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ABSTRACT

Video understanding is a computationally challenging task that is
critical not only for traditionally throughput-oriented applications
such as search but also latency-sensitive interactive applications
such as surveillance, gaming, videoconferencing, and vision-based
user interfaces. Enabling these types of video processing applica-
tions will require not only new algorithms and techniques, but new
runtime systems that optimize latency as well as throughput. In
this paper, we present a runtime system called Sprout that achieves
low latency by exploiting the parallelism inherent in video under-
standing applications. We demonstrate the utility of our system
on an activity recognition application that employs a robust new
descriptor called MoSIFT, which explicitly augments appearance
features with motion information. MoSIFT outperforms previous
recognition techniques, but like other state-of-the-art techniques, it
is computationally expensive — a sequential implementation runs
100 times slower than real time. We describe the implementation
of the activity recognition application on Sprout, and show that it
can accurately recognize actions at full frame rate (25 fps) and low
latency on a challenging airport surveillance video corpus.
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Figure 1: Activity recognition on Gatwick airport video. Our
system recognizes actions in full frame rate video with low la-
tencies to enable interactive surveillance applications.

1. INTRODUCTION

Video is becoming ubiquitous in daily life for applications rang-
ing across surveillance, entertainment, communications, and nat-
ural user interfaces. The rate at which video is being generated
has accelerated demand for machine understanding of rich media
to enable better content-based search capabilities of both stored
and streaming data. Systems for processing video have been tra-
ditionally evaluated according to two metrics: the accuracy with
which they can recognize events of interest, and the rate at which
data can be processed. However, as interactive video applications
become more prominent, a third key metric, latency, is becoming
increasingly important. Latency directly impacts the effectiveness
of many real-world applications because these tasks require that
the results of video understanding be made immediately available
to the user (see Figure 1). Examples of applications that are sensi-
tive to latency include monitoring and surveillance scenarios where
the operator must be quickly alerted in the event of an emergency,
and vision-based user interfaces or immersive environments where
even moderate latencies can unacceptably degrade the user’s expe-
rience. There has been extensive research on frame-rate processing



Figure 2: Interest points detected with SIFT (left) and MoSIFT (right). Green circles denote interest points at different scales
while magenta arrows illustrate optical flow. Note that MoSIFT identifies distinctive regions that exhibit significant motion, which
corresponds well to human activity while SIFT fires strongly on the cluttered background.

of video, but simply achieving the desired throughput in a system
does not necessarily lead to any improvement in terms of latency.
A major barrier to the widespread deployment of video under-
standing algorithms has been their computational expense. For in-
stance, current methods for recognizing activities in surveillance
video typically involve spatio-temporal analysis such as comput-
ing optical flow and 3D SIFT descriptors at multiple scales for
every frame in a high-resolution stream. Fortunately, the increas-
ing availability of large-scale computer clusters is driving efforts
to parallelize video applications so that they can be mapped across
a distributed infrastructure. The majority of these efforts, such as
MapReduce [13] and Dryad [18], focus on efficient batch analysis
of large data sets; while such systems accelerate the offline index-
ing of video content, they do not support continuous processing.
A smaller set of systems provide support for the continuous pro-
cessing of streaming data [1,4, 12, 39] but most of these focus on
queries using relational operators and data types, or are intended for
mining applications in which throughput is optimized over latency.
This paper presents a novel approach to the problem. We exploit
both coarse- and fine-grained parallelism in the task to achieve low
latencies while processing high-resolution video at full frame rate.
In this paper, we present a cluster-based distributed runtime sys-
tem called Sprout that achieves low latency by exploiting the par-
allelism inherent in video understanding applications. We demon-
strate the utility of our system on a activity recognition application
that employs a novel and robust descriptor called MoSIFT, which
exploits continuous object motion explicitly calculated from opti-
cal flow and integrates it with distinctive appearance features. Al-
though computationally expensive like other state-of-the-art tech-
niques, the proposed approach outperforms existing algorithms on
standard action recognition data sets. These results validate our be-
lief that the added computational complexity of sophisticated de-
scriptors is warranted. Although straightforward implementations
of our method can process relatively small collections of videos,
such as the popular KTH dataset [36], they cannot scale to the large
real-world corpora that are the primary focus of our research. The
2008 TRECVID event detection evaluation [38] uses recently re-
leased surveillance camera footage from the London Gatwick air-

port consisting of 100 hours of full-frame video acquired from five
cameras. In terms of throughput, the straightforward implementa-
tion runs 100 times slower than real time on a single-threaded sys-
tem, and would need more than a year to process the Gatwick data
on a single machine. By contrast, the same approach implemented
using Sprout on a cluster of 15 8-core machines can process the
video corpus at full frame rate with low latency. It is noteworthy
that the Sprout framework enabled the parallelized implementation
to be built in just a few days; manually implementing a similar
parallel system without Sprout could take experienced developers
weeks or months of effort. Although our system is presented and
evaluated in the context of a surveillance scenario, it is applicable to
many computationally-intensive multimedia processing algorithms
that require high throughput and are sensitive to latency.

This paper makes three main contributions. First, we argue that
achieving high recognition accuracy in video understanding requires
computationally expensive methods. This is supported by experi-
ments using two state-of-the-art features, the recent Laptev et al. [24]
descriptor and our own robust descriptor, MoSIFT. Second, we
outline a general framework for enabling low-latency processing
of full frame rate video that exploits both the coarse- and fine-
grained parallelism inherent in typical multimedia understanding
algorithms. Specifically, we describe a novel runtime, Sprout, that
distributes video processing over a cluster of multi-core machines
and present experiments that characterize its throughput and la-
tency benefits. Finally, we present an implementation of a low-
latency surveillance system that can perform activity recognition on
large quantities of streaming video. We perform a series of detailed
experiments to characterize the benefits of coarse- and fine-grained
parallelism in terms of both latency and throughput.

The paper is organized as follows. We describe the core of the
activity recognition approach in Section 2 (MoSIFT). Section 3 de-
scribes the Sprout architecture. Section 4 presents details of how
the algorithm was parallelized. Section 5 describes the experiments
and results, followed by Section 6 discussing related research ef-
forts, with Section 7 providing a summary of the effort and an out-
line of future work.



2. ACTIVITY RECOGNITION IN VIDEO

Activity recognition forms the core of most video understand-
ing systems, whether for surveillance, video gaming interfaces, or
retrieval applications. In this section, we briefly review current
approaches to the problem and describe a feature representation,
MOoSIFT, that we employ in our system for extracting semantic
content. This descriptor matches (or exceeds) state-of-the-art de-
scriptors in terms of recognition accuracy both on established ac-
tion recognition datasets and on the challenging Gatwick airport
surveillance collection. However, like other state-of-the-art meth-
ods, MoSIFT requires significant computation and is slow when
implemented in a sequential manner. These experiments validate
our decision to use MoSIFT in our case study of parallelization for
latency and throughput in the remainder of the paper.

2.1 Extracting semantic features from video

Current approaches to action recognition in video are typically
structured as follows: (1) identify a set of semantically-interesting
regions in the video; (2) characterize the spatio-temporal neighbor-
hood at each interest point as a feature vector, which is often quan-
tized using a codebook; (3) aggregate the set of features extracted
in a video snippet to generate a histogram of their occurrence fre-
quencies; (4) treat this histogram as a high-dimensional vector and
classify it using a machine learning technique trained on human-
annotated video sequences.

Interest point detection reduces video data from a large volume
of pixels to a sparse but descriptive set of features. Ideally, an inter-
est point detector should densely sample those portions of the video
where events occur while avoiding regions of low activity. There-
fore, our goal is to develop a method that generates a sufficient but
manageable number of interest points that can capture the infor-
mation necessary to recognize arbitrary observed actions. Popular
spatio-temporal interest point detectors [14,23] are spatio-temporal
generalizations of established 2D operators developed for image
processing, such as the Harris corner detector. Although mathe-
matically elegant, these approaches treat motion in an implicit man-
ner and exhibit limited sensitivity for smooth gestures, which lack
sharp space-time extrema [19]. By contrast, the philosophy be-
hind our MoSIFT interest point detector is to treat appearance and
motion separately, and to explicitly identify spatially-distinctive re-
gions in a frame that exhibit sufficient motion at a variety of spatial
scales, as shown in Figure 2.

The information in the neighborhood of each interest point is
expressed using a descriptor that explicitly encodes both an ap-
pearance and a motion component. We are not the first to propose
representations that do this; several researchers [24, 35] have re-
ported the benefits of augmenting spatio-temporal representations
with histograms of optical flow (HoF). However, unlike those ap-
proaches, where the appearance and motion information is sepa-
rately aggregated, MoSIFT constructs a single feature descriptor
that concatenates appearance and motion. The former aspect is
captured using the popular SIFT descriptor [26] and the latter using
a SIFT-like encoding of the local optical flow. In contrast to video
cuboids or spatio-temporal volumes, the optical flow representation
explicitly captures the magnitude and direction of a motion, rather
than implicitly modeling motion through appearance change over
time. MoSIFT is a superset of the Laptev et al. detector [24] since
MOoSIFT not only detects velocity changes but also smooth move-
ments. Additional implementation details of MoSIFT are given in
Section 4 and our technical report [11].

We adopt the popular bag-of-features representation for action
recognition using MoSIFT interest points, summarized as follows.
Interest points are extracted from a set of training video clips. K-

Means clustering is then applied over the set of descriptors to con-
struct a codebook. Each video clip is represented by a histogram of
occurrence of each codeword (bag of features). This histogram is
treated as an input vector for a support vector machine (SVM) [7],
with a x? kernel. The x? kernel is defined as:
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with z; = (u1,...,um) and ; = (w1, ..., Wn ). Prior work has
shown that this kernel is well suited for bag-of-words representa-
tions [45]. Since the SVM is a binary classifier, to detect multiple
actions we adopt the standard one-vs-rest strategy to train separate
SVMs for multi-class learning.

2.2 Recognition accuracy: KTH dataset

The KTH human motion dataset [36] has become a standard
benchmark for evaluating human action detection and recognition
algorithms. The dataset contains six types of human actions (walk-
ing, jogging, running, boxing, hand waving and hand clapping),
performed by 25 individuals. Each person performs the same ac-
tion four times under four different scenarios (outdoors, outdoors
at a different scale, outdoors with moving camera, and indoors).
The dataset consists of 598 low-resolution (160x 120) video clips,
with each clip containing a single action. Although KTH is much
smaller than the datasets that form the focus of our research, it
serves as a consistent point of comparison against current tech-
niques.

We follow Niebles et al. [28] in performing leave-one-out cross-
validation to evaluate our approach. Leave-one-out cross-validation
uses 24 subjects to train action models and then tests on the remain-
ing subject. Performance is reported as the average accuracy over
25 runs. For MoSIFT, we extracted approximately 1.6 million inter-
est points from the whole KTH dataset with the MoSIFT detector,
and constructed a 600-word codebook. We trained SVMs using the
x* kernel with A = 0.5.

Table 1 summarizes our results on the KTH dataset. We observe
that MoSIFT demonstrates a significant improvement over current
methods, many of which also employ bag-of-features with different
descriptors. The lack of motion information in some approaches
results in lower performance than the Laptev et al. and MoSIFT
techniques, both of which utilize explicit appearance and motion
descriptions. For our final comparison we include Ke et al. [19],
which uses a boosted cascade that operates solely on optical flow
without modeling appearance. Clearly, representing motion alone
is not sufficient for activity recognition.

2.3 Recognition accuracy: Gatwick dataset

The 2008 TRECVID surveillance event detection dataset [38]
was collected at London Gatwick International Airport. It consists
of 50 hours (5 days x 2 hours/day x 5 cameras) of video in the
development set and 49 hours in the evaluation set. Each indi-
vidual video is just over 2 hours long, and contains about 190K
frames, recorded at 720 X 576 resolution at 25 frames per sec-
ond. This dataset contains highly crowded scenes, severely clut-
tered background, large variance in viewpoints, and very different
instances of the same action. Together, these characteristics make
activity recognition on this dataset a formidable challenge, both
in terms of content analysis and system architecture. To the best



Method Accuracy
MoSIFT 95.0%
Laptev et al. [24] 91.8%
Wong et al. [43] 86.7%
Niebles et al. [28]  83.3%
Dollar et al. [14] 81.5%
Schuldt et al. [36] 71.7%
Ke et al. [19] 62.7%

Table 1: MoSIFT significantly outperforms current methods on
the standard KTH dataset.

Action Random Laptevetal. MoSIFT
CellToEar 6.98% 19.42% 22.42%
Embrace 8.03% 29.35% 29.20%
ObjectPut 18.03% 44.24% 46.31%
PeopleMeet 22.32% 44.69% 40.68%
PeopleSplitUp  13.63% 56.91% 57.42%
Pointing 26.11% 41.54% 43.61%
PersonRuns 4.95% 32.56% 36.00%
Average 14.29% 38.39% 39.38%

Table 2: MOoSIFT significantly improves recognition perfor-
mance on the 100-hour Gatwick surveillance dataset. The per-
formance is measured by average precision.

of our knowledge, activity recognition on such a large, challeng-
ing task with these practical concerns has not been evaluated and
reported prior to TRECVID 2008. In that task, 10 events are evalu-
ated: ObjectPut, PeopleMeet, PeopleSplitUp, Pointing, CellToEar,
Embrace, PersonRuns, ElevatorNoEntry, TakePicture, and Oppos-
ingFlow. Standardized annotations of actions in the development
set were provided by NIST.

We evaluate recognition performance in a forced-choice setting
(i.e., “which of the 10 events is this?”’) using the annotations pro-
vided by NIST. There were a total of 6,439 events in the develop-
ment set. The size of the video codebook was increased to 1000
after cross validation on the development set. Since the data were
captured by several cameras over 5 different days, we evaluated
each camera independently using 5-fold cross-validation and av-
eraged their results. There were not enough annotated examples
for OpposingFlow, ElevatorNoEntry and TakePicture to run cross
validation; therefore, we do not report performance of these three
tasks. We use average precision (AP) as the metric, which is typical
for TRECVID high-level feature recognition.

Table 2 shows the performance of the Laptev et al. and MoSIFT
algorithms on the Gatwick data set. The experimental results con-
firm that MoSIFT has more stable recognition performance against
the state-of-the art Laptev et al. method.

2.4 Computational requirements

The experimental results on KTH and Gatwick datasets confirm
that MoSIFT significantly improves activity recognition. However,
the gain in accuracy from our more complicated descriptor comes
at the cost of adding significant additional computation. MoSIFT
is computationally expensive because it not only scans though dif-
ferent spatial scales but also calculates corresponding optical flows.
Thus, even though our proposed method is promising in terms of
recognition accuracy, a straightforward implementation of an appli-
cation based on MoSIFT would exhibit unacceptable performance
in terms of throughput and latency. For instance, it would take 416
days just to compute all of the MoSIFT descriptors on the Gatwick

dataset using a single machine. Even with a naively parallelized
implementation in which frames are processed in a pipelined fash-
ion over a large number of machines, the system would incur a
delay of more than 2.5 seconds between the occurrence of an event
and an alert. The computational requirements of the Laptev et al.
method are similar because like MoSIFT, it also computes optical
flow at multiple scales. The expense of these methods motivates the
development of a low-latency processing infrastructure for activity
recognition applications.

3. A SYSTEM FOR LOW-LATENCY
MULTIMEDIA PROCESSING

Sprout is a distributed stream processing system designed to en-
able the creation of interactive multimedia applications. Interac-
tion requires low end-to-end latency, typically well under 1 sec-
ond [8,9,27]. Sprout achieves low latency by exploiting the coarse-
grained parallelism inherent in such applications, executing parallel
tasks on clusters of commodity multi-core servers. Its program-
ming model facilitates the expression of application parallelism
while hiding much of the complexity of parallel and distributed
programming. In this section, we present an overview of Sprout,
the motivation for which is described elsewhere [32].

3.1 Application model

Sprout applications are structured as data flow graphs. The ver-
tices of the graph are coarse-grained processing steps called stages,
and the edges are connectors which represent data dependencies
between stages. The data flow model is particularly well suited
for multimedia processing tasks because it mirrors the high-level
structure of these applications, which typically apply a series of
processing steps to a stream of video or audio data.

Concurrency in the data flow model is explicit — stages may
execute in parallel, constrained only by their data dependencies and
the availability of processors. Task, data, and pipeline parallelism
may all be used, but not all of these forms of parallelism decrease
latency. Figure 3 illustrates this idea for an image processing task
that performs independent processing on frames of a video stream.
The sequential application is slow in terms of frame latency and
throughput. Inter-frame parallelization pipelines frame processing
over multiple instances of the application, improving throughput
but not latency. Intra-frame parallelization divides the processing
of each frame over multiple processors (e.g., by splitting the frame
into tiles, a form of data parallelism), improving both throughput
and latency. In practice, these techniques are complementary and
may be used in concert.

As we are primarily concerned with data sources that generate
data at some given rate, such as video cameras, the data flow in
our system is driven by the sources and follows a push model,
where data is generated and sent to downstream processing stages
as quickly as possible. If a downstream stage is busy, the data is
placed in a queue. In contrast, a pull model is driven by the data
sinks, and pulls data sources only as quickly as they can be pro-
cessed by any bottleneck in the system. The pull model is less
likely to encounter queueing delays, while the push model makes
it easier to pipeline execution across stages and interface to con-
stant rate sources. Our system incorporates mechanisms to mitigate
queueing delays and minimize latency for the push model.

Stages within an application employ a shared-nothing model:
they share no state, and interact only through connectors. This re-
striction keeps the programming complexity of individual stages
comparable to that of sequential programming, and allows concur-
rency to be managed by the underlying runtime system.
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Figure 3: Approaches to parallel execution and effects on la-
tency and throughput.

3.2 Sprout runtime system

Figure 4 illustrates the Sprout architecture. An application runs
on a set of processing nodes, each of which hosts one or more stage
server processes. A stage server runs one or more of the appli-
cation’s stages. Stages are activated and deactivated within stage
servers dynamically, providing a mechanism for adjusting stage
placement at run time. Stage servers need not be identical; that
is, different stage servers may be specialized to host a subset of
application stages. Multiple stage servers may run on a processing
node to provide distinct functionality or process isolation for stages
that require it.

For each application, a management process called the configu-
ration server is responsible for the initial and ongoing configura-
tion of the application, including stage and connection startup and
shutdown, stage placement, and adjustment of application-specific
parameters.

3.2.1 Stages

Stages are coarse-grained, application-specific processing steps.
The stages running within a given stage server are executed as sepa-
rate threads to reduce context switch time. The stage API provides
the means by which a stage interacts with the run-time environ-
ment. The main element of this API is an exec () method, which
is the only function a stage implementation must define. A stage-
specific firing rule determines the circumstances under which the
runtime system executes the stage. In keeping with the data push
model, the default rule executes a stage when all of its inputs are
ready, but the stage API allows the firing rule to be customized as
needed. Additional API calls provide for stage initialization and
shutdown.

A stage may have an arbitrary number of inputs and outputs.
Inputs and outputs are strongly typed, and defined in a way that
allows access by name. When a stage is executed, input data is
accessed using a get () method on an input. Output data is sent
using a put () method on an output. These operations transfer
ownership of data objects. An input object is owned by the stage
until it is put () or deallocated. Ownership of an output object is
transferred away from the stage on put (), and the object must not
be accessed or modified after that point.

In addition, the Sprout APIs permit a stage to export runtime
parameters, or tunables, to control its operation. Tunables can be
either discrete or continuous, and may be adjusted by the user or the
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Figure 4: Sprout architecture

system dynamically. Example code for the definition of a stage and
its inputs, outputs, tunables, and main execution method is shown
in Figure 5.

Data is delivered to a Sprout application by specialized stages
called data sources and consumed by data sinks. A source is a stage
with no inputs and a specialized firing rule that indicates when data
is available (e.g., periodic execution for a constant frame rate video
source). A sink is simply a stage with no outputs in the data flow
graph, although it may generate outputs to external components,
such as a file or a display. Implementations for common sources
and sinks such as cameras, files, and displays are provided through
a system component library. Sources and sinks can also be used as
adapters to other applications.

Fork and join structures in the application data flow graph are
implemented using splitter and joiner stages. A splitter divides
or copies data. The number of outputs can be fixed (for task par-
allelism) or variable (for data or pipeline parallelism). Variable
outputs provide a means for runtime adjustment of parallelism by
the system. Similarly, a joiner merges data, and can have fixed or
variable inputs. Generic splitters and joiners of various kinds (e.g.,
round robin, copy, vector) are provided through a system compo-
nent library.

While stages are typically implemented as sequential blocks of
code, they may also employ parallelism directly. A typical use is
multithreaded or vectorized code intended to exploit fine-grained,
intra-machine parallelism on multi-core hardware. Examples of
fine-grained parallelism include use of APIs such as OpenMP [31]
and specialized libraries such as Intel Integrated Performance Prim-
itives [17].

3.2.2 Connectors

Connectors define the data dependencies between stages. Con-
nector endpoints map to stage inputs and outputs. Variable numbers
of inputs and outputs may be mapped to connectors using policies
(e.g., any, all, round robin). For example, a round robin input pol-



class ImageScaler
public:
Input<IplImage> In; // Input is an image
Output<IplImage> Out; // Output is an image
ContinuousTunable scale; // runtime-tunable parameter
// this macro declares accessors to get elements by name at runtime
DECLARE_NAMES ( 3, In, Out, scale );
int exec(); // main function
// no special init(), fini() methods needed; use default firing rule

public Stage {

bi

int ImageScaler::exec () {
IplImage *img = In.get(); // get input image
float s = scale.getValue(); //getscaling parameter

int h = img->height=x*s;

int w = img->widthx*s;

// create image buffer of the right size for the output

IplImage *xout = cvCreatelmage (cvSize(w, h),
img->depth, img->nChannels);

cvResize (img, out); // copy and resize function

Out.put (out) ; // send output

cvReleaseImage (&1img) ; // delete input image

return (0);

Figure 5: A simple stage written in C++ with Sprout APIs. This
stage uses OpenCV data structures and library calls to rescale
an input image. The scaling factor is tunable at runtime.

icy allows multiple connectors to provide data to a single input in
round robin order. The default policy is a one-to-one mapping be-
tween input or output and connector.

The underlying implementation of a connector depends on the
location of the stage endpoints. If the connected stages are running
in the same process, the connector is implemented as an in-memory
queue. Otherwise, a TCP connection is used. Sprout determines the
connector type, and handles serialization and data transport through
connectors transparently. Hooks are provided for custom marshal-
ing code that may be needed for user-defined classes (e.g., for deep
copying, or special memory allocation). All of the remote connec-
tions for a particular server are managed by an additional thread
that employs nonblocking network operations.

As Sprout uses a push model to move data through application
stages, unbounded growth of input queues to slow stages is a con-
cern. To address this problem, connectors employ a queue back-
pressure mechanism to reduce data inflow. When an output queue
of a stage exceeds a small fixed length, its firing rule will prevent
additional executions of the stage until the downstream stage has
sufficiently emptied the queue. For remote connections, the sum of
the lengths of the local output queue and the remote input queue
is used. This requires signalling of queue lengths from the down-
stream server, and is transparently handled by the connector imple-
mentation. This mechanism limits the number of data items queued
and the total queueing delays in the application.

3.2.3 Configuration

Sprout uses a human-readable configuration file to describes an
application’s data flow graph. As shown in Fig. 6, the application
configuration has three types of specifications: modules, connec-
tors, and servers. A module is specified as either a single stage
or as a subgraph, which recursively consists of other modules and
connectors. A module specification includes inputs, outputs, and
tunable parameters, as well as an indication of the number of par-
allel instances (if any) that should be launched. The latter allows
concise representation of data-parallel stages and subgraphs. Con-

<Application name="facedetect">

<Module name="Scale" args="">
<Inputs>In</Inputs>
<Outputs>Out</Outputs>
# define a continuous tuning knob with range 1-10
<Tunable name="scale" type="continuous"

best="1">1,10</Tunable>

<Stage class="ImageScaler">

</Module>

# other module specifications here

<Connector source="FrameSource:Out"
dest="Scale:In">

<Connector source="Scale:0ut"
dest="Detect:In">

# other connector specifications here

<Servers exec="facedetect"> #name of executable
# hosts available to run this server
<Hosts>nodeA, nodeB, nodeC</Hosts>
</Servers>
</Application>

Figure 6: Configuration for a face detection application that
uses the ImageScaler stage.

nectors link outputs of modules to inputs of other modules. Server
specifications list stage server executables, along with a set of avail-
able processing nodes that can host the servers. Optionally, the
server specification can include a stage layout, which indicates a
complete or partial placement of individual stages on processing
nodes. Additional convenience features allow users to split the con-
figuration among multiple files and to define macros. This, along
with the ability to define subgraphs as modules, facilitates reuse in
the configuration system. As our system is intended to automate
replication of stages and degrees of parallelism, the configuration
is actually a template of the structure of the application, with guid-
ance for extracting parallelism.

Multiple distinct server executables may be used to form a sin-
gle application. Each server binary may be specialized to provide
a subset of the stages used by an application (e.g., a server with a
camera source stage). Additionally, multiple binary support facil-
itates the use of stages incorporating proprietary code, which can
be distributed as binary-only stage servers. Finally, our system per-
mits multiple instances of the same server binary to run on the same
node. This feature is useful if process isolation is needed for the
stages. A practical example is a stage that uses an external library
that is not thread safe; multiple instances of the stage can execute
on a single processing node in separate servers.

An application is launched by running a configuration server
with a configuration file as input. The configuration server gen-
erates a complete initial placement of stages to stage servers (ex-
tending any manual layout specified in the configuration), invokes
stage servers on the processing nodes if they are not already run-
ning, and then activates the appropriate stages in each stage server.
The configuration server then directs the stage servers to create in-
put and output connections for each stage, and connect each stage
to its downstream neighbors. Once the connections are completed,
the stages execute according to their firing rules.

3.2.4 Monitoring

Monitoring of stage and processing node metrics allows run-
time adaptations, such as adjusting the level of parallelism, mi-
grating stages, or tuning application-specific parameters. Appli-
cation-specific or white-box observations of stage performance are
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Figure 7: Sprout application graph for the MoSIFT-based
activity recognition. Fine-grained parallelism is used within
stages for processing steps shown in shaded boxes.

obtained from the stages themselves. Each stage maintains a fixed
length circular log of per-execution records. Measurement over-
head is controlled via a dynamically set sampling rate. Each log
record contains a timestamp, elapsed time, CPU time, and amount
of input and output data for each connection. Stage data consists
of these log records and a snapshot of connection queue lengths. In
addition, application-independent or black-box observations may
be obtained at the processing node level, such as the utilizations of
CPU, network, and disk.

4. PARALLEL MOSIFT

We implemented a parallel activity recognition application using
MoSIFT features on Sprout. Figure 7 shows the decomposition of
the application into Sprout stages. The implementation uses both
coarse-grained parallelism at the stage level, and fine-grained par-
allelism within stages using OpenMP. This section describes our
implementation and the methods used to parallelize its execution.

4.1 Frame pairs and tiling

Since MoSIFT computes optical flow, processing is based on
frame pairs. A video data source decomposes the video into a se-
ries of frame pairs, which are input to the main processing stages.
Since the MoSIFT interest points are local to regions of an im-
age pair, we exploit intra-frame parallelization using an image tiler
stage. The tiler divides each frame into a configurable number of
uniformly sized overlapping sub-regions. The tiles are sent to a set
of feature extraction stages to be processed in parallel. Overlap of
the tiles ensures that interest points near the tile boundaries are cor-
rectly identified. The tiler also generates meta-data that includes
positions and sizes of the tiles, for merging the results of feature
extraction.

This tiling approach is an example of coarse-grained paralleliza-
tion, since it did not need any changes to the inner workings of
the feature extraction stage. The Sprout runtime and APIs make it
easy to reconfigure applications to make use of such parallelization.
As another example of coarse-grained parallelization, we also run

parallel instances of the entire graph of stages in Figure 7, using a
round-robin data splitter to distribute frame pairs to the parallel in-
stances. This latter technique improves throughput only, while the
tiling approach improves both throughput and latency.

4.2 Feature extraction

Like other SIFT-style keypoint detectors, MoSIFT finds interest
points at multiple spatial scales. Two major computations are em-
ployed: SIFT interest point detection on the first frame to identify
candidate features; and optical flow computation between the two
frames, at a scale appropriate to the candidate feature, to eliminate
those candidates that are not in motion.

Candidate interest points are determined using SIFT [26] on the
first frame of the pair. SIFT interest points are scale invariant and
all scales of a frame image must be considered. A Gaussian is em-
ployed as a scale-space kernel to produce a scale space of the first
frame. The whole scale space is divided into a sequence of octaves
and each octave is further subdivided into a sequence of intervals,
where each interval is a scaled frame. The number of octaves and
intervals is determined by the frame size. The first interval in the
first octave is the original frame. Images from different octaves and
intervals form a Gaussian pyramid which covers multiple scales.

Since MoSIFT uses optical flow across all levels of the scale
space representation, it requires a Gaussian pyramid for each image
in the frame pair. These are computed in parallel in two separate
threads. The optical flow is then computed between corresponding
frames in the Gaussian pyramid. We parallelize this set of compu-
tations using OpenMP to assign loop invocations to a set of threads.
As image size and computation time varies over the octaves, we do
not parallelize by octave. Rather, we parallelize by interval, assign-
ing computation for a particular interval index across all octaves to
a single thread. This ensures a balanced load among the threads for
the optical flow computations.

Difference of Gaussian (DoG) images, which approximate the
output of a bandpass Laplacian of Gaussian operator, are needed to
find SIFT interest points. A DoG pyramid is computed by subtract-
ing adjacent intervals of the Gaussian pyramid for the first frame in
the pair. As with the optical flow, we parallelize this computation
by intervals to equally partition work among the threads.

As in SIFT, once the pyramid of DoG images has been gener-
ated, the local extrema (minima/maxima) of the DoG images across
adjacent scales are used as the candidate interest points. The algo-
rithm scans through each octave and interval in the DoG pyramid
and extracts all of the possible interest points at each scale. Unlike
SIFT, candidate points are then checked against the optical flow
pyramid. Candidate points are selected as MoSIFT interest points
only if they contain sufficient motion in the optical flow pyramid at
the appropriate scale.

The final step in the feature extraction stage is descriptor com-
putation. Since interest points are independent, descriptors are
computed in parallel over the interest points, limited only by the
available cores on the processing node. The MoSIFT descriptor
explicitly encodes both appearance and motion. The appearance
component is the 128-dimensional SIFT descriptor for the given
patch, briefly summarized as follows. The magnitude and direction
for the intensity gradient is calculated for every pixel in a region
around the interest point in the Gaussian-blurred image. An orien-
tation histogram with 8 bins is formed, with each bin covering 45
degrees. Each sample in the neighboring window is added to a his-
togram bin and weighted by its gradient magnitude and its distance
from the interest point. Pixels in the neighboring region are normal-
ized into 256 (16 x 16) elements. Elements are grouped as 16 (4 x4)
grids around the interest point. Each grid contains its own orien-
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Figure 8: MoSIFT aggregates appearance and motion informa-
tion using a SIFT-like scheme. Figure adapted from [26].

tation histogram to describe sub-region orientation. This leads to
a SIFT feature vector with 128 dimensions (4 x4 x8 = 128). Each
vector is normalized to enhance its invariance to changes in illu-
mination. Figure 8 illustrates the SIFT descriptor grid aggregation.
The same idea of grid aggregation is applied to motion. The optical
flow describing local motion at each pixel is a 2D vector with the
same structure as the gradient describing local appearance. This
enables us to encode motion with the same scheme as that used by
SIFT for appearance. A key benefit of this aggregation approach
is that our descriptor becomes tolerant to small deformations and
partial occlusion (just as standard SIFT was designed to be tolerant
to these effects). The two aggregated 128-dimensional histograms
(appearance and optical flow) are concatenated to form the MoSIFT
descriptor, which is a vector of 256 dimensions.

4.3 Tile merger and classification

After feature descriptors are constructed, each feature extraction
stage sends the descriptors to a tile merger stage, which collects the
feature descriptors and adjusts their positions in the whole frame.
In the classification stage, features are mapped to codewords in a
previously-generated camera-specific codebook. A histogram is
generated for the current frame pair, and accumulated into his-
tograms representing different time windows. The histogram is
constructed in parallel over the features, up to the number of avail-
able cores. Finally, an SVM is used on normalized histograms to
identify specific activities.

S. EVALUATION

We evaluate the runtime performance of MoSIFT-based activity
recognition on Sprout in two ways. First, we examine the effect of
scene content on execution time. Second, we examine the extent to
which coarse- and fine-grained parallelism can be used to improve
latency and throughput. Our experiments are performed on a clus-
ter of 15 compute servers connected via a 1 Gbps Ethernet switch.
Each cluster node has eight 2.83 GHz Intel Xeon processor cores
and 8 GB RAM, and runs Ubuntu Linux 7.04. All of our experi-
ments use data from the TRECVID London Gatwick airport video
corpus described in Section 2.3. Because MoSIFT feature extrac-
tion consumes the vast majority of the application’s run time, our
experiments measure execution time for all application stages in
Figure 7 and all network latencies, except the classification stage,
which adds approximately 20 ms to the costliest frames.

5.1 Effect of scene content

The computational cost of the activity recognition application
described in Section 4 consists broadly of fixed and variable terms.
The fixed cost involves per-pixel processing of a frame, such as
constructing Gaussian pyramids and computing optical flow. The

Min Mean  Max Total
Camera 1 1 184 880 34,551,904
Camera 2 0 96 1,646 17,950,868
Camera 3 0 161 931 30,186,555
Camera 4 0 6 254 1,108,186
Camera 5 1 187 1,108 34,971,610

Table 3: Number of interest points in Gatwick video.
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Figure 9: Variation in number of interest points detected over
time for Camera 1.

variable cost depends on the number of features identified in the
frame, such as in the histogram computation step.

Table 3 shows the number of MoSIFT features extracted from
the first day’s segment for each of the five cameras. The maxi-
mum number of features extracted from camera 2 (1,646) is due to
a horizontal sync artifact in two frames of the video that generate
apparent motion. Without these two frames, the maximum number
of features extracted from the camera 2 video is 393. The number
of features extracted from each frame pair can vary significantly
over time, as shown in Figure 9 for camera 1, due to groups of
people moving through the scene. Figure 10 shows the effect of
scene content on feature extraction latency of full-frame (untiled)
processing on a single core for all five two-hour video segments.

4400
4200 |
4000
3800 | -

3600
3400 |

Time (ms)

3200 E

200 400 600 800 1000 1200 1400 1600 1800
Features

Figure 10: Latency as a function of number of features for se-
quential implementation.
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Figure 11: Cumulative distribution of frame latency for se-
quential implementation.
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Figure 12: Frame latency vs. number of tiles using coarse-
grained parallelism.

The figure shows a clear linear trend with the number of features
extracted. We achieve processing at full frame rate by replicating
feature extraction stages over a sufficiently large number of pro-
cessors. However, this approach does not address latency, which
remains unacceptably high. As Figure 11 shows, all latency mea-
surements exceed 2.5 seconds.

5.2 Coarse-grained parallelism

As shown in Figure 7, features can be extracted from tiles within
a frame in parallel. Tiling is a simple way to introduce coarse-
grained parallelism without aggressively refactoring a pre-existing
algorithm. To explore worst case performance, we selected a two-
minute segment from the set of videos used in Section 5.1 that
contained the largest total number of features (camera 1, starting
at frame 171475, with 1.25M features). Figure 12 shows that tiling
improves feature extraction performance by a factor of eight. While
median latency falls to nearly 200 ms for the 64-tile configuration,
the 90th percentile increases once the number of tiles exceeds 25.
This increase appears to be due to network congestion caused by
the feature extraction stages sending output to the tile merger.

The features extracted from tiles can differ from those obtained
from a full image. For example, features near tile edges or large
features spanning multiple tiles can be missed. We address this is-
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Figure 13: Cumulative distribution of latency using coarse- and
fine-grained parallelism. Threading decreases latency by a fac-
tor of 2.6, tiling by a factor of 7, and the combination by a factor
of 12.

sue in two ways. First, tiles can be created with a specified overlap
to alleviate edge effects. Second, a tiled pyramid of scaled images
can be created to capture larger features. For a camera trained on a
distant scene, such as in surveillance, scaled tiles may not be neces-
sary. In practice we find that while the features extracted from tiles
can differ from those extracted from a full image, the differences do
not affect activity recognition in a significant way. For example, we
compared the identification results for 36-way tiling with 10 pixel
overlap and no scaling to full image processing for the footage col-
lected on day 1 from camera 2, and found that recognition accuracy
decreased by only 0.5%.

5.3 Fine-grained parallelism

In addition to the coarse-grained parallelism at the level of frame
tiles, Sprout allows complementary fine-grained approaches to par-
allelism. As described in Section 4, using OpenMP, we have cre-
ated a MoSIFT implementation that utilizes multiple threads in var-
ious processing steps. We note that threading requires greater hu-
man programming effort than identification and implementation of
coarse-grained parallel stages in Sprout, due to concurrency and
synchronization issues in the former. In our threaded implemen-
tation, some of the processing steps make use of all 8 cores in our
machines, while other steps are sequential, or can utilize only 2 or 6
cores at a time. Thus on average we see only 2.5-3x speedup when
compared to a single core, nonthreaded version. Figure 13 shows
the distribution of execution times for frame pairs from the most
feature-intensive 2-minute segment of the data set for a threaded
untiled case, 12-way tiled but non-threaded case, and a combina-
tion of tiling and threading. The combination of tiling and thread-
ing reduces latency dramatically by a factor of 12.

A common drawback of threading is that the number of cores
used varies over time as execution enters and leaves parallel sec-
tions. As a result, placing multiple instances of such code on a
single machine becomes problematic as these may contend for pro-
cessing resources. Figure 14 shows the effect of placing multiple
instances of 12-way tiled, threaded stages on each machine. Al-
though throughput increases as the number of processing instances
increases, the latency increases and becomes more variable due to
nondeterministic resource contention, defeating the latency advan-
tages of the threaded implementation.
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5.4 Achieving high throughput

Although our focus has been primarily to reduce the high pro-
cessing latency of MoSIFT, we also need to enable full-frame rate
processing. We achieve high throughput by replicating the tiling
and feature extraction stages over multiple machines and proces-
sors. Our goal is to scale throughput with effective use of avail-
able hardware resources. For the untiled, nonthreaded configura-
tion, we place 7 replicas per machine (reserving one core for 1/0).
The second configuration uses a 14-way tiled setting, allowing one
replica for every two machines. For the threaded configurations,
we limit placement to a single threaded stage per machine based
on the findings in the previous sections. These do not utilize the
cores very effectively, and achieve relatively poor throughput com-
pared to the nonthreaded configurations. Figure 15 shows that only
the nonthreaded, untiled and 14-way tiled configurations achieve
full frame rate on our 15-node cluster. Both of these configurations
scale well with additional machines, but as shown in Figure 13, the
tiled configuration has significantly better latency with the same set
of resources.

5.5 Lessons learned

In summary, while we find that Sprout successfully allows mul-
tiple mechanisms to be used for parallelization (as demonstrated
in Figure 15), great care needs to be taken to select an appropriate
number of processing nodes, determine the optimal allocation of
stages to nodes (Figure 14), adjust the degree of data parallelism
(e.g., the tiling granularity; Figure 12), and alleviate any network
contention issues (Figures 12 and 13) that may arise. This forms the
basis of our future work to more robustly handle dynamic adjust-
ment of these system parameters and mitigate overheads of cluster
parallelization.

6. RELATED WORK

We briefly survey related work in computer vision on automati-
cally understanding video, and in distributed systems on efficiently
processing large quantities of streaming data.

6.1 Activity recognition in video

There has been much research in activity recognition and this
has been applied in a number of domains, including visual surveil-
lance, human computer interaction, and video retrieval. Aggarwal
et al. [2] give an overview of the various tasks involved in human
motion analysis. Hu et al. [16] review work on visual surveillance
in dynamic scenes and analyze possible research directions. Gen-
erally, activity recognition consists of two main steps: feature ex-
traction and pattern classification. Feature extraction can be fur-
ther divided into two categories, one based on holistic features
(e.g., [5,6,19]), and the other based on local descriptors [14, 20,
23,24, 28, 35,36]. The pattern classification approaches can be
grouped into two categories: (1) those based on stochastic models
such as HMM [44] and pLSA [28], and (2) those based on statisti-
cal models such as ANN [40], NNC [14], SVM [36], LPBoost [29]
or AdaBoost [15, 19].

In terms of holistic features, Bobick et al. [6] create temporal
templates, including motion-energy images and motion-history im-
ages to recognize human movement. Ke et al. [19] employ a volu-
metric representation incorporating the horizontal and vertical com-
ponents of optical flow. Blank et al. [5] regard human actions
as three dimensional shapes induced by silhouettes in the space
time volume. Rodriguez et al. [34] use a frequency domain tech-
nique, called the Maximum Average Correlation Height (MACH)
filter, to recognize single-cycle human actions. Holistic features



can achieve impressive results but can be sensitive to pose, occlu-
sion, deformation and cluttered backgrounds. This has motivated
research on part-based models that employ local features.

Methods based on feature descriptors around local interest points
are currently popular in object recognition. These part-based ap-
proaches assume that a collection of distinctive parts can effec-
tively describe the whole object. Recently, these methods have
been extended to the spatio-temporal domain and applied to activ-
ity recognition in video. As discussed in Section 2, such methods
typically employ an interest point detector in conjunction with a lo-
cal feature descriptor. Popular interest point detectors for video are
often spatio-temporal extensions of well-known 2D interest point
operators, such as the Harris corner (e.g., [23]). Alternately, the
detector can focus exclusively on patterns in the temporal domain
(e.g., [14]), or extrema in local space-time (e.g., [30]). An alter-
native to using a feature detector is to uniformly sample the spatio-
temporal volume (at multiple scales), and to compute local descrip-
tors over this dense grid. Our approach for MoSIFT has been to
employ a standard 2D interest point detector on a single frame and
to retain only those interest points that exhibit sufficient motion.

Research on descriptors for local spatio-temporal regions has
considered both appearance and motion, either in implicit or ex-
plicit forms. At one extreme, Shechtman et al. [37] extend the
notion of 2D image correlation to 3D space-time volumes. Ke
et al. [20] oversegment the spatio-temporal volume into supervox-
els and assemble these to match parts of target actions. Klaser et
al. [21] construct a local descriptor based on histograms of oriented
3D spatio-temporal gradients, while Willems et al. [41] build a rep-
resentation that is scale-invariant in both space and time. All of
these methods are amenable to parallelization using Sprout. Our
case study, MoSIFT, is closest to Laptev et al. [24], where appear-
ance and motion information is aggregated into bags-of-features
and then recognized using a learned discriminative classifier. How-
ever, as discussed in Section 2, our representation unites appear-
ance and motion in a single descriptor, which improves recognition
accuracy.

6.2 Stream processing systems

FlowVR [3] and Stampede [33] both provide support for dis-
tributed execution of interactive multimedia applications on com-
pute clusters. An application is structured as a data flow of pro-
cessing modules and explicit data dependencies. Modules exe-
cute asynchronously on separate threads, and the underlying sys-
tem transports data between modules transparently. FlowVR fo-
cuses on integration of disparate modules that execute at differ-
ent rates or may themselves encompass parallel code, and a hi-
erarchical component model that facilitates composition of large
applications [25]. Unlike in Sprout, latency and parallelization
are controlled by hand tuning of module code, execution rates,
and placement on compute nodes. Stampede emphasizes space-
time memory (STM), a distributed data structure for holding time-
indexed data, as a key abstraction around which applications are
constructed. While modules are placed on compute nodes to min-
imize latency, the placement algorithm assumes that the number
of modules and data-parallel variations is small enough to pre-
compute optimal configurations [22]. Sprout assumes a shared-
nothing model based on explicit data channels between modules
and makes no assumptions about the number of modules or config-
urations.

Systems such as Aurora [12], Borealis [1], and TelegraphCQ [10]
provide support for continuous queries over data streams. These
systems are used for applications such as financial data analysis,
traffic monitoring, and intrusion detection. Data sources supply tu-

ples (at potentially high data rates) which are routed through an
acyclic network of windowed relational operators. Operators and
data are distributed over compute nodes to achieve a quality of ser-
vice goal, typically a function of performance (e.g., latency), ac-
curacy, and reliability. Quality of service is managed by dynami-
cally migrating operators, partitioning data, shedding load, and re-
ordering operators or data. Although these systems process stream-
ing data, perform runtime adaptation, and consider real-time con-
straints, they are limited to relational operators and data types.

System S [4] provides support for user-defined operators, stream
discovery, dynamic application composition, and operator sharing
between applications. It has been used to process multimedia streams,
and assumes a resource-constrained data center environment in which
utilization is high and jobs may be rejected. Compute resources are
allocated to applications to maximize an importance function, typ-
ically a weighted throughput of output streams [42], unlike Sprout
which is primarily concerned with low latency.

MapReduce [13] and Dryad [18] are systems that allow large
data sets to be processed in parallel on a compute cluster. MapRe-
duce applications consist of user-specified map and reduce phases,
in which key-value pairs are processed into intermediate key-value
pairs, and then values with the same intermediate key are merged.
Dryad admits a more general application structure; a job consists of
an acyclic data flow graph of sequential processing modules. Both
systems operate from stored data rather than streams, and are em-
ployed in off-line rather than interactive applications. Like Sprout,
MapReduce and Dryad provide simple programming abstractions
and handle many of the messy details of distributed computation.

7. CONCLUSION

Efficient and automatic processing of streaming video content at
low latencies is critical for a large class of applications in surveil-
lance, gaming, intelligent environments and vision-based user in-
terfaces. This paper makes three significant contributions to the
field. First, we propose a novel representation for video content that
significantly improves the accuracy of activity recognition in video.
However, our proposed method, MoSIFT, is computationally ex-
pensive, so naive implementations on a single processor are imprac-
tical for the large-scale real-world video collections that form the
primary focus of our work. Thus, the second contribution of this
paper is a novel general framework, Sprout, for leveraging clus-
ters of multi-core processors to significantly improve latency and
throughput. Finally, we present an implementation of a surveil-
lance system built using Sprout and demonstrate, using a series
of detailed experiments, that taking advantage of coarse- and fine-
grained parallelism inherent in multimedia algorithms enables us
to achieve significant benefits in terms of both latency and through-
put. While these experiments emphasize the surveillance aspects of
our work, our system can easily enable other algorithms to process
streaming video for a wide variety of multimedia applications. For
instance, we have employed the same architecture in conjunction
with a completely different vision algorithm to create a gestural
interface for an interactive multi-player game.
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