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ABSTRACT 
The authors developed an extensible system for video exploitation 
that puts the user in control to better accommodate novel 
situations and source material. Visually dense displays of 
thumbnail imagery in storyboard views are used for shot-based 
video exploration and retrieval.  The user can identify a need for a 
class of audiovisual detection, adeptly and fluently supply 
training material for that class, and iteratively evaluate and 
improve the resulting automatic classification produced via 
multiple modality active learning and SVM.  By iteratively 
reviewing the output of the classifier and updating the positive 
and negative training samples with less effort than typical for 
relevance feedback systems, the user can play an active role in 
directing the classification process while still needing to truth 
only a very small percentage of the multimedia data set.  
Examples are given illustrating the iterative creation of a classifier 
for a concept of interest to be included in subsequent 
investigations, and for a concept typically deemed irrelevant to be 
weeded out in follow-up queries.  Filtering and browsing tools 
making use of existing and iteratively added concepts put the user 
further in control of the multimedia browsing and retrieval 
process. 

Categories and Subject Descriptors 
H.5.1 [Information Interfaces and Presentation]: Multimedia 
Information Systems – video. 

General Terms 
Experimentation, Algorithms, Human Factors. 

Keywords 
Video retrieval, extensible concept classification, active learning. 

1. INTRODUCTION 
A 2004 report to the Council on Library and Information 
Resources opens as follows [19]: 

The rapid increase in the quantity of visual materials in 
digital libraries—supported by significant advances in 
digital imaging technologies—has not been supported by 
a corresponding advance in image retrieval technologies 
and techniques. Digital librarians sense that much could 
be done to improve access to visual collections and hope, 
perhaps vainly, that users’ needs to identify relevant 
digital visual resources might be met more satisfactorily 
through search strategies based on visual characteristics 
rather than on textual metadata associated with the image, 
which are expensive to produce. 

Similarly, a recent ACM strategic retreat examining the future of 
multimedia research identified three grand challenges, one of 
which is to “make capturing, storing, finding, and using digital 
media an everyday occurrence in our computing environment” 
[16]. The retreat report notes that with the widespread adoption of 
digital cameras and emergence of cell phones with built-in video 
cameras, coupled with increases in storage capacity and 
reductions in cost, we can now store massive amounts of image 
and video data, with the challenge being to make that data useful. 
The ACM report noted that better context and content 
descriptions could be used more thoroughly in multimedia 
interfaces. 
The video analysis community has long struggled to bridge the 
gap from successful, low-level feature analysis (color histograms, 
texture, shape) to semantic content description of video. One 
plausible solution is to utilize a set of intermediate (textual) 
descriptors that can be reliably applied to visual scenes. Many 
researchers have been developing automatic concept classifiers 
like face, people, sky, grass, plane, outdoors, soccer goals, and 
buildings [14], showing that perhaps these classifiers will reach 
the level of maturity needed for their use as effective filters for 
video retrieval.  It is an ongoing research issue as to how to best 
represent the high level semantics of a video shot, given current 
techniques for automatic lower-level feature extraction [10, 14], 
but we believe that extensibility will play a leading role in video 
retrieval systems of the future.  It is too difficult to anticipate the 
set of concepts useful for a user addressing a particular need with 
a specific corpus.  Instead, the user should be able to create and 
refine the set of classified concepts interactively and without 
much effort so that necessary concepts are available as filtering 
and browsing tools. 
Shahraray notes that “well-designed human-machine interfaces 
that combine the intelligence of humans with the speed and power 
of computers will play a major role in creating a practical 
compromise between fully manual and completely automatic 
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multimedia information retrieval systems” [5].  We describe a 
system in which the user plays a driving role in the creation and 
refinement of models for visual concepts applicable to video 
information access, rather than serving as only a consumer of pre-
built automated concept classifiers.   
Users have long been offered a more active role in information 
retrieval through relevance feedback techniques, where by 
interactively marking the correct (and, sometimes, the incorrect) 
items returned by a query a follow-up query can be made more 
precise.  Limitations with relevance feedback techniques, 
however, include the user’s unwillingness to invest time to label 
data and concern for introducing extra cognitive load to the user’s 
primary tasks.  The extensible video retrieval system described 
here simplifies the labeling task by folding it into the storyboard 
browsing activity and by carefully monitoring user activity to 
derive additional labeled data based on what the user passed over. 
It greatly reduces the need for labeled data by taking advantage of 
active learning, presented in Section 2.  Section 3 presents the 
application focusing on its extensibility, with Sections 4 and 5 
discussing multimodal learning and evaluation. 

2. ACTIVE LEARNING 
As outlined in [4], relevance feedback can be used as a query 
refinement scheme to derive or learn a user’s query concept. To 
solicit feedback, the refinement scheme displays a few video shot 
instances and the user labels each shot as “relevant” or “not 
relevant.”  Based on the responses, another set of shots from the 
database is presented to the user for labeling.  After a few such 
querying rounds, the refinement scheme returns a number of 
instances from the database that seem to fit the needs of the user.  
The construction of such a query refinement scheme can be 
regarded as a machine learning task.  In particular, it can be seen 
as a case of pool-based active learning [12].  In pool-based active 
learning the query refinement scheme, i.e., the learner, has access 
to a pool of unlabeled data and can request the user’s label for a 
certain number of instances in the pool.  In the video retrieval 
domain with shots as the unit of information retrieval, the 
unlabeled pool would be the entire database of video.  An 
instance would be a video shot, and the two possible labelings for 
each shot would be “relevant” or “not relevant”.  The goal for the 
active learner system is to learn the user’s query concept.   
Continuing the summary of [4], the main issue with active 
learning is finding a method for choosing informative shots within 
the pool to ask the user to label.  The request for the labels of a set 
of shots can be termed a pool-query.  Most machine learning 
algorithms are passive in the sense that they are generally applied 
using a randomly selected training set.  The key idea with active 
learning is that it should choose its next pool-query based upon 
the past answers to previous pool-queries.  In general, and for the 
video retrieval task in particular, such a learner must meet two 
critical design goals.  First, the learner must learn target concepts 
accurately.  Second, the learner must grasp a concept quickly, 
with only a small number of labeled instances, since most users 
are too impatient or preoccupied with more critical tasks to 
provide a great deal of feedback. 
Active learning has demonstrated its effectiveness in reducing the 
cost of labeling data.  Given an unlabeled pool U, an active 
learner l has three components (f, q, x).  The first component is a 
classifier, f(x)→ (-1,1), trained on the current labeled data x.  The 

second component q(x) is the querying function that, given a 
labeled set x, decides which instance in U to query next.  The 
active learner can return a classifier f after each iteration or after 
some fixed number iterations.  Figure 1 illustrates the framework 
of active learning. Given labeled data x (upper left pile), the 
classifier f trains a model based on x. The querying function q 
selects the informative data from unlabeled pool (the rectangle). 
Users annotate the selected data and feed them into the labeled 
data set.  

 
Figure 1.  Illustration of active learning. 

The main difference between an active learner and a regular 
passive learner is the querying component q. This brings us to the 
issue of how to choose the next unlabeled instance in the pool to 
query, and what is informative data. This issue also relates to 
which classifier you will use. In our framework, we employ 
Support Vector Machine (SVM) [3] as our classifier algorithm. 

2.1 Support Vector Machine (SVM) 
The basic idea of SVM is to separate samples with a hyperplane 
that has a maximal margin between two classes.  To formulate the 
problem of classifying synthesized feature vectors, the training 
data are represented as {xi, yi}, i = 1,2, … , n, yi is either -1 
(negative examples) or 1 (positive examples), n is the number of 
training samples. Suppose all training data satisfy the following 
constraints: 

xi·w + b ≥ +1  when yi = 1   (1) 
xi·w + b ≤ -1  when yi = -1    

The distance between the hyperplane “xi·w + b ≥ +1” and the 
hyperplane “xi·w + b ≤ -1” is 2/||w||, where ||w|| is the Euclidean 
norm of w.  Therefore, by minimizing ||w||2 we get the two 
hyperplanes with maximal margins.  Quadratic programming 
provides well-studied optimizations to maximize the quadratic 
functions subject to the linear constraints in equation 1, which 
guarantees finding the global maximum.  
More generally, SVM can project the original training data in 
space X to a higher dimensional feature space F via a Mercer 
kernel operator K.  
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When K satisfies Mercer’s condition [3] we can write: K(u,v) = 
Φ(u)·Φ(u) where Φ : X → F and “·” denotes an inner product. We 
can then rewrite f as: 
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With the K function, we are implicitly projecting the training 
examples into a different feature space F and employ the same 
optimization problem as Equation (1) to maximize the margin of 
hyperplane in F.  By choosing different kernel functions we can 
project the training data to different spaces to make more complex 
decision boundaries than in the original space.  A commonly used 
kernel is the radial basis function (RBF) kernel K(u,v) = (e-r(u-
v)*(u-v)) which induces boundaries by placing weighted 
Gaussians [3].  Our base classifier algorithm is this RBF SVM.  

2.2 SVM Active Learning Algorithm 
In active learning, we want to choose the most informative data to 
annotate.  Following the procedure of [18], we learn a SVM on 
the existing labeled data and choose as the next examples those 
which come closest to the hyperplane in F.  This scheme for 
choosing new examples will reduce the corresponding version 
space of the SVM, i.e., the “most informative” data for the next 
round of annotation are those examples closest to the hyperplane 
in F.  
We can also explain this scheme more explicitly.  We choose the 
examples between or close to hyperplanes which will change 
SVM hyperplanes, and are more complicated for the current 
model to explain.  Therefore, those examples will change the 
current existing hyperplanes and force the model to deal with 
those difficult examples. 
To summarize, the SVM active learning algorithm performs the 
following steps for each round of user-directed feedback: 
1. Randomly select examples from unlabeled pool to annotate 

as initial set, or let user decide on an initial set to label. 
2. Train a RBF SVM based on the labeled set. 
3a. Select the examples which are closest to the hyperplane to be 

annotated.  Based on [18], if the user’s goal will be to 
generate the most accurate model, these examples are the set 
to annotate next. 

3b. Alternatively, return the best-ranked data to the user, in cases 
when the user is motivated to achieve improved precision at 
the top N documents.  By annotating these assumed “best” 
items, the precision at N can be more quickly improved. 

4. Add annotated examples into labeled set. 
5. Repeat step 2 to step 4. 

3. ENVIE: EXTENSIBLE NEWS VIDEO 
INFORMATION EXTRACTION 

Regardless of which concept classifiers are provided as part of a 
baseline video retrieval system, the user is likely to have 
information requirements that are not addressed, a data set to 
which classifiers need to be tailored and trained for acceptable 
accuracy, and/or security concerns that prohibit the user from 
broadly communicating a given need.  We believe the best way 
for an application to support video exploration and retrieval is by 

making extensibility a priority, which led to the development of 
ENVIE targeting the broadcast news genre, where ENVIE is an 
acronym for Extensible News Video Information Extraction.  The 
user can extend ENVIE by updating existing classifiers through 
positive and negative examples, by developing new classifiers 
that take advantage of those concepts already classified within the 
system, and by creating summary and video skim templates 
appropriate to his or her needs.  Our focus here is on the dynamic 
definition and refinement of concept classifiers through active 
learning, with the architecture for this process shown in Figure 2. 

 
Figure 2.  ENVIE architecture: User iteratively builds and 
refines concept classifiers for filtering and browsing video. 

Since a user may frequently encounter new training examples to 
update or improve a particular concept classifier, an approach is 
needed that provides for quick incorporation of new data.  Some 
stochastic learning algorithms allow the classifier to focus on 
learning new examples, instead of building a complete 
classification model from scratch each time more examples are 
added in.  Most studies of stochastic learning algorithms have 
focused on “on-line learning” [7].  In each iteration, the algorithm 
is fed with one more training example and the model is updated 
accordingly.  However, the on-line learning algorithm cannot 
revisit previous training examples.  Compared to standard 
machine learning algorithms, on-line learning algorithms cannot 
take full advantage of all the existing data because training data 
cannot be revisited.  Standard machine learning algorithms 
likewise also fail to support dynamic extensibility, requiring too 
much training data or performing expensive re-evaluations of all 
the training data each time the training data is modified.  Active 
learning offers the advantages of achieving high accuracy while 
significantly reducing the need for labeled training instances [4, 8, 
13, 15, 18, 20].     
Utilizing support vector machines and active learning, users can 
develop and refine their own concept classifiers, based on model-
building details discussed in Section 4.  The users need not know 
anything of these details, instead reviewing results following the 
generation of a new model.  Based on the actions then taken by 
the user, the model itself can be tuned to better meet his or her 
information requirements.   
Consider a user who needs high precision for a concept.  For 
example, the user may need to find examples of “aircraft” to serve 
as launching points for further inquiry without regard to whether 
all of the shots satisfying the “aircraft” concept are retrieved.  In 
this case, the user can provide feedback on the top-ranked shots in 



 

order to revise the classifier for the concept so that it delivers 
higher precision at the top-N ranked items.   
Instead, the user may want a better model of the concept to apply 
in multiple settings, e.g., to filter out the unwanted shots having 
that concept following queries for varying topics, or to isolate 
shots with that concept in other query result sets.  In that case, the 
user can provide feedback on shots close to the SVM decision 
boundary, shown to be the most beneficial in iteratively 
improving the model through active learning [18]. 

3.1 ENVIE Concept Building Procedure 
Video is decomposed into shots with shots each represented by a 
keyframe image, as is typical in news video retrieval systems 
today.  The user can browse thumbnail representations of 
keyframes for shots in many different arrangements, including 
map and timeline layouts, named entity graphs, and storyboards, 
with “storyboards” the focus here as they provide an ordered set 
of shots to the user.  Storyboards are also a commonly 
encountered interface widget for video retrieval systems [11].  
Interactive video search experiments conducted with this same 
ENVIE set of storyboards for TRECVID documentary and news 
retrieval confirm that both novices and experts can utilize the 
storyboards efficiently and effectively for browsing and selection 
[1].   
A key idea of ENVIE is to reduce the amount of labeling 
necessary by the user in building a concept classifier, and so when 
the user marks shots in the storyboard for use as a positive sample 
set, the shots that they skipped over, up to the last shot 
considered, are automatically collected into an “implied” negative 
sample set.  Likewise, if the user marks shots in storyboards for 
use as a negative sample set, the skipped over shots are 
automatically collected into an “implied” positive sample set.  
The user can review and clean up either the positive or negative 
sample set if they so wish.  More typically, based on early trials, 
the user launches the concept classification process and evaluates 
a set returned by that process to iteratively improve the model’s 
overall accuracy or top-ranked precision. 
The user initializes a classifier by identifying shots that are 
positive and negative examples for a new concept to be tagged.  
While we anticipate employing different learning strategies to 
improve the classification, with the user positioned to evaluate 
outputs and determine which classifier, if any, should be 
preserved within ENVIE, for this paper we focus on the use of 
RBF SVM and active learning.  Concepts that are approved by the 
user for broader applicability and preservation in the corpus could 
be employed as input features for building follow-up concept 
classifiers.  The goal is that with an increasing number of 
concepts, higher order semantics can be derived with a confidence 
measure based on the confidence of the contributing classes.  For 
example, if ENVIE is already armed with detectors for people, 
people sitting, and indoors, then a “meeting” classifier might be 
developed where “meeting” might be inferred most strongly by 
more than 2 people sitting indoors.   
This work for now deals with global visual frame classification 
only, i.e.., identifying that a concept is represented somewhere in 
the keyframe characterizing a video shot, rather than identifying 
the precise time and region occupied by a concept in that shot.  
Several approaches have been proposed to detect specific objects; 
a broad review of this research is given in [6].  However, the 

number and type of objects that can be detected by template or 
model based methods is limited.  In order to work on a large set of 
classes, combinations of several approaches are needed.  Some 
scenes can be identified by using features extracted from the 
entire image (e.g., outdoor scenes have certain color and texture 
distributions, but no specific shapes or objects).  Some objects can 
be detected by region-based methods (e.g., an airplane can be 
defined as a gray region in the middle of a blue region that 
corresponds to sky), whereas faces can be classified with a model-
based approach based on specific feature points [17]. Temporal 
features such as camera and object motion direction and rate of 
motion can also be specified for inclusion into classifiers.  ENVIE 
supports a user-driven interactive process for classifier creation, 
allows the user more control over which features are utilized and 
their relative contributions by providing a fluid, effortless means 
for defining positive and negative example sets for active 
learning.  The two example cases presented in the next sections 
illustrate this process, working with a three month test corpus of 
American, Arabic, and Chinese news broadcasts. 

3.2 Defining a Vehicle Classifier, Revised for 
Browsing 

Consider a user interested in identifying shots with vehicles.  The 
user issues a text search “car truck automobile” that for the news 
test corpus returns 135 segments, with 270 shots at or near the 
aural mention of “car”, “truck”, “automobile”, or derivatives, or at 
or near the showing of such words in overlaid text on the 
broadcast.  A thumbnail-based view of the data termed a segment 
grid, presents the thumbnail for the highest rated shot by the text 
query service, one thumbnail per news story segment, as shown in 
part in Figure 3. 

 
Figure 3.  Segment grid with each news story segment 

represented by one thumbnail image, ordered by segment 
relevance to the query “car truck automobile.” 

Another traditional storyboard view shows one thumbnail image 
for each of the 270 match shots, as shown in part in the lower left 
of Figure 4.  The user, interested in building a vehicle detector, 
moves the mouse over the thumbnails in the storyboard and 
selects those that are positive examples of “vehicle” such as the 
white car images in the top 2 storyboard rows shown in Figure 4.  
Selection is accomplished via a keyboard shortcut while the 
mouse hovers over the thumbnail being judged (fastest operation), 
by right-clicking the mouse and selecting from a context-sensitive 
menu, or by dragging the thumbnail into the shot collector area.  
The user can also review the segment grid and mark items that are 
“vehicle” such as the middle image on the top row.  In this 
manner, the user can make use of multiple views (segment grid 
for query, storyboard for query, perhaps storyboard for a 
particular daily news broadcast, segment grids and storyboards for 



 

other queries, etc.), as source material for assembling a positive 
sample set for the concept “vehicle.” 
The shots that the user skips over, e.g., the first and second 
images in the segment grid, become the “implied” negative 
training set for the concept “vehicle.”  Considering the 25 
thumbnails shown in the storyboard view of Figure 4 (lower left) 
as shots 1, 2, …, 25, the user selects shots 1, 4, 7, 9, 10, 13, and 
25 as positive examples, which causes shots 2, 3, 5, 6, 8, 11, 12, 
and 14-24 to be labeled as implicit negative examples.  While it is 
true that the user might make mistakes and skip over something 
that actually is the concept, or that the skipped over shot should 
be considered more of a “can’t tell” ambiguous shot than a shot 
which is part of the negative training set, the advantages in speed 
for quickly defining positive and negative training sets without 
unduly burdening the user with detail have outweighed these 
disadvantages.  Furthermore, by employing active learning the 

user is encouraged to correct for any such error, not by revisiting 
and correcting the positive and negative sample sets from “round 
1” of the concept build, but by evaluating and responding to the 
round 1 concept classifier output in order to generate an improved 
round 2 (and follow-up) classifier. 
The user collects positive examples in this manner, where ENVIE 
informs the user in the status bar if a shot being judged as positive 
is already a member of the positive sample set.  Figure 5 shows a 
snapshot of the process when 29 examples were identified, shown 
in the shot collector area docked to the right of the application 
window, and also showing views of the segment grid (Figure 3) 
and storyboard.  When finished after a few minutes of reviewing 
thumbnails, the positive example set holds 42 shots, and the 
implied negative example set holds 228 shots, with some shots at 
the tail of the segment grid and storyboard not judged explicitly 
as relevant nor judged implicitly as irrelevant.    



 

 
Figure 4.  ENVIE screen shot during collection of shots defining "vehicle" (right pane). 

The user launches a dialog to build a new concept classification 
for a concept she names “vehicle.”  The vehicle classifier is built 
asynchronously, with the goal of quick performance supporting 
interactive review and iteration.  Within a minute the classifier 
returns the availability of the new concept for review, and the user 
thinks about how she wishes to employ this classifier.  She wants 
to make use of it to browse vehicle shots in the corpus at large, 
and to perhaps very restrictively filter down queries to a few shots 
with high likelihood of being vehicles.  The user is hence 
interested in high precision, and so reviews the top-ranked 200 
vehicle shots in a storyboard view, shown in Figure 5.  Of this set, 
47 are actually vehicle shots. 



 

 
Figure 5.  Best "vehicle" shots, version 1 of vehicle classifier. 

The user wants better precision, and after clearing out the shot 
collector with a simple “Clear…” menu operation, decides to start 
collecting negative examples by marking shots from the “best 
vehicles” storyboard of  Figure 5 that are in fact not vehicle shots.  
She stops after adding 100 shots to the explicit negative example 
set, with an implicit positive example set being generated based 
on what the user skipped over in this iteration.  Now when the 
user selects to rebuild the vehicle classifier, the previous positive 
and negative examples from prior rounds are combined with the 
new example sets from the latest round as follows: 

• The newest round’s explicitly marked set is taken as 
highest confidence truth and overrides all prior choices. 

• The newest round’s implicitly marked set adds to prior 
choices, but if any conflict arises, the prior judgment is 
kept, as the new round is only “implicit” and hence 
lacks the authority to challenge and change prior 
judgments. 

So, for the case of the round 2 vehicle classification, the 100 
negative example shots are definitely part of the new negative 
example set for round 2.  The implicit positive example shots, if 
formerly judged as negative in the prior set of 228 negative shots, 
would be kept as negative; otherwise they are added to the 
positive example set.  The resulting positive example set for 
round 2 classification holds 89 shots, with the negative example 
set holding 328 shots.  
When the round 2 classification is done in a minute or so, the user 
checks the “Best Vehicle Version 2” shot set and decides that 
performance is good enough for use elsewhere.  An inspection of 
the best 200 shots, partially shown in Figure 6, finds 116 of 200 
correct, nearly three times better than the initial version. 

 
Figure 6. Best "vehicle" shots, version 2 of vehicle classifier. 

The user in this session, or perhaps in a later session, decides to 
investigate “Baghdad Iraq” which returns over 500 shots.  
Wanting to zero down to just the vehicle shots in this set, the user 
opens up a filter tool that provides dynamic query-based sliders 
[2] for use in restricting the storyboard to only show shots 
meeting the given filter.  Version 2 of the vehicle detector is 
available for use, and by restricting the display to just the shots 
considered as vehicles the display of Figure 7 is produced, 
showing 17 shots filtered from the set of 524, of which 9 actually 
contain a vehicle.  The precision with the quickly built classifier 
is high enough to enable investigations to be launched with some 
target shots satisfying the need, i.e., vehicles from “Iraq” query, 
even if recall is not optimized because of the manner in which the 
concept model was built.  For the second example in the next 
section, recall is optimized by iterating on shots located near the 
decision boundary, rather than evaluating the top-ranked set. 

 
Figure 7.  Filtering capability using newly built classifier to 
limit 524 shots down to set of 17 with the vehicle concept. 

3.3 Defining a Taiwanese News Anchor 
Classifier, Revised for Filtering 

Consider a user working through a multilingual news corpus and 
discovering that the provided anchorperson detector is not 
classifying anchorperson shots for a particular Taiwanese 
broadcaster well.  That broadcaster makes use of numerous digital 
effects and keys in field footage as a backdrop for the anchor 
shots, rather than keeping the backdrop a consistent image as is 
typical for other broadcasters.  The user decides he wants to filter 
out as many Taiwanese anchor shots as possible from future 



 

queries, and so begins the process of defining a Taiwanese 
anchorperson detector (T-Anchor) for subsequent use. 
As with Section 3.2, the user starts by browsing a storyboard, in 
this case the storyboard for the full Taiwanese broadcast of 
January 7 as shown in part in Figure 8.  Counting these shots as 1, 
2, …, 30, the user marks shots 5-11 and 29-30 as T-Anchor shots, 
causing the remainder (1-4, 12-28) to be implicitly labeled as the 
negative example set.  The user quickly repeats the process for the 
first shots of a January 11 broadcast, producing a positive 
example set of 18 shots and implicit negative example set of 114 
shots. 

 
Figure 8.  Taiwanese news broadcast storyboard. 

The user through a dialog box initiates the building of a model 
from the collected shots, naming it “T-Anchor.”  Based on 
experience with TRECVID concept classification, we note that 
some concepts apply exclusively or primarily to one broadcaster, 
and so we instrumented the ENVIE classifier building dialog to 
let the user limit the applicability of the classifier being generated.  
Such is the case here: the T-Anchor classifier should only 
consider the Taiwanese news broadcasts, not the CNN news 
broadcasts or other broadcasters in the test corpus.  The user 
indicates so, and the result is an asynchronously built model via a 
spawned process against the Taiwanese news.  The user is 
notified when the classification has completed a minute or so 
later. 
The user inspects the results by opening up a Taiwan news 
broadcast from February 1 (different from the test set) and 
filtering the storyboard for that day’s half-hour show (393 shots) 
into just the T-Anchor shots.  He sees that the filter shows 26 
anchor shots in a set of 34, but notes that more should have been 
found. In actuality, there are 40 anchor shots in this set of 393, so 
the round 1 performance tested on this one broadcast is precision 
0.76, recall 0.65.  He issues a geographic query for the Hong 
Kong area, returning 288 matching shots from the multilingual 
corpus, and sees that filtering out T-Anchor shots drops out 17 
shots.  Again, he expected a bit better (in actuality, there are 33 T-
Anchor shots in this set of 288, so round 1 performance is 
precision 1, recall 0.52).   
Wanting to build a better model for T-Anchor, the user takes 
ENVIE’s active learning suggestion and inspects a set of 500 
shots located close to the decision boundary, i.e., the set of shots 
corresponding to step (3a) from the algorithm in Section 2.2.  He 
browses the storyboard within a few minutes and marks 38 shots 

to be in the positive example set.  He initiates a dialog to create a 
version 2 of the T-Anchor model, which causes a merge of the 
prior positive and negative example sets with the latest ones as 
discusses in Section 3.2.  In this case, the new positive example 
set contains 56 shots (18 before plus 38 new ones now), and the 
new negative example set contains 570 shots (114 before, plus 
456 new ones now).  Note that the user did not mark 456 shots 
explicitly; instead, the system recognized that these shots were 
passed over in the storyboard when gathering the positive 
example set and so they were implicitly marked as negative 
training examples. 
The updated T-Anchor model earns the approval of the user.  
Inspecting the February 1 storyboard, he sees that the T-Anchor 
filter returns 39 of 54 at a relaxed setting (precision 0.72, recall 
0.98), 37 of 43 shots when restricting to higher confidence for T-
Anchor (precision 0.86, recall 0.93).  The model generated 
confidences for each shot in the range [0, 1], with 1 indicating 
complete confidence that a shot possesses a concept.  Similarly, 
for the Hong Kong set of 288 images, filtering to just T-Anchor 
shots produces the set of 32 shown in Figure 9 (precision 1, recall 
0.97).  The user intends to use the concept to filter out T-Anchor 
shots, e.g., direct inspection to the Hong Kong matching shots 
other than T-Anchor ones shown in Figure 9, which is trivial to 
accomplish by reversing the interactive filter. 

 
Figure 9.  Taiwanese anchorperson shots after one iteration of 
active learning, demonstrating significant performance boost. 
These examples of the T-Anchor and Vehicle concept classifiers 
serve to illustrate the interactive, extensible concept building 
environment available with ENVIE, and the use of concepts for 
browsing and filtering.  While anecdotal, the evidence is 
convincing that iterative shot labeling improves learner 
performance, in agreement with prior literature on the topic.  The 
benefits of ENVIE include streamlining the labeling process for 
positive and negative examples, quick model building and 
notification back to the user when the model is ready for use, and 
dynamic query sliders allowing fine user control over concepts for 
filtering and browsing.  The remaining sections of the paper 



 

discuss the underlying model building and evaluation more 
thoroughly. 

4. MULTIMODAL ACTIVE LEARNING 
For any multimedia source, there are many different variants of 
features (various texture computations, alternate color spaces, 
different audio feature types, etc.) to represent its content.  
Assume we have r different feature sets, our training data xi is 
composed of {xij}, j=1, 2, …, r.  Most of the time, the easiest way 
to deal with this kind of data, is to concatenate it as a larger 
feature vector xi and employ a machine learning algorithm, such 
as SVM.  This creates two main problems, first and foremost, the 
curse of dimensionality [9].  One ends up needing much more 
labeled data for the learning algorithm due to the increase in 
dimensionality of the feature vector.  Second, it becomes more 
difficult for a human to understand and analyze the relative 
importance and the performance corresponding to a particular 
feature set.  Furthermore, we effectively eliminate the variations 
of individual feature sets and only maintain one, undifferentiated 
global model to explain all the data.  From our TRECVID 
experiments, concatenating feature vectors always perform worse 
in evaluation than intelligently selected feature sets.  
Therefore, multi-modality fusion can lead us to a better approach 
than the concatenation method.  Assume we have r different 
feature sets; we can construct r individual sub-models for each 
feature set.  Each model represents its own information according 
to the feature space.  
We fuse the sub-models by linear combination via a held-out set 
to obtain a global model for the multimodality data. This 
approach is motivated by an attempt to keep the locality of 
different feature spaces but still have a global model to represent 
the classification concept.  The α in Equation (4) is the weight 
parameter for each sub-model. 

( ) ( )∑ =
=

r

j jjj xgxf
1
α    (4) 

The fusion approach requires a held-out set to learn the 
combinational parameter.  Usually, a split of training data is 
required and this reduces the number of examples we can use in 
training the classifier.  However, with the active learning 
algorithm, we will choose some informative data from the 
unlabeled data pool iteratively, and this data has not already been 
used in training process.  This provides us with the held-out set 
we need for multimodality fusion. 
Multimodality active learning works as follows: 
1. Randomly select examples from unlabeled data pool. This is 

the initial training set for active learning. 
2. Build r individual sub-models for the training set according 

to the different feature sets and apply their learned models to 
the unlabeled data.  

3. For each sub-model, choose k examples which are closest to 
its hyperplane. In total, k*r unlabeled examples will be 
chosen for annotation in each iteration. 

4. Annotate these examples. The multi-modality fusion weights 
are then trained using these new annotated examples. A 
global model can then be constructed and evaluated.  

5. Add the newly annotated examples into training set. 
6. Repeat step 2 to step 4. 

The multimodal active learning algorithm can be formulated as 
follows: 
Unlabeled data D = {xi} i = 1, 2, …, n 
D0 = {xi} which randomly chooses from D 
D0m = D0 

for j = 1 to t 
{ 
 for m = 1 to r 
 { 

gjm is the model constructed from Dj-1m 

djm = {xjm} the set of examples closest to hyperplane of gjm 

Djm = Dj-1m  U djm 
 

 } 

 ( ) ∑ =
=

r

m jmmj gxF
1
α combination parameters trained by djm  

} 
Some interesting issues are raised by this approach.  The main 
idea we want to achieve is to train and select each feature set 
individually.  Therefore, we split the training data for each feature 
set; let’s call it Djm, which is the training data of feature m in j 
iteration.  After each iteration, we select new examples for each 
feature to annotate and obtain djm of them.  This means, that for m 
different features, we select m sets of data according to each 
feature and build sub-models.  The reason we keep every feature 
set separately is to maintain the specificity of that feature.  We 
want to train locally for each feature set instead of a global model.  
Through experiments, we found the problem of active learning is 
that it makes a strong assumption about the correctness of the 
previous model and the selected data is to improve the boundary. 
However, this assumption leads the whole model to a more and 
more restricted area in the feature space with each iteration.  Our 
hope is that with separate sub-models for each feature set, we can 
expand the selected data from different feature spaces and avoid 
this problem. 

5. EXPERIMENTAL EVALUATION 
In this section, we describe experiments on semantic concept 
extraction using the development set of the TRECVID 2004 
feature extraction task to demonstrate the performance of our 
multi-modality active learning approach.  We selected 20 
concepts in TRECVID 2003 and 2004 semantic feature extraction 
tasks.  The development set is the collection of news video from 
ABC and CNN. It contains 52943 shots and is totally around 60 
hours.  The 20 concepts are as follows: 

• Outdoors    • News subject monologue 
• News subject face  • Non-studio setting 
• People    • Sporting event 
• Building    • Weather news 
• Road (2003)   • Boat/Ship 
• Vegetation   • Bill Clinton 
• Animal    • Beach 
• Female speech  • Basket scored 
• Car/truck/bus   • People walking/running 



 

• Aircraft    • Road (2004) 
Low-level features including color, edge, texture, and face are 
generated to learn the semantic features.  After dividing an image 
into 5 by 5 grids, the color feature in each grid is computed as the 
mean and variance of color histogram from HSV color space.  A 
canny edge detector is applied to extract edges from the images. 
The edge histogram for 5 by 5 grids is quantized at 45 degree 
intervals.  Six oriented Gabor filters are applied to extract texture 
features. Schneiderman’s face detection algorithm [17] is used to 
extract frontal and profile faces.  The size and location of faces 
represent the face detection result.  
Figure 10 compares the performance between the multi-modality 
active learning approach and single-modality active learning.  We 
start the initial data with 1000 examples and during each iteration 
we choose 250 new examples from the 4 individual feature sets 
(for a total of 1000 new examples).  The curve labeled multi-
active depicts the results of the new approach and the curve 
labeled “single-active” is the approach which concatenates the 4 
feature sets into one larger feature vector.  The baseline uses the 
complete training data set without any active learning.  Our 
evaluation experiments are performed on the TRECVID 2003 and 
2004 ground truth provided by NIST in a separate test set.  Our 
measurement is the macro-average mean average precision 
(MAP) of those 20 topics.  From Figure 10, we note that active 
learning is very effective.  Even the single-modality active 
learning approach can reach the same performance as using the 
whole training data set with only 7% of the labeled data (4000 
over 52943). Furthermore, the new approach works much more 
effectively than the single-modality approach. Its performance 
was comparable to the baseline with only 3% of the training data.  
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Figure 10.  Classification performance for multimodality 

active learning and basic active learning. 
Figure 11 compares the performance between the multimodality 
active learning approach and optimal fusion approach. By optimal 
fusion we mean that we did all possible combinations of different 
feature sets and choose the best performing combination as the 
result.  It means if we have r different feature sets, we need to run 
our classification processes up to 2r times.  We use best-active 
when, for each active learning iteration, we only choose the best 
fusion result.  The best-baseline means we use the whole training 
set but fuse the multimodality by optimal fusion.  The result 
shows our multimodality approach can reach as good as optimal 
fusion although needing more iterations.  However, the optimal 

fusion is very computationally expensive.  In our experiments, we 
have 4 different feature sets, so that for optimal fusion we need to 
consider 24 = 16 different combinations. The computation is 16 
times as expensive. 
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Figure 11.  Classification performance for multi-modality 

active learning and optimal fusion approaches. 

6. CONCLUSIONS 
Automated concept classification provides the user with tools to 
filter and browse large collections of video for shots of interest.  
We present ENVIE, an application allowing the user to 
dynamically define and revise additional concepts in a timely 
manner through a simple, well understood interface.  The 
concepts are built using multimodality active learning with RBF 
SVMs as the discriminative classifier, without these underlying 
details presenting additional cognitive load for the user or 
introducing new interface complexity.  Rather, through active 
learning the user can efficiently improve the accuracy of the 
classifier through reduced numbers of training examples 
compared to passive machine learning algorithms. 
Other researchers have contributed new work toward determining 
what imagery should next be labeled in the iterative step of active 
learning [4, 15] for better model performance.  These 
recommendations will be folded into ENVIE so that the user is 
asked to annotate even fewer shots, and more informative shots, 
between iterations.  One of ENVIE’s goals is to provide new 
visual search capability for broad multilingual news corpora, 
where text metadata is either missing or fails to bridge the 
different source languages, but where visual concepts like indoor, 
outdoor, face, vehicle, etc., can provide the search strategies 
based on visual characteristics alluded to by Trant regarding 
growing multimedia collections [19].  Through performance 
evaluations using open testing procedures, metrics, and data, we 
plan to assess the benefits of ENVIE and its active learning 
component for interactive video information retrieval, with 
ENVIE’s development driven by the goal of providing efficient, 
effective access to relevant shots from video collections.    
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