be thus represented by
a histogram-like vector of the count of each visual
word in the image (i.e., the number of keypoints in
each cluster). The dimension of this feature is
determined by the number of clusters, or the
vocabulary size, which usually varies from hundreds to
tens of thousands or even more. In this way, we
transform descriptors of image keypoints into a
discrete, high-dimensional “bag of visual words”
representation of the whole image, which is analogous
to the “bag-of-words” representation of text
documents.

Given its similarity to the “bag-of-keywords”
representation of text documents, we applied text
categorization methods for classifying video data by
the presence (or absence) of semantic concepts, and
studied the influence of feature dimension, weighting
and normalization, feature selection, spatial
information to the classification performance.
Experiments show that using local features achieves
comparable performance to that of the global features,
and significantly higher performance when these two
types of feature are used together.

In a text corpus, the size of word vocabulary is
determined by the language, while for images the size
of the visual word vocabulary is specified as the
number of keypoint clusters in the vocabulary
generation process. Choosing the right vocabulary size
involves the trade-off between the discriminative
power of the feature and its generalization ability.
When a small vocabulary is used, the resulting visual-
keyword feature lacks discriminative power because
two keypoints can be assigned into the same cluster,
even if they are not very similar. As the vocabulary
size increases, the feature becomes more discriminative
but also less generalizable and forgiving to noises,
since similar keypoints can be assigned to different
clusters. we experiment with vocabulary containing
200, 1000, 5000, 20000, 80000, and 320,000 visual
words, which cover most of the vocabulary sizes ever
used in existing work. Note that even 320,000 is not
terribly huge as the number of clusters given that the
dimension of the keypoint descriptor space. A single
partition at each dimension of the original descriptor
space will result in 236 clusters for the 36-dimensional
PCA-SIFT features, or 2128 clusters for the 128-
dimensional SIFT features.

The main observation, as summarized in Table 2, is
that the performance of scene classification improves
significantly as the vocabulary size (or feature
dimension) increases. The MAP achieved by linear-
kernel SVM almost triples when the vocabulary sizes
increases from 200 to 80,000 or 320,000. The increase
with RBF-kernel SVM is not as dramatic but still
remarkable. The performance starts to level off or even

slightly drop after the vocabulary size reaches 80,000
for linear kernel or 20,000 for RBF kernel.

Table 2: The MAP of concept classification using
region-based visual-term features computed at
various spatial partitions. The percentage in the
parenthesis shows the relative improvement over
the performance at 1x1 partition.

Vocabulary |Spatial Partitioning

Size Ix1 2x2 3x3 4x4
200 0.137 [0.258 0.267 0.272
(RBF SVM) (+89%) [(+95%)  [(+99%)
1,000 0.235 (0.249 0.291 0.286
(RBF SVM) (+6%)  |(+24%)  |(+22%)
5,000 0.245 (0.279 0.285 0.268
(RBF SVM) (+14%) |(+16%)  |(+9%)
20,000 0.271 {0.280 [0.290 0.293
(RBF/Linear) (+3%)  |[(+7%) (+8%)
80,000 0.280 {0.290  [0.290 0,288
(Linear SVM) (+4%) |(+4%) (+3%)

Interesting observations can be made by comparing
the performance of the two kernel functions. For small
vocabularies, the RBF kernel has a clear advantage
over the linear one, but this advantage is reversed once
the vocabulary size reaches 80,000. This suggests that
the visual words in a small vocabulary are highly
correlated, but they become more independent and gain
the nice property of linear separability (of data) as the
vocabulary gets larger. Finally, the results of
combining local features represented as visual words
and the more standard color/texture features can be
found in Table 3.

Practical insights emerge from our experiments.
Some are consistent with the findings in text
categorization, some are not. Some of the common
implementation choices in scene classification are
shown to be ineffective. Overall, we find these
representation issues critical to the scene classification
performance: 1) a vocabulary much larger than the
ones currently used is preferred; 2) binary features that
indicate the presence/absence of visual words are as
effective as tf or tf-idf features that encode the word
count information; 3) normalizing the feature vector
into unit length hurts the classification performance; 4)
frequent visual words are not “stop words” but the
informative ones; 5) feature selection can reduce the
vocabulary by more than half without loss of
performance; 5) the benefit of spatial information is
much more significant with small vocabularies than
with large vocabularies.

Our experiments yielded deeper insights into these
findings by exploring their connections with the
properties of visual words. We find the distribution of
visual words in a video corpus bears many similarities
yet important differences to the word distribution in a



text corpus. This explains some of our experiment
results, such as why there are no “stop visual words”
and why feature selection can reduce the vocabulary
size without hurting the performance. We also show
that the classification performance of local keypoint
features (visual words) is comparable to that of global
color/texture feature, and combining the two features
leads to a further improvement of 10-20%.

4.3. Exploiting Multiple-Concept Relationships

Previous experience has shown that the semantic
concepts are not independent of each other. Thus,
exploiting relationships between multiple semantic
concepts in video could be an effective approach to
enhancing the concept detection performance. In
TRECVID 2006, we tried to use a multi-concept fusion
technology called Multiple Discriminative Random
Fields (MDREF).

Figure 1 illustrates the framework of MDRF on top
of a single video shot, which consists of three different
semantic concepts, such as “building”, “tree”, and
“sky”. We construct an undirected graphical model to
represent the relationships between concepts and the
video shot, and also the relationships between various
concepts. Figure 2 illustrates such a graphical model.
Mathematically, MDREF is stated as:

1
¥ 1X)=exl Ty, X)+ Y, > 1;(visy;0V,X)
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where Y = (y;, ¥2 ..., yu) is the vector of multiple
concept labels, with j; denoting the label of ith
concept. In this work, each semantic concept is either
present or absent in the shot, i.e. y; = {-1, 1}. X (in R®)
is the observation or feature vector extracted from the
video shot. 4;(y, W, X) is called the association
potential function. In MDRF, association potential
provides links between concept labels and observation,
as a normal classifier does. [y;y,V, X) is the
interaction potential function. The interaction potential
tries to model the interactions between various
concepts with observation. For example, if there are
some shots in training set that have both the “sky” and
“tree” concept, the bluish and greenish color feature
(which are typical for the two concepts) will be
emphasized in the learning process via the interaction
potential. When a new shot comes out with big blue
which is easy to be recognized with unclear green area,
the tree detector will benefit from the interaction
potential to detect the tree concept. = {W, V} are the
parameters of the model. W is the parameter of the

Figure 1: A graph demonstrates the framework of
MDREF. There are three semantic concepts in this
video shot: building, tree and sky. The top layer
shows the concepts relations with each other and
constitutes an undirected graph. The edges
between each concept can be viewed as interaction
potentials in the MDRF formula. The dotted lines
from concepts to the video shot illustrate the
classifications of each concept which act as
association potentials in the MDRF model. In the
MDRF model, concepts are denoted as variable y
and a video shot is denoted as observation X.

association potential, and ¥ is the parameter of the
interaction potential. In Eq.(1), the summation of
association potentials corresponds to the set of
individual classifiers for each concept, and the
summation of interaction potentials models the
relationship of each concept pair.

In Figure 2, we can interpret MDRF as a fully
connected undirected graphical model. There are 3
concepts as Y;, Y, and Y; that are linked to each other
as well as to the observation X. The linkages between
concepts encode the interaction potentials in MDRF
and the linkages to observation encode the association
potentials.

We predict the validation set and test set by the
models built from our training set. For shots in the
validation set and testing set, predictions become our
observations for this shot. To be clearer, we have 39
different concepts and every concept has 4 different
modalities. The observation is a 156-dimension vector
(39x6). We adopt logistic function as association
potential:



Figure 2: MDREF is a fully connected
undirected graphical model. Y nodes denote
the semantic concepts. X is the observation
extracted from the video. All concepts are
dependent on the observation.

(3 W X) = 1og oy 1 X)) =log(oly w1, (X))
2
I(yi,yj,V,X)= .Vi.VjVijT”ij (X)
3)

From Eq.(2), we know the association potential
works like a logistic regression classifier which outputs
the probability of label given the observation. Eq.(3)
shows the interaction potential function. u;(X) can be
any function to deal with the observation. V is the
parameter of interaction potential, which emphasizes
the agreement between two concepts and searches the
observation that supports the agreement.

Table 4: MDRF for semantic concept extraction

Runs MAP
SVM, multi-modal feature (baseline) 0.146
MDRF with chi-square feature selection 0.148
MDRF without chi-square feature selection 0.114

Table 4 shows the performance of MDRF in
TRECVID 2006 submission in comparison with a
SVM approach that does not consider inter-concept
relationships. We use feature selection method based
on chi-square statistics to filter out some concept pairs
which are not related in order to remove noises from
the model. We discovered that even when the threshold
of chi-square statistics is set as small as 0.05, very few
concepts in 39 concept corpus connected to each other.
Not many concepts are related to each other in
TRECVID 2006 set, and we so didn’t obtain a
significant improvement by considering the multi-
concept relationships. We also found that chi-square
feature selection is critical since without it the
performance was much worse.

4.4. Multi-modal Feature Combination

Multiple types of low-level features need to be
combined in an effective way to provide better
performance than any single type of features.

Monolingual text features are a bag-of-words
representation of words spoken in a shot of dimensions
of VE, where VE is the vocabulary size of English.
Multilingual text features, on the other hand, contain
both native languages and translations (e.g., Chinese
and English translation), and is of the dimension VE +
VC + VA, where VC and VA are the vocabulary sizes
of Chinese and Arabic, respectively. We built text
classifiers on this multi-lingual feature using SVM
with a linear kernel. We evaluated the proposed
multilingual text features on the development set of
TRECVID'06.  Experimental results showed that
multilingual text features were remarkably more
effective than monolingual text features (i.e., English
only). Multilingual run improved the mean average
precision (MAP) of the 39 concepts from 0.134 to
0.175 (30% improvement) on the held-out
development-test set. Contrasting two runs in our
officially  evaluated submission also  shows
multilingual text features consistently perform better
than monolingual text features (see Table 6 for the
official results). In addition to the ASR transcripts and
translations by provided by NIST, text features were
also obtained using the SAIL Labs [www.sail-
technology.com] speech recognition engine for English
and Arabic speech recognition. The Arabic transcripts
were further translated into English using Google
translation = [www.google.com/translate t]  through
automated scripts.

To fuse results from different classifiers using
different techniques, we adopted a mixture of the early
fusion and late fusion strategy. To color and texture
features are stacked into a large feature vector of 273
dimensions (i.e., early fusion) due to their low
dimensionality and close relationships. In contrast, we
use late fusion strategy to combine this color-texture
feature with the local feature and the textual feature.
Specifically, we train SVM classifier for each concept
based on each type of feature, and apply the trained
classifiers to predict the label of each shot in the testing
set. Therefore, for any shot, there will be predictions
based on color-texture feature, local feature, and text
feature, respectively. We train meta-level classifiers
using logistic regression or SVM, which take the
component prediction scores as input and output an
overall prediction. Table 5 shows the comparison
between the two meta-level classifiers with different
low-level features. Clearly, logistic regression
outperforms SVM as a meta-level classifier in this



data. We thus choose logistic regression to fuse
predictions from multi-modal features, shown in Table
5. Due to space considerations, we do not list the
individual concept results. However, for some concepts
the multi-language linguistic features provided a
substantial benefit, while for many others there was no
improvement, and for some the results were worse.

5. Conclusions

Unfortunately, the experiments presented here do
not lend themselves to one simple conclusion. The

Table 5: Comparison of logistic regression and
SVM for multi-modality fusion

Multi-modality Runs MAP
Logistic regression 0.146

(color-texture + local +monolingual text)

SVM 0.121

(color-texture + local +monolingual text)

Logistic regression 0.153

(color-texture + local +multilingual text)

SVM 0.126

(color-texture + local + multilingual text)

unfortunate fact is that there is no one approach that
consistently outperforms others on all concepts and
data sets. In fact, it is likely that our quest for the one
cure-all approach is doomed to failure. However, this
does not mean we should stop trying. Each of the
successful comparisons points to some technique or
trick that can play a role for some concept in some
dataset. The research, as results suggested, should be
focused on uncovering as many techniques as possible,
and to leave it as an engineering exercise to determine
which combinations of techniques appears to work,
based on empirical evidence for a given set of concepts
and the specific collection characteristics. This is the
approach of the Pathfinder system [26] and others. [1]
who try different approaches and select the specific
approaches on a concept by concept basis. Some of the
proposed methods, such as MDRF, or SVMs with
complex kernels, large feature vectors and large
training data sets, are very computationally intensive at
the model building step, while others are quite cheap to
apply.

A long-term research goal is to devise methods for
predicting for a particular concept and data
combination which combination approaches are most
likely to yield the best results, without empirically
trying all possible methods. This grand scientific goal
would then also result in an explanation why some
methods work for a specific concept and some don’t.

We have presented ideas of techniques that
contribute to improved detection performance. It is our

hope that by establishing the synergy between them
substantial progress is possible. Current detection rates
are still low for many concepts, but there is hope [27]
that even this limited detection accuracy with large
numbers of concepts will be sufficient for substantial
help with concept-based video retrieval.
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Table 6: The high-level semantic concept extraction as evaluated by NIST

Method

Features

Official Result
Mean Average Precision

SVM, multi-modality (early fusion) |color, texture

0.099

SVM, multi-modality (late fusion)
text

color, texture, local feature, monolingual| 0.146

MDREF without ¥ selection
text

color, texture, local feature, monolingual| 0.114

MDRF with * selection
text

color, texture, local feature, monolingual| 0.148

SVM, multi-modality (late fusion)
text

color, texture, local feature, multilingual| 0.153

Borda voting

color, texture, local feature, multilingual| 0.159
& monolingual text




