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ABSTRACT 
 
This paper presents a novel approach to aid face 
recognition: Using multiple views of a face, we construct 
a 3D model instead of directly using the 2D images for 
recognition. Our framework is designed for videos, which 
contain many instances of a target face from a sequence of 
slightly differing views, as opposed to a single static 
picture of the face. 

Specifically, we reconstruct the 3D face shapes from 
two orthogonal views and select features based on pair-
wise distances between landmark points on the model 
using Fisher's Linear Discriminant. While 3D face shape 
reconstruction is sensitive to the quality of the feature 
point localization, our experiments show that 3D 
reconstruction together with the regularized Fisher's 
Linear Discriminant can provide highly accurate face 
recognition from multiple facial views. Experiments on 
the Carnegie Mellon PIE (Pose, Illumination and 
Expressions) database containing 68 people’s faces with 
at least 3 expressions under varying lighting conditions 
demonstrate vastly improved performance  

 

1. INTRODUCTION 
 
Face recognition is a fascinating problem in computer 
vision. Many important commercial applications would be 
enabled by robust and accurate face recognition 
technology, such as identity verification, criminal face 
recognition, and surveillance. Nowadays, more and more 
video information is collected and stored in multimedia 
archives. The human face is a prime focus for research 
and is also frequently an interesting topic for retrieval 
from multimedia content [1]. 

In general, there are two different approaches to face 
recognition. The most well known is the family of 
"Eigenfaces" [2] recognition algorithms while the other is 
feature-based recognition [3]. The Eigenfaces approach 
encodes the whole face using principal component 
analysis which captures the greatest variations in faces 
and constructs an eigenspace to represent the variance. 
Faces are then projected into this eigenspace. Feature-
based recognition derives distance and position 
information from facial features, like eyes, nostrils and 

mouth, to represent the face. More advanced featured-
base algorithms construct a generic graph [4] to represent 
a face. The graph nodes are located at well-defined facial 
features and the edges are labeled with distances between 
the nodes. Recognition is then based on the similarity of 
the graphs. 

Both these face recognition methods are all fairly 
efficient and mature. However, previous work mainly 
focused on static images. With the increased importance 
of video, the question arises: How can we get more 
information out of a target face in a video sequence, to 
assist in face recognition? Experimental evidence from 
psychology [5] shows that video enables people to better 
recognize a person compared to static pictures. Thus, we 
have a reason to believe that spatio-temporal information 
can indeed help recognition. Our goal is to utilize the 
constraints provided by 3D models to improve recognition. 
We start with a feature-based approach, which finds 
selected facial features in each image and then reconstruct 
the 3D face shapes from two orthogonal views [6]. We 
select a subset of features based on the pair-wise distances 
between points on the 3D face model using Fisher's 
Linear Discriminant (FLD). We denote these features as 
our 3D facial feature vectors and finally measure 
similarity to other faces with a Euclidean metric. 

Our experimental study is based on the Carnegie 
Mellon PIE [7] database, which contains 68 people’s 
faces, each with at least 3 expressions. Compared to 
previous work on Eigenfaces and feature-based 
recognition algorithms, our approach reduces the error 
rate from 12% for Eigenfaces and 15% for feature-based 
recognition to 1%. Along the way, we also solve an 
inverse and instability problem of FLD. Experimental 
results demonstrate that regularization of FLD not only 
provides the best error rate for recognition, but also makes 
recognition more robust and resistant to errors in the test 
data. 
 

2. 3D FACE RECONSTRUCTION 
 
In this paper we want to characterize a new approach 
demonstrating that multiple views enhance the ability to 
recognize human faces. Since we want to avoid an overly 
complicated system, which will confound different 
sources of errors in the experimental evaluations and 
make it harder to identify the sources of accuracy, we will 
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base our experiments on manually extracted features. We 
extracted a number of facial features from the frontal view 
and side view of human faces. Before we can start to use 
these feature vectors to construct a 3D head model, there 
is still the problem of normalization. Because of different 
zooms and views, we must normalize the feature vectors 
to lie on the same level. Then we can divide the vertices 
of the generic model into two sets, feature vertices and 
non-feature vertices. Feature vertices correspond to the 
facial features that were extracted from the available 
images. Non-feature vertices are the remaining vertices in 
the generic model. The generic model is adapted to the 
feature vertices and through bilinear interpolation of the 
non-feature vertices. Head-model construction proceeds 
as the follows: 
1. {FVf1, FVf2 …… FVfn} is the set of facial feature 

vectors extracted from the front view of the face and 
{Vf1, Vf2 …… Vfn} is the set of corresponding 
vectors in the generic model. {FVs1, FVs2 …… 
FVsm} is the set of facial feature vectors extracted 
from the side view of the face and {Vs1, Vs2 …… 
Vsm} is the set of corresponding vectors in the 
generic model. Because the front view and the side 
view model are processed as independently, we only 
describe the construction of the front view in the 
following example. Both sides are combined 
together at the end. 

2. We define a distance vector between facial feature 
and the corresponding vertex as: 

iii VfFVfDSf −=    (1) 
i denotes the ith vertex. The distance vectors give us 
the information about the difference between the 
real head and the generic model. 

3. Based on the distance vectors we calculated from 
the feature vertices, we need to estimate the distance 
vectors for the non-feature vertices bye interpolating 
the distances of nearby feature vertices. The 
estimation is based on the following equation: 
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where dk denotes the distance from ith non-feature 
vertex to kth feature vertex in the generic model, dr 
is the range around the non-feature vertex. 

4. We repeat step 2 and step 3 again for the side view, 
and then modify the original generic model to the 
new individual model by the following: 

iii VDSV +=    (3) 
where Vi is Vfi in the front view and Vsi in the side 
view and DSi is DSfi of the front view and DSsi of 
the side view. Figure 1. shows the result of the front 
view and side view mesh models after interpolation. 

5. Now, we have two 2D meshes for an individual 
person. Because we choose orthogonal views, it is 
very easy for us to construct a 3D model. We denote 
the vertex in the new 3D model as (x, y, z) and the 
corresponding vectors in the frontal view and side 
view are (xf, yf) and (zs, ys) respectively. The 3D 
coordinates can be estimated as follows: 
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Figure 2. shows the 3D model constructed by the 
algorithm. 
 

For similarity calculation in recognition, we must 
represent the face models as feature vectors. We have two 
sets of facial features extracted from faces, one is from the 
front view and the other is from the side view. We also 
know the corresponding vertices in our individual 3D 
models. We define the distance between every two facial 
feature vertices as the feature vectors of the 3D model.  
 

  
Figure 1. The front and side view of the face. The mesh is 
modified with the measured individual facial features (red 
dots) and interpolated to each individual face. 

  
Figure 2. On the left is the generic face model while the 
right image contains the individual face model 
interpolated according to Figure 1. 
 

3. FEATURE SELECTION BY FLD 
 
Human faces are very similar in structure and shape. We 
selected the facial features to represent faces based on our 
intuitive knowledge and availability, but we don’t really 
know if these features represent a discriminating set for 
classification. Fisher’s Linear Discriminant is a useful 
feature selection method. It tries to shape the scatter and 



make it more reliable for classification. The basic idea of 
FLD is to select w that maximizes the ratio of the inter-
class scatter and the intra-class scatter. 

The intra-class scatter matrix is defined as: 
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and the inter-class scatter matrix is defined as: 
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where ui is the mean of class Ci, u is the mean of all the 
data, and |Ci| is the number of class Ci. 

The goal is to find an optimal projection that will 
maximize the distance between classes and minimize the 
distance within the same class. Therefore, the target 
function to reach our goal is: 
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where w is the possible projection. The optimal 
projection wopt is: 
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From the Lagrange Multiplier Rule, we find that 
wSwS wb λ=     (9) 

This is equivalent to solving a generalized eigenvalue 
problem. The optimal w is the eigenvector corresponding 
to the largest eigenvalue of the equation 11. 
  An important problem in FLD is that the intra-class 
scatter matrix is close to a singular matrix. This is because 
the dimension of the feature vectors is often much larger 
than the number of training examples. There are two 
major approaches to solve this problem. The first one is to 
reduce the dimensionality of the feature vectors. The well-
known Fisherfaces algorithm uses this approach to solve 
the singularity problem. It reduces the dimension by 
Principal Component Analysis (PCA) and then applies 
FLD on the reduced feature vectors. The second approach 
is to stabilize the intra-class scatter covariant matrix by 
regularization. The formulas of regularization are the 
following: 

( ) 01 www SSS αα −+=′    (10) 
    where Sw0 is the diagonal matrix of Sw; α  is a 
parameter between zero and one, and is optimized 
experimentally. 
  The regularization approach not only solves the 
singularity problem but it also provides the ability to 
overcome noise in the data. In the facial feature extraction 
process, it is virtually impossible to get results without 
any error. Typically, some facial features will include 
noise after extraction. Because regularization assumes that 
features are statistically independent in the intra-class 
scatter matrix, some features containing errors won’t 
affect the other features. This implies that by using FLD 
to reduce the dimensionality of the feature vectors, we 

have a better chance to reduce those non-discriminant 
dimensions which also contain errors and result in 
misleading class boundaries in the classifier. 

As the experimental results show, the regularization 
approach provides better performance with respect to 
error robustness. We will discuss the experimental results 
in the next section. 
 

4. EXPERIMENTAL RESULTS 
 
Our experimental data was obtained from the CMU PIE 
database, which contains 232 faces from a total of 68 
people. All people have at least 3 expressions, neutral, 
smiling and blinking (eyes closed). Some people, who 
wear glasses, also have another expression, neutral 
without glasses. All the images in PIE database are 
640*486 pixels by 16777216 colors (24 bits). 

We randomly chose two expressions from every person 
as the training set and the remaining expressions as the 
test set. For each experiment, we repeated the random 
selection 20 times and reported the average error rate as 
the result. 
First, we want to investigate t if the spatial information is 
helpful. 30 facial features are manually extracted from the 
frontal faces and 20 facial features are manually extracted 
from side view. The 3D head models are reconstructed 
using those facial features. The distances between pair-
wise facial features result in feature vectors which 
represent the faces. Nearest Neighbor (NN) with a 
Euclidean distance metric is performed to recognize faces. 
We used the results of frontal view eigenface recognition 
as a reference baseline. The eigenface method is 
implemented by normalizing faces to 64 by 64 pixels and 
reducing them to 50 dimensions using PCA. The synthesis 
of the frontal feature vector together with the side feature 
vector will provide a better comparison with the 3D 
approach since information from both views is exploited 
in either case. Figure 3 shows that there is a dramatic 
improvement from 2D synthesis to 3D approach. The 
major difference between the 2D synthesis and 3D 
approach is that the distances from both views are only 
represented in the plane but are not used to provide spatial 
information. 

Next, we wanted to investigate the issue of feature 
selection. As discussed in the previous section, there are 
two approaches to solve the singularity problem of the 
intra-class scatter matrix. One is to use PCA to reduce the 
dimension of the feature vectors and the other is to add 
regularization into the intra-class scatter matrix. As Figure 
3 shows, feature selection gives an additional 
improvement from an error rate of 7.45% to 3.27% or 
better. It also shows a significant improvement for the 
regularization method to solve the singularity problem 
compared to the PCA approach. 



Although we extracted the facial features manually, we 
wanted to discover the noise resistance for both 
approaches. We added Gaussian noise with different 
standard derivations. The results in Figure 4 show that the 
regularization approach has superior noise resistance 
compared to the PCA approach. 
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Figure 3. The relative performance of the face recognition 
algorithms, showing the reduced error rate using a 3D 
reconstruction and further improvement from FLD and 
regularization. 
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Figure 4. As noise is added to the extracted features, the 
regularized FLD recognition error remains relatively 
stable, while the PCA FLD approach shows rapid 
deterioration.  
 

5. CONCLUSION AND FUTURE WORK 
 
In conclusion, we have demonstrated that 3-dimensional 
spatial information can provide clear added assistance in 
face recognition. Furthermore, the regularization of FLD 
not only improves the performance of face recognition, 
but also makes the recognition more robust to effects of 
noisy data. 

While we have demonstrated robustness to 
synthetically degraded features, in the future we plan to 
investigate how errors associated with automatic 
extraction of facial features affect the outlined approach, 
and what level of degradation will still result in acceptable 
performance. 

We have evaluated our approach on a large standard 
face image database of 68 people with multiples poses 
from each person. Our next steps will extend this work to 
the Informedia project’s broadcast video collection. The 
challenge will be to see if the approach scales to the 
thousands of different human faces that are depicted in 
broadcast news. This will help us to understand the 
scalability of FLD as a recognition feature selector. 

Finally, because our approach does not use color or 
texture as features, it is obviously desirable to combine 
the results of the Eigenfaces method or similar recognition 
approaches with our approach to further enhance 
recognition accuracy. Thus we feel our approach of using 
3D face reconstruction and regularized Fisher’s linear 
discriminant will not only be effective on its own, but can 
be utilized to enhance a number of other facial recognition 
techniques that are already being used. 
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