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Abstract – Video surveillance is an alternative approach to 
staff or self-reporting that has the potential to detect and 
monitor aggressive behaviors more accurately. In this 
paper, we propose an automatic algorithm capable of 
recognizing aggressive behaviors from video records using 
local binary motion descriptors. The proposed algorithm 
may increase the accuracy for retrieving aggressive 
behaviors from video records, and thereby facilitates 
scientific inquiry into this low frequency but high impact 
phenomenon that eludes other measurement approaches .  
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1   Introduction 
Video-based human action recognition addresses the 

problem of classifying simple human behavior units 
from video scenes. The biggest classification challenge 
is the fact that observed video appearances for each 
human action contain large variances stemming from 
body poses, non-rigid body movements, camera angles, 
clothing textures, and lighting conditions. There are two 
main approaches to analyzing human motions and 
actions: model-based and appearance-based. 

A model-based approach employs a kinemics model 
to represent the poses of body parts in each snapshot of 
body action. A recognition algorithm first aligns the 
kinemics model to the observed body appearance in 
each video frame and then codes the motion of the body 
parts with the model transformations. Most kinemics 
models are closely related to the physical structure of 
the human body. Akita [6] decomposed the human body 
into six parts: head, torso, arms and legs, and built a 
cone model with the six segments corresponding to 
counterparts in stick images. Hogg [7] used an elliptical 
cylinder model to describe human walking. Hidden 
Markov Model (HMM) was used to recognize tennis 
actions [8]. Yamato, et al. extract symbol sequence from 
image sequence and build HMM to model tennis 
actions. Bregler [9] further extended HMM to dynamic 
models which contain spatial and temporal blob 
information extracted from human bodies. Lee, et al. 
[19] applied a particle filter on a set of constraints on 
body poses. Finally, Deutscher, et al. [18] propose an 
annealed particle filter method that uses simulated 
annealing to improve the efficiency of searching. 
Model-based approaches require reliable analytical body 

parts detection and tracking, complex computer vision 
problems that merit further exploration.  

An appearance-based method builds classifiers to 
directly remember the appearance of actions in each 
class without explicitly representing the kinemics of the 
human body. A good example is template matching, 
which is widely used as an appearance-based action 
recognition algorithm. Polana, et al. [10] computed a 
spatio-temporal motion magnitude template as the basis 
for activities recognition. Bobick, et al. [11] constructed 
Motion-Energy Images (MEI) and motion history 
images as temporal templates and then searched the 
same patterns in incoming test data. Appearance models 
can be generally extended to detect various actions 
without introducing knowledge on constructing domain 
specific models. However, appearance-based methods 
require more training examples to learn appearances 
under different body poses and motions compared with 
model-based methods. Many appearance-based methods 
also rely deeply on adequate actor segmentations that 
are difficult to guarantee.  

In recent years, a branch of appearance-based 
approaches called part-based approaches is attracting 
interest. A part-based method decomposes the entire 
appearance of an actor into a set of small, local spatio-
temporal components, and applies statistical models to 
map these local components to actions. It has adequate 
scalability and does not require constructing specific 
models as is the case with model-based approaches.. It is 
also more  robust under varying translations, 
background noise, 2D rotations, and lighting changes 
than appearance-based methods that require global 
appearances. Local features in the space-time 
representation have been applied to human action 
recognition with an SVM classifier [28]. As an 
alternative, Dollár, et al. [13] proposed to detect sparse 
space-time interest points using linear filters. Niebles, et 
al. [24] considered an unsupervised learning method to 
categorize and localize human actions with a collection 
of spatial-temporal interest points. Ke, et al. [14] 
proposed volumetric features to describe events. The 
features are extracted from optical flow and are 
represented as combinations of small volumes. 

We propose to characterize human behaviors in 
surveillance video though the use of spatio-temporal 
video cubes. A spatio-temporal video cube is a small, 
short and local video sequence extracted from an interest 
point to capture small but informative motions in the 
video. These small motions can be finger raising, knee 
bending, or lips moving. We assume that a behavior can 
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be described by combination of these different types of 
movements. Since the extracted cubes are small, we 
believe they capture local appearance and are invariant 
to global appearance, posture, illumination, occlusion, 
etc. Thus, the fundamental problem of comparing the 
similarity of two behaviors becomes a search for similar, 
conceptually-meaningful components exhibited in the 
video. 

Detection of Points of Interest 
Local representations are usually extracted from 

certain interesting points instead of all the image pixels 
in a video. Typically, an interest point is extracted as a 
local response maxima pixel that corresponds to a 
predefined response function. In 2D images, such a 
response function could be a corner detector. In video, a 
spatio-temporal corner can be defined as a spatial corner 
that contains non-constant movements. Laptev, et al. 
[12] extended Harris interest point detector to extract 
spatial-temporal corners in a video sequence. Spatial-
temporal corners are spatial interest points 
corresponding to the moments with non-constant 
motion. . In other words, a spatial-temporal corner is a 
region with strong local gradients in orthogonal 
directions along x, y, and t, i.e., a spatial corner or edge 
whose velocity vector is changing. In practice, true 
spatial-temporal corners are quite rare. This proved to be 
a challenge in detection and recognition tasks observed 
by Lowe [15]. Therefore, another local spatial-temporal 
interest point detector is proposed to detect periodic 
movements [13]. It applies 1D Gabor filters temporally 
and attempts to capture periodic motions. This provides 
a richer set of features, but it remains to be seen whether  
complex actions can be represented by periodic motions 
alone.  

Our proposed interest point detection is based on the 
Harris corner detector. Instead of corner points in spatial 
positions, we extract points along edges with velocity 
vectors by simply replacing the 2nd moment gradient 
matrix with gradient magnitudes of x, y, and t. The goal 
is to find high contrast points both in space and time. 
This will identify the points which are along edges in a 
video image and contain velocity vectors. This will 
provide dense rather than sparse features from extended 
Harris detector. It also contains points with a range of 
different types of motions, not just periodic motions.  

The proposed formula for interest point calculation is as 
follows: 
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Figure 1. An illustration of local binary motion descriptors 

 

L denotes a smoothed video, which is computed by a 
convolution between the original video I and a Gaussian 
smoothing kernel g. To simplify the computation, we 
only keep the diagonal values of the covariance matrix Σ 
and use the variances in x, y, and t dimensions 
independently to control smoothing scales in space and 
temporal sequence. The response function R combines 
the magnitudes in the space and temporal dimensions. 
We calculate the response function value for each pixel 
and extract local-maxima pixels as interest points. The 
gradient over time performs a similar function as 
background subtraction to remove static background and 
preserve moving objects. We calculate approximate 
gradients with Sobel operators instead of true gradients 
to speed up the algorithm. 

Local binary motion descriptor 
At each interest point, a cube xytC  is extracted which 

contains the spatio-temporally windowed pixel values in 
the video. The window size is normally set to contain 
most of the volume of data that contributed to the 
response function. We first convert the cube xytC  to be 
binary cube xytB  by thresholding pixels in the cube with 

one threshold τ. The threshold τ is determined by 
performing a class variance algorithm [22] on the first 
frame of the cube. We choose only the first frame to 
determine the threshold because an edge passes the 
center of the first frame of the cube according to our 
definition of the interest point. We assume that one side 
of the edge belongs to the actor’s body and the other 
side belongs to the background. Most likely, the two 
sides contain similar number of pixels. We expect an 
adequate threshold to be found by solving a binary 
classification problem as in the class variance algorithm. 
In other frames, there may be a very unbalanced number 
of pixels between the body and background regions due 
to the actor’s motion, where an adequate threshold may 
be  difficult to guarantee.  
One advantage of converting the cube to be binary is 
that a binary cube is robust under lighting changes. 
Figure 1. displays frames of a binary 5x5x7 cube. We 
can see that an object moves out of the cube window 
from the right bottom and moves back. This binary cube 



contains local shape and motion information, though it 
may not represent the true motion of the object precisely 
because of aperture limitations.  

A local binary feature BF(S,M) is computed from a 
binary cube xytB , which consists of shape feature S and 
motion feature M. The shape feature S is the first frame 
of the binary cube. We characterize this frame by 
modeling the “0” and “1” regions with two Gaussians 
cross the spatial dimensions respectively.  

( 0 0 0 0 1 1 1 1, , , , , , , )x x y y x x y yS μ σ μ σ μ σ μ σ=  (2) 

The motion feature is defined as a vector which 
records the motions of the geometric means of the “0” 
and “1” regions between frames.  

( 2 2, , , ,t t )M x y x y= Δ Δ Δ ΔK  (3) 

The first frame has no motion features. If one of the 
regions moves out of the cube at frame t, we record 
motion features in frame i frame i+1 as “NULL”.  

Feature codebook 

Local motion features extracted from the same body 
part contain similar motion information. Therefore we 
can cluster them to reduce the feature space into a fixed 
size of feature codebook.  

We apply a modified Kmeans algorithm to 
performance this spatial-constraint clustering. The detail 
algorithm was proposed by [chen08]. It uses a graphic 
model to group local object appearance features into 
clusters under the constraint that spatially nearby local 
features should most likely to be grouped into the same 
cluster. We replace their 2D appearance features by the 
proposed local binary motion features and train the 
clusters with the EM process in the algorithm.  
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Figure 2: Classification performance using varying sizes 
codebooks in the KTH dataset. 

The size of the codebook is determined by cross 
validation on the KTH human action dataset. KTH 
human motion dataset is widely used to evaluate event 
detection and recognition [4][12][13][14]. It’s also the 
largest available video dataset of human actions for 
researchers to evaluate and compare with. The dataset 
contains six types of human actions (walking, jogging, 
running, boxing, hand waving, and hand clapping) 

performed by 25 different persons. Each person 
performs the same action four times under four different 
scenarios (outdoor, outdoor with different scale, outdoor 
with camera moving, and indoor). We performed leave-
one-subject-out cross-validation to evaluate the size of 
the codebook. Figure 2 shows the recognition 
performance of using different sizes of video 
codebooks. The result shows there is a peak to achieve 
best performance (600 in KTH dataset). Too many video 
code words or too few video code words will all hurt the 
recognition performance.  

Behavior classification  
Human behaviors can vary greatly in global 

appearance. We may therefore extract a different 
number of video cubes from behavior sequences. This is 
a challenging problem in building behavior descriptor 
access by machine learning algorithms. The video 
codebook allows us to borrow the idea from document 
classification in building behavior descriptors. For each 
code in video codebook, we can treat it as a word in 
documents. In text classification, documents with 
different lengths are represented by a bag-of-words, 
which contains the frequencies of each word within a 
limited-size vocabulary. In our case, we can map 
extracted video cubes to their closest code word.  

A behavior is represented by a histogram of all local 
binary features within a region of interest. The 
histogram is generated on the basis of the codebook, 
where code words are used as bins. Each local binary 
feature is mapped to its closest code word and added 
into the associated bin. We eventually normalize the 
counts in bins into frequencies. This descriptor does not 
consider the spatial correlations among local features, 
because the spatial information has somehow been used 
in the clustering step.  

A behavior descriptor is treated as a vector with the 
same size as the codebook. Due to the rarity of 
aggressive behaviors in real life in comparison to 
normal behaviors, we use a one-center SVM to train a 
model for all normal behaviors and detect aggressive 
behaviors as outliers.  

Experiments 
We evaluate our algorithm using the CareMedia 
aggression dataset [5], that was collected from a real 
world surveillance video application. We demonstrate 
the robustness of our algorithm in recognizing 
aggressive behaviors in the CareMedia dataset. Forty-
two physically aggressive behavior video clips and 1074 
physically non-aggressive behavior video clips recorded 
in a dining room with multi camera views were labeled 
for training and testing.  We used 1000 non-aggressive 
behavior video clips for training and the remaining 116 
(42 + 74) clips for testing. 



We smoothed input videos by a Gaussian filter with zero 
mean and variances (5, 5, 10) and extracted 5x5x10 
video cubes from interest point.  Each video cube was 
first converted into binary cube and then represented by 
local binary features. ROIs in the Caremedia dataset 
were labeled manually. We created a local binary 
behavior descriptor for each ROI in each video clip 
using a 600-word codebook.  
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Figure 3. The aggressive behavior retrieval accuracy 

using the proposed method. 
Figure 3 shows the performance of the proposed 

algorithm in recognizing aggressive behaviors. The top 
10 retrieval results include about 80% aggressive 
behaviors, which is much better than the random 
accuracy 36.2%. 

 
 

 
Figure 4. Examples of aggressive behaviors in the top 10 

retrieval results. 
Figure 5. Examples of aggressive behaviors in the last 20 

retrieval results. 
 

Figure 4 shows some frames extracted from the top 10 
retrieval results. These behaviors involve large and 
colorful objects such as chairs and signs and can be well 
recognized by the proposed algorithm. Figure 5 shows 
some examples from the last 20 retrieval results. We can 
see that aggressive behaviors here are either occluded or 
only involve small objects that are difficult to notice 
even for humans. We also observed that many 
“aggressive behaviors” would not have been truly 
aggressive if they did not involve an object, i.e., spoon 
or chair. Recognizing subtle forms of  aggressive 
behavior will require more than human kinemics models 
alone. Our approach is able to model the action of the 
arm, body, and the object together.  
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