
A Hybrid Approach to Improving Semantic Extraction of News Video 
 

A.G. Hauptmann, M.-Y. Chen, M. Christel, W.-H. Lin, and J. Yang 
School of Computer Science, Carnegie Mellon University, Pittsburgh USA 

{alex, mychen, christel, whlin, juny}@cs.cmu.edu 
 

 
Abstract 

 
In this paper we describe a hybrid approach to 

improving semantic extraction from news video.  
Experiments show the value of careful parameter 
tuning, exploiting multiple feature sets and 
multilingual linguistic resources, applying text 
retrieval approaches for image features, and 
establishing synergy between multiple concepts 
through undirected graphical models.  No single 
approach provides a consistently better result for every 
concept detection, which suggests that extracting video 
semantics should exploit multiple resources and 
techniques rather than a single approach.  
 
1. Introduction 
 

Increasingly, the detection of a large number of 
semantic concepts is being seen as an intermediate step 
in enabling semantic video search and retrieval [1]. 
Early video retrieval systems [2, 3] usually modeled 
video clips with a set of (low-level) detectable features 
generated from different modalities. These low-level 
features like histograms in the HSV, RGB, and YUV 
color space, Gabor texture or wavelets, structure 
through edge direction histograms and edge maps can 
be accurately and automatically extracted from video. 
However, because the semantic meaning of the video 
content cannot be captured faithfully by these low-
level features, these systems had a very limited success 
in retrieving video for complex and semantically-rich 
queries. Several studies have confirmed the difficulty 
of addressing information needs with such low-level 
features [4, 5]. 

To fill this “semantic gap”, one approach is to 
utilize a set of intermediate “textual descriptors that 
can be reliably applied to visual content (e.g., outdoors, 
faces, animals, etc.) [6]. Many researchers have been 
developing automatic semantic concept classifiers such 
as those related to people (face, anchor, etc), acoustics 
(speech, music, significant pause), objects (image 
blobs, buildings, graphics), location (outdoors/indoors, 
cityscape, landscape, studio setting), genre (weather, 
financial, sports) and production (camera motion, 
blank frames) [7]. The task of automatic semantic 
concept detection has been investigated by many 

studies in recent years [8-13], showing that these 
classifiers could, with enough training data, reach the 
level of maturity needed to be helpful filters for video 
retrieval [14, 15]. 

Since so far only very few high-level concepts can 
machine reliably extracted, the quest for developing 
better concept classifiers is never ending.  Instead of 
focusing on single approach we test a wide collection 
of approaches in improving video concept extraction.  
The hybrid approach described in Section 4 spans a 
wide range of classifier development process from 
parameter tuning (Section 4.1), combining multiple 
features (Section 4.2), exploiting relationship between 
multiple concepts (Section 4.3), and fusing multiple 
linguistic resources (Section 4.4).  The hybrid 
approach, unlike previous work that focus on only 
developing better features or fusing techniques, may 
provide a more holistic answer to the question: at what 
level will we obtain most improvement for extracting 
video semantics?  We tested the hybrid approach on a 
well-established testbed, TRECVID (Section 2) using 
common low-level features (Section 3).  The findings 
and future direction are summarized in Section 5. 
 
2. TRECVID Semantic Concept Detection  
 

The main forum for studying video retrieval, and in 
the last few years, video retrieval aided by semantic 
concepts, has been organized by the National Institute 
of Standards and Technology (NIST) in the form of the 
TRECVID video retrieval evaluations [16]. In 2001, 
NIST started the TREC Video Track (now referred to 
as TRECVID [17]) to promote progress in content-
based video retrieval via an open, metrics-based 
evaluation, where the video corpora have ranged from 
documentaries, advertising films, technical/educational 
material to multi-lingual broadcast news. As the largest 
video collections with manual annotations available to 
the research community, the TRECVID collections 
have become the standard large-scale testbeds for the 
task of multimedia retrieval [18]. These evaluations 
provide a standard collection available to all 
participants, separated into training and development 
sets. 

Currently, TREVID focuses on the video news 
domain because it is structured video and contains a 



broad range of information. The TRECVID 2006 
collection contains three different languages: Arabic, 
Chinese and English. The video collection comes from 
11 different sources, including different Arabic news, a 
variety of Chinese news, CNN, NBC and MSNBC for 
English news. The development and test sets each 
contains about 160 hours of video. Each video in the 
collection is decomposed into shots, which are used as 
the basic units of the video content.  We use the 
keyframes as defined by the TRECVID benchmark 
[18], allowing more standardized testing and 
comparison. We split this data into two parts, with half 
used for training the models (development set) and the 
other half is used to evaluate the models (testing set). 
Since many experiments require parameter tuning, the 
development set is further split into two parts, with 
roughly 65% used for training the basic labels 
(including cross-validation), and the rest for tuning the 
combination parameters.  

Since the video contains rich information from 
visual, audio, and text extracted from screen and 
speech recognition, in our experimental setting, we use 
a number of color, texture, and text features extracted 
from key-frame images in each shot, described below.  

In the following experiments, we utilized the 
semantic labels of 39 concepts from Large Scale 
Concept Ontology for Multimedia Understanding 
(LSCOM) [19] workshop. This set of manual 
annotation labels for the development set is publicly 
available. 

 
3. Low-level features 
 

Low-level features constitute the most “atomic” 
building blocks of our analysis. They are used as the 
initial features in a variety of machine learning 
approaches.  

Our experiments to detect high-level features are 
based on 4 different types of low-level features: color 
moment feature, Gabor texture feature, local image 
features, and text (transcript) feature, briefly described 
as follows: 
• Color moment & Gabor texture: Columbia 

University [20] provided color and texture features. 
To generate the color moment feature, each image 
(key-frame) is divided into 5x5 grids, and each grid 
is described by the mean, standard deviation, and 
third root of the skewness of each color channel in 
the LUV color space. This results in a 225-
dimension (5x5x3x3) color moment feature. Texture 
feature comes from the Gabor filter, which denotes 
an image by mean and standard deviation from the 
combination of four scales and six orientations [21]. 

• Local features: The local feature of each image is 
computed from the local interest points (as known as 
keypoints) detected from the image. We use the 
keypoints [22] provided by City University of Hong 
Kong, which are detected using the DoG detector 
and depicted by SIFT descriptors [23]. Details on 
experiments with these keypoints are described later 
in this paper.  

• Text features: Text features have been shown to 
successfully complement visual features in 
constructing effective multi-modal visual classifiers.  
Extracting text features on a multilingual corpus, 
such as TRECVID’06, however, faces an additional 
problem: how should we effectively combine 
information from multiple languages? One 
straightforward solution is to translate multilingual 
text (e.g., ASR transcripts) into a common target 
language (e.g., English), and we can proceed 
classifier learning and evaluation protocols as if 
there were no multiple languages. The advantage of 
this approach is that number of training examples in 
English will be abundant.  The disadvantage, 
however, is that automatic translation systems 
inevitably introduce errors in addition to errors from 
automatic speech recognition systems. To leverage 
abundant training examples and discriminative 
power from native languages, we explored 
multilingual text features for learning text-based 
visual classifiers.  Based on our experience, the 
parameter setting of SVM is critical to the 
performance. Therefore, we perform grid search of 
the parameter space using cross-validation to find 
the optimal parameters for each concept in the 
training set, particularly the gamma parameter of the 
kernel function and the cost parameter. 

 
4. A hybrid approach 
4.1. Importance of Classifier Tuning 
 

Our basic approach uses support vector machines 
(SVM) with radial basis kernel function (RBF) on the 
training set to train baseline classifiers for all concepts 
based on various combinations of low-level features. 
are used in the training of baseline classifiers. 

Table 1 shows that the optimal parameter setting 
achieves an average of 27% improvement (0.2633 to 
0.3352) over the default setting in terms of mean 
average precision (MAP) on 39 concepts. 

 
 
 
 
 



Table 1: Comparison between default and optimal 
SVM parameters. 

MAP 
Semantic 
Concepts 

SVM- 
Default 

Parameters 

SVM 
Optimal 

Parameters 
Airplane 0.0135 0.1469 
Animal 0.3863 0.4978 
Boat/Ship 0.2131 0.1699 
Building 0.3048 0.3481 
Bus 0.0088 0.0778 
Car 0.3151 0.4458 
Charts 0.1265 0.1815 
Computer/TV-
screen 0.3525 0.4971 
Corp.-Leader 0.0059 0.0103 
Court 0.0879 0.1882 
Crowd 0.5288 0.5818 
Desert 0.0602 0.109 
Entertainment 0.0975 0.2999 
Explosion/Fire 0.1413 0.2504 
Face 0.7752 0.8634 
Flag-US 0.1227 0.1344 
Gov’nt-Leader 0.1822 0.2672 
Maps 0.4816 0.4805 
Meeting 0.1708 0.2578 
Military 0.2049 0.2711 
Mountain 0.1718 0.2512 
Natural-Disaster 0.0403 0.0521 
Office 0.0895 0.1181 
Outdoor 0.4816 0.7954 
People-arching 0.0759 0.1695 
Person 0.8531 0.9004 
Police/Security 0.0078 0.0121 
Prisoner 0.1693 0.1546 
Road 0.2481 0.3023 
Sky 0.6502 0.6526 
Snow 0.1725 0.2232 
Sports 0.4481 0.5478 
Studio 0.7541 0.8389 
Truck 0.0251 0.0341 
Urban 0.1127 0.1651 
Vegetation 0.3203 0.3969 
Walk/Run 0.1635 0.2491 
Waterscape/ 
Waterfront 0.3171 0.4421 
Weather 0.5887 0.6869 
Average 0.2633 0.3351 

Table 1 shows how the optimal SVM parameters 
provide improvements for each individual feature set 
over the default parameters in the fusion set based only 
on color moment feature. Of the 39 semantic concepts, 
37 improved as a result, one (Maps) was virtually 
unchanged, and only one (Boats/Ships) decreased due 
to overfitting. The results underscore the strong need 
for careful tuning and parameter normalization. 
 
4.2. Using Multiple Features 
 

In the experiments with the TRECVID 2006 feature 
classification data we also explored the use of image 
local features as an alterative of the global 
color/texture features for detecting semantic concepts 
in video data. Local feature points can capture aspects 
of an object in a picture, and are often less sensitive to 
variations in lighting and viewpoint. Local features 
describe the regions around the salient keypoints 
detected in an image. We propose to explore a text 
categorization approach to the problem of shot 
classification based on vector-quantized keypoint 
features or visual-word features. That is, we treat 
visual words in images as words in documents, and 
apply techniques widely used in text categorization (or 
generally, in information retrieval) to the concept 
classification problems. These include choosing 
vocabulary size, feature weighting methods such as tf 
and tf-idf, stop word removal, and so on. These 
techniques seek for the most effective bag-of-word 
representation for text categorization, and in this case 
the most effective “bag of visual words” representation 
for scene classification. Therefore, a major 
contribution of this section is to provide the beginnings 
of a comparative study of various implementation 
choices related to image representation based on local 
keypoint features. Although some of these techniques 
have been already adopted in scene classification, such 
as stop word removal and tf-idf weighting [22, 24], 
their effectiveness has been so far taken for granted 
without empirical evidence showing that they indeed 
enhance the performance. 

Each image is represented as an unordered 
collection of real-valued keypoint descriptors with 
varying cardinality. This representation, however, 
creates difficulties for supervised classifiers which 
demand feature vectors of fixed dimension as input. 
The solution is to cluster the keypoint descriptors in 
their feature space into a large number of clusters using 
clustering algorithms such as K-means [25], and 
encode each keypoint by the index (an integer) of the 
cluster it is assigned to. This process is described as the 
generation of a vocabulary (or codebook), where the 
index of each cluster can be seen as a visual word in 



the vocabulary. Each image can be thus represented by 
a histogram-like vector of the count of each visual 
word in the image (i.e., the number of keypoints in 
each cluster). The dimension of this feature is 
determined by the number of clusters, or the 
vocabulary size, which usually varies from hundreds to 
tens of thousands or even more. In this way, we 
transform descriptors of image keypoints into a 
discrete, high-dimensional “bag of visual words” 
representation of the whole image, which is analogous 
to the “bag-of-words” representation of text 
documents. 

Given its similarity to the “bag-of-keywords” 
representation of text documents, we applied text 
categorization methods for classifying video data by 
the presence (or absence) of semantic concepts, and 
studied the influence of feature dimension, weighting 
and normalization, feature selection, spatial 
information to the classification performance. 
Experiments show that using local features achieves 
comparable performance to that of the global features, 
and significantly higher performance when these two 
types of feature are used together.   

In a text corpus, the size of word vocabulary is 
determined by the language, while for images the size 
of the visual word vocabulary is specified as the 
number of keypoint clusters in the vocabulary 
generation process. Choosing the right vocabulary size 
involves the trade-off between the discriminative 
power of the feature and its generalization ability. 
When a small vocabulary is used, the resulting visual-
keyword feature lacks discriminative power because 
two keypoints can be assigned into the same cluster, 
even if they are not very similar. As the vocabulary 
size increases, the feature becomes more discriminative 
but also less generalizable and forgiving to noises, 
since similar keypoints can be assigned to different 
clusters. we experiment with vocabulary containing 
200, 1000, 5000, 20000, 80000, and 320,000 visual 
words, which cover most of the vocabulary sizes ever 
used in existing work. Note that even 320,000 is not 
terribly huge as the number of clusters given that the 
dimension of the keypoint descriptor space. A single 
partition at each dimension of the original descriptor 
space will result in 236 clusters for the 36-dimensional 
PCA-SIFT features, or 2128 clusters for the 128-
dimensional SIFT features. 

The main observation, as summarized in Table 2, is 
that the performance of scene classification improves 
significantly as the vocabulary size (or feature 
dimension) increases. The MAP achieved by linear-
kernel SVM almost triples when the vocabulary sizes 
increases from 200 to 80,000 or 320,000. The increase 
with RBF-kernel SVM is not as dramatic but still 
remarkable. The performance starts to level off or even 

slightly drop after the vocabulary size reaches 80,000 
for linear kernel or 20,000 for RBF kernel. 

Table 2: The MAP of concept classification using 
region-based visual-term features computed at 

various spatial partitions. The percentage in the 
parenthesis shows the relative improvement over 

the performance at 1x1 partition.  

Spatial Partitioning Vocabulary 
Size 1x1 2x2 3x3 4x4 
200 
(RBF SVM) 

0.137 0.258 
(+89%) 

0.267 
(+95%) 

0.272 
(+99%) 

1,000 
(RBF SVM) 

0.235 0.249 
(+6%) 

0.291 
(+24%) 

0.286 
(+22%) 

5,000 
(RBF SVM) 

0.245 0.279 
(+14%) 

0.285 
(+16%) 

0.268 
(+9%) 

20,000 
(RBF/Linear) 

0.271 0.280 
(+3%) 

0.290 
(+7%) 

0.293 
(+8%) 

80,000 
(Linear SVM) 

0.280 0.290 
(+4%) 

0.290 
(+4%) 

0,288 
(+3%) 

Interesting observations can be made by comparing 
the performance of the two kernel functions. For small 
vocabularies, the RBF kernel has a clear advantage 
over the linear one, but this advantage is reversed once 
the vocabulary size reaches 80,000. This suggests that 
the visual words in a small vocabulary are highly 
correlated, but they become more independent and gain 
the nice property of linear separability (of data) as the 
vocabulary gets larger. Finally, the results of 
combining local features represented as visual words 
and the more standard color/texture features can be 
found in Table 3.  

Practical insights emerge from our experiments. 
Some are consistent with the findings in text 
categorization, some are not. Some of the common 
implementation choices in scene classification are 
shown to be ineffective. Overall, we find these 
representation issues critical to the scene classification 
performance: 1) a vocabulary much larger than the 
ones currently used is preferred; 2) binary features that 
indicate the presence/absence of visual words are as 
effective as tf or tf-idf features that encode the word 
count information; 3) normalizing the feature vector 
into unit length hurts the classification performance; 4) 
frequent visual words are not “stop words” but the 
informative ones; 5) feature selection can reduce the 
vocabulary by more than half without loss of 
performance; 5) the benefit of spatial information is 
much more significant with small vocabularies than 
with large vocabularies.  

Our experiments yielded deeper insights into these 
findings by exploring their connections with the 
properties of visual words. We find the distribution of 
visual words in a video corpus bears many similarities 
yet important differences to the word distribution in a 



text corpus. This explains some of our experiment 
results, such as why there are no “stop visual words” 
and why feature selection can reduce the vocabulary 
size without hurting the performance. We also show 
that the classification performance of local keypoint 
features (visual words) is comparable to that of global 
color/texture feature, and combining the two features 
leads to a further improvement of 10-20%. 
 
4.3. Exploiting Multiple-Concept Relationships 
 

Previous experience has shown that the semantic 
concepts are not independent of each other. Thus, 
exploiting relationships between multiple semantic 
concepts in video could be an effective approach to 
enhancing the concept detection performance. In 
TRECVID 2006, we tried to use a multi-concept fusion 
technology called Multiple Discriminative Random 
Fields (MDRF). 

Figure 1 illustrates the framework of MDRF on top 
of a single video shot, which consists of three different 
semantic concepts, such as “building”, “tree”, and 
“sky”. We construct an undirected graphical model to 
represent the relationships between concepts and the 
video shot, and also the relationships between various 
concepts. Figure 2 illustrates such a graphical model. 
Mathematically, MDRF is stated as:  
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where  Y = (y1, y2, …, yn) is the vector of multiple 
concept labels, with yi denoting the label of ith 
concept. In this work, each semantic concept is either 
present or absent in the shot, i.e. y1 = {-1, 1}. X (in Rc) 
is the observation or feature vector extracted from the 
video shot. Ai(yi,W,X) is called the association 
potential function. In MDRF, association potential 
provides links between concept labels and observation, 
as a normal classifier does. Iij(yi,yj,V, X) is the 
interaction potential function. The interaction potential 
tries to model the interactions between various 
concepts with observation. For example, if there are 
some shots in training set that have both the “sky” and 
“tree” concept, the bluish and greenish color feature 
(which are typical for the two concepts) will be 
emphasized in the learning process via the interaction 
potential. When a new shot comes out with big blue 
which is easy to be recognized with unclear green area, 
the tree detector will benefit from the interaction 
potential to detect the tree concept. θ = {W, V} are the 
parameters of the model. W is the parameter of the 

association potential, and V is the parameter of the 
interaction potential. In Eq.(1), the summation of 
association potentials corresponds to the set of 
individual classifiers for each concept, and the 
summation of interaction potentials models the 
relationship of each concept pair. 

In Figure 2, we can interpret MDRF as a fully 
connected undirected graphical model. There are 3 
concepts as Y1, Y2 and Y3 that are linked to each other 
as well as to the observation X. The linkages between 
concepts encode the interaction potentials in MDRF 
and the linkages to observation encode the association 
potentials. 

We predict the validation set and test set by the 
models built from our training set. For shots in the 
validation set and testing set, predictions become our 
observations for this shot. To be clearer, we have 39 
different concepts and every concept has 4 different 
modalities. The observation is a 156-dimension vector 
(39x6). We adopt logistic function as association 
potential: 

 
Figure 1: A graph demonstrates the framework of 
MDRF. There are three semantic concepts in this 
video shot: building, tree and sky. The top layer 
shows the concepts relations with each other and 
constitutes an undirected graph. The edges 
between each concept can be viewed as interaction 
potentials in the MDRF formula. The dotted lines 
from concepts to the video shot illustrate the 
classifications of each concept which act as 
association potentials in the MDRF model. In the 
MDRF model, concepts are denoted as variable y 
and a video shot is denoted as observation X. 
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From Eq.(2), we know the association potential 

works like a logistic regression classifier which outputs 
the probability of label given the observation. Eq.(3) 
shows the interaction potential function. uij(X) can be 
any function to deal with the observation. V is the 
parameter of interaction potential, which emphasizes 
the agreement between two concepts and searches the 
observation that supports the agreement. 

Table 4 shows the performance of MDRF in 
TRECVID 2006 submission in comparison with a 
SVM approach that does not consider inter-concept 
relationships. We use feature selection method based 
on chi-square statistics to filter out some concept pairs 
which are not related in order to remove noises from 
the model. We discovered that even when the threshold 
of chi-square statistics is set as small as 0.05, very few 
concepts in 39 concept corpus connected to each other. 
Not many concepts are related to each other in 
TRECVID 2006 set, and we so didn’t obtain a 
significant improvement by considering the multi-
concept relationships. We also found that chi-square 
feature selection is critical since without it the 
performance was much worse. 
 

4.4. Multi-modal Feature Combination 
 

Multiple types of low-level features need to be 
combined in an effective way to provide better 
performance than any single type of features.  

Monolingual text features are a bag-of-words 
representation of words spoken in a shot of dimensions 
of VE, where VE is the vocabulary size of English. 
Multilingual text features, on the other hand, contain 
both native languages and translations (e.g., Chinese 
and English translation), and is of the dimension VE + 
VC + VA, where VC and VA are the vocabulary sizes 
of Chinese and Arabic, respectively. We built text 
classifiers on this multi-lingual feature using SVM 
with a linear kernel. We evaluated the proposed 
multilingual text features on the development set of 
TRECVID'06.  Experimental results showed that 
multilingual text features were remarkably more 
effective than monolingual text features (i.e., English 
only). Multilingual run improved the mean average 
precision (MAP) of the 39 concepts from 0.134 to 
0.175 (30% improvement) on the held-out 
development-test set. Contrasting two runs in our 
officially evaluated submission also shows 
multilingual text features consistently perform better 
than monolingual text features (see Table 6 for the 
official results). In addition to the ASR transcripts and 
translations by provided by NIST, text features were 
also obtained using the SAIL Labs [www.sail-
technology.com] speech recognition engine for English 
and Arabic speech recognition. The Arabic transcripts 
were further translated into English using Google 
translation [www.google.com/translate_t] through 
automated scripts. 

To fuse results from different classifiers using 
different techniques, we adopted a mixture of the early 
fusion and late fusion strategy. To color and texture 
features are stacked into a large feature vector of 273 
dimensions (i.e., early fusion) due to their low 
dimensionality and close relationships. In contrast, we 
use late fusion strategy to combine this color-texture 
feature with the local feature and the textual feature. 
Specifically, we train SVM classifier for each concept 
based on each type of feature, and apply the trained 
classifiers to predict the label of each shot in the testing 
set. Therefore, for any shot, there will be predictions 
based on color-texture feature, local feature, and text 
feature, respectively. We train meta-level classifiers 
using logistic regression or SVM, which take the 
component prediction scores as input and output an 
overall prediction. Table 5 shows the comparison 
between the two meta-level classifiers with different 
low-level features. Clearly, logistic regression 
outperforms SVM as a meta-level classifier in this 

 

Figure 2: MDRF is a fully connected 
undirected graphical model. Y nodes denote 
the semantic concepts. X is the observation 
extracted from the video. All concepts are 

dependent on the observation. 

Table 4: MDRF for semantic concept extraction 

Runs MAP 
SVM, multi-modal feature (baseline) 0.146 
MDRF with chi-square feature selection 0.148 
MDRF without chi-square feature selection 0.114 



data. We thus choose logistic regression to fuse 
predictions from multi-modal features, shown in Table 
5. Due to space considerations, we do not list the 
individual concept results. However, for some concepts 
the multi-language linguistic features provided a 
substantial benefit, while for many others there was no 
improvement, and for some the results were worse.  
 
5. Conclusions 
 

Unfortunately, the experiments presented here do 
not lend themselves to one simple conclusion. The 

unfortunate fact is that there is no one approach that 
consistently outperforms others on all concepts and 
data sets. In fact, it is likely that our quest for the one 
cure-all approach is doomed to failure. However, this 
does not mean we should stop trying. Each of the 
successful comparisons points to some technique or 
trick that can play a role for some concept in some 
dataset. The research, as results suggested, should be 
focused on uncovering as many techniques as possible, 
and to leave it as an engineering exercise to determine 
which combinations of techniques appears to work, 
based on empirical evidence for a given set of concepts 
and the specific collection characteristics. This is the 
approach of the Pathfinder system [26] and others. [1] 
who try different approaches and select the specific 
approaches on a concept by concept basis. Some of the 
proposed methods, such as MDRF, or SVMs with 
complex kernels, large feature vectors and large 
training data sets, are very computationally intensive at 
the model building step, while others are quite cheap to 
apply.  

A long-term research goal is to devise methods for 
predicting for a particular concept and data 
combination which combination approaches are most 
likely to yield the best results, without empirically 
trying all possible methods. This grand scientific goal 
would then also result in an explanation why some 
methods work for a specific concept and some don’t.  

We have presented ideas of techniques that 
contribute to improved detection performance. It is our 

hope that by establishing the synergy between them 
substantial progress is possible. Current detection rates 
are still low for many concepts, but there is hope [27] 
that even this limited detection accuracy with large 
numbers of concepts will be sufficient for substantial 
help with concept-based video retrieval. 
 
9. Acknowledgements 
 

This material is based in part on work supported by 
the National Science Foundation Grant IIS-0205219. 
 
10. References 
 
1. J. Cao, et al. Intelligent Multimedia Group of Tsinghua 
University at TRECVID 2006. in TRECVID Video Retrieval 
Evaluation. 2006. Gaithersburg, MD, USA: NIST. 
2. Smeulders, A.W.M., et al., Content based Image Retrieval 
at the End of the Early Years. IEEE Trans. Pattern Analysis 
and Machine Intelligence, 2000. 22(12): p. 1349-1380. 
3. Smith, J.R., Basu, S., Lin, C-Y., Naphade, M. and Tseng, 
B. Interactive Content-based Retrieval of Video. in IEEE 
International Conference on Image Processing (ICIP). 2002. 
Rochester, NY. 
4. Rodden, K., et al. Does organisation by similarity assist 
image browsing? in CHI ’01: Proceedings of the SIGCHI 
conference on Human factors in computing systems. 2001. 
New York, NY, USA,: ACM Press. 
5. Markkula, M. and E. Sormunen, End-User Searching 
Challenges: Indexing Practices in the Digital Newspaper 
Photo Archive. Information Retrieval, 2000. 1(4): p. 259-285. 
6. Hauptmann, A., R. Yan, and W.-H. Lin. How many high-
level concepts will fill the semantic gap in news video 
retrieval? in International Conference on Image and Video 
Retrieval (CIVR). 2007. Amsterdam, The Netherlands. 
7. Chang, S.F., R. Manmatha, and T.S. Chua. Combining text 
and audio-visual features in video indexing. in IEEE 
ICASSP'05. 2005. 
8. Barnard, K., et al., Matching words and pictures. Journal 
of Machine Learning Research, 2002. 3. 
9. Naphade, M.R.a.H., T.S. Semantic Video Indexing using a 
Probabilistic Framework. in I.E.E.E. International 
Conference on Image Processing. 1998. Chicago, Il. 
10. Lin, C.-Y., B.L. Tseng, and M. Naphade. VideoAL: A 
Novel End-to-End MPEG-7 Automatic Labeling System. in 
IEEE Intl. Conf. on Image Processing. 2003. Barcelona. 
11. Lin, W. and A. Hauptmann. News Video Classification 
Using SVM-based Multimodal Classifiers and Combination 
Strategies. in ACM Multimedia 2002. 2002. Juan-les-Pins, 
France. 
12. Jeon, J., V. Lavrenko, and R. Manmatha. Automatic 
image annotation and retrieval using cross-media relevance 
models. in Proceedings of the 26th annual international 
ACM SIGIR conference on Research and development in 
information retrieval. 2003. 
13. Wu, Y., et al. Optimal multimodal fusion for multimedia 
data analysis. in Proceedings of the 12th annual ACM 
international conference on Multimedia. 2004. 

Table 5: Comparison of logistic regression and 
SVM for multi-modality fusion 

Multi-modality Runs MAP 
Logistic regression  
(color-texture + local +monolingual text) 

0.146 

SVM 
(color-texture + local +monolingual text) 

0.121 

Logistic regression  
(color-texture + local +multilingual text) 

0.153 

SVM  
(color-texture + local + multilingual text) 

0.126 



14. Hauptmann, A., et al. Informedia at TRECVID 2003: 
Analyzing and Searching Broadcast News Video. in 
Proceedings of (VIDEO) TREC 2003 (Twelfth Text Retrieval 
Conference). 2003. Gaithersburg, MD. 
15. Natsev, A.P., M.R. Naphade, and J. Te¡si´c. Learning the 
semantics of multimedia queries and concepts from a small 
number of examples. in Proceedings of the 13th ACM 
International Conference on Multimedia,. 2005. 
16. Over, P. TRECVID: TREC Video Retrieval Evaluation. 
2007. http://www-nlpir.nist.gov/projects/t01v/. 
17. Smeaton, A.F. and P. Over, The TREC-2002 Video Track 
Report. 2002. 
18. Over, P., et al. TRECVID 2006 - An Overview. in 
TRECVID'06 Video Retrieval Evaluation. 2006. 
Gaithersburg, MD: NIST. 
19. Kennedy, L. and A. Hauptmann, LSCOM Lexicon 
Definitions and Annotations Version 1.0, DTO Challenge 
Workshop on Large Scale Concept Ontology for 
Multimedia." Columbia University: New York. 
20. Chang, S.-F., et al. Columbia University TRECVID-2006 
Video Search and High-Level Feature Extraction. in 
TRECVID Video Retrieval Evaluation. Gaithersburg, MD: 
NIST. 
21. Yanagawa, A., W. Hsu, and S.-F. Chang, Brief 
Descriptions of Visual Features for Baseline TRECVID 

Concept Detectors. 2006, Columbia University: New York, 
NY. 
22. W. Zhao, Y.G. Jiang, and C.W. Ngo. Keyframe retrieval 
by keypoints: Can point-to-point matching help? in 
International Conf. on Image and Video Retrieval. 2006. 
23. Lowe, D.G., Distinctive image features from scale-
invariant keypoints. International Journal of Computer 
Vision, 2004. 60(2): p. 91-110. 
24. Sivic, J. and A. Zisserman. Video Google: A Text 
Retrieval Approach to Object Matching in Videos. in Ninth 
International Conference on Computer Vision (ICCV'03). 
2003. Nice, France. 
25. D. Pelleg and A. Moore. X-means: Extending k-means 
with efficient estimation of the number of clusters. in Proc. of 
the 7th Int’l Conf. on Machine Learning (ICML). 2000. San 
Francisco: Morgan Kaufmann. 
26. Snoek, C., M. Worring, and A.G. Hauptmann, Learning 
rich semantics from news video archives by style analysis. 
TOMCCAP, 2006. 2(2): p. 91-108. 
27. Hauptmann, A., et al., Can high-level concepts fill the 
semantic gap in video retrieval? A case study with broadcast 
news. IEEE Transactions on Multimedia Journal, 2007. 
 

 

Table 6: The high-level semantic concept extraction as evaluated by NIST 

Method Features Official Result 
Mean Average Precision 

SVM, multi-modality (early fusion) color, texture 0.099 
SVM, multi-modality (late fusion) color, texture, local feature, monolingual 

text 
0.146 

MDRF without χ2 selection color, texture, local feature, monolingual 
text 

0.114 

MDRF with χ2 selection color, texture, local feature, monolingual 
text 

0.148 

SVM, multi-modality (late fusion) color, texture, local feature, multilingual 
text 

0.153 

Borda voting color, texture, local feature, multilingual 
& monolingual text 

0.159 


