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ABSTRACT

The authors developed an extensible system for video exploitation
that puts the user in control to better accommodate novel
situations and source material. Visually dense displays of
thumbnail imagery in storyboard views are used for shot-based
video exploration and retrieval. The user can identify a need for a
class of audiovisual detection, adeptly and fluently supply
training material for that class, and iteratively evaluate and
improve the resulting automatic classification produced via
multiple modality active learning and SVM. By iteratively
reviewing the output of the classifier and updating the positive
and negative training samples with less effort than typical for
relevance feedback systems, the user can play an active role in
directing the classification process while still needing to truth
only a very small percentage of the multimedia data set.
Examples are given illustrating the iterative creation of a classifier
for a concept of interest to be included in subsequent
investigations, and for a concept typically deemed irrelevant to be
weeded out in follow-up queries. Filtering and browsing tools
making use of existing and iteratively added concepts put the user
further in control of the multimedia browsing and retrieval
process.

Categories and Subject Descriptors
H.5.1 [Information Interfaces and Presentation]: Multimedia
Information Systems — video.

General Terms
Experimentation, Algorithms, Human Factors.

Keywords

Video retrieval, extensible concept classification, active learning.

1. INTRODUCTION

A 2004 report to the Council on Library and Information
Resources opens as follows [19]:
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The rapid increase in the quantity of visual materials in
digital libraries—supported by significant advances in
digital imaging technologies—has not been supported by
a corresponding advance in image retrieval technologies
and techniques. Digital librarians sense that much could
be done to improve access to visual collections and hope,
perhaps vainly, that users’ needs to identify relevant
digital visual resources might be met more satisfactorily
through search strategies based on visual characteristics
rather than on textual metadata associated with the image,
which are expensive to produce.

Similarly, a recent ACM strategic retreat examining the future of
multimedia research identified three grand challenges, one of
which is to “make capturing, storing, finding, and using digital
media an everyday occurrence in our computing environment”
[16]. The retreat report notes that with the widespread adoption of
digital cameras and emergence of cell phones with built-in video
cameras, coupled with increases in storage capacity and
reductions in cost, we can now store massive amounts of image
and video data, with the challenge being to make that data useful.
The ACM report noted that better context and content
descriptions could be used more thoroughly in multimedia
interfaces.

The video analysis community has long struggled to bridge the
gap from successful, low-level feature analysis (color histograms,
texture, shape) to semantic content description of video. One
plausible solution is to utilize a set of intermediate (textual)
descriptors that can be reliably applied to visual scenes. Many
researchers have been developing automatic concept classifiers
like face, people, sky, grass, plane, outdoors, soccer goals, and
buildings [14], showing that perhaps these classifiers will reach
the level of maturity needed for their use as effective filters for
video retrieval. It is an ongoing research issue as to how to best
represent the high level semantics of a video shot, given current
techniques for automatic lower-level feature extraction [10, 14],
but we believe that extensibility will play a leading role in video
retrieval systems of the future. It is too difficult to anticipate the
set of concepts useful for a user addressing a particular need with
a specific corpus. Instead, the user should be able to create and
refine the set of classified concepts interactively and without
much effort so that necessary concepts are available as filtering
and browsing tools.

Shahraray notes that “well-designed human-machine interfaces
that combine the intelligence of humans with the speed and power
of computers will play a major role in creating a practical
compromise between fully manual and completely automatic



multimedia information retrieval systems” [5]. We describe a
system in which the user plays a driving role in the creation and
refinement of models for visual concepts applicable to video
information access, rather than serving as only a consumer of pre-
built automated concept classifiers.

Users have long been offered a more active role in information
retrieval through relevance feedback techniques, where by
interactively marking the correct (and, sometimes, the incorrect)
items returned by a query a follow-up query can be made more
precise.  Limitations with relevance feedback techniques,
however, include the user’s unwillingness to invest time to label
data and concern for introducing extra cognitive load to the user’s
primary tasks. The extensible video retrieval system described
here simplifies the labeling task by folding it into the storyboard
browsing activity and by carefully monitoring user activity to
derive additional labeled data based on what the user passed over.
It greatly reduces the need for labeled data by taking advantage of
active learning, presented in Section 2. Section 3 presents the
application focusing on its extensibility, with Sections 4 and 5
discussing multimodal learning and evaluation.

2. ACTIVE LEARNING

As outlined in [4], relevance feedback can be used as a query
refinement scheme to derive or learn a user’s query concept. To
solicit feedback, the refinement scheme displays a few video shot
instances and the user labels each shot as “relevant” or “not
relevant.” Based on the responses, another set of shots from the
database is presented to the user for labeling. After a few such
querying rounds, the refinement scheme returns a number of
instances from the database that seem to fit the needs of the user.
The construction of such a query refinement scheme can be
regarded as a machine learning task. In particular, it can be seen
as a case of pool-based active learning [12]. In pool-based active
learning the query refinement scheme, i.e., the learner, has access
to a pool of unlabeled data and can request the user’s label for a
certain number of instances in the pool. In the video retrieval
domain with shots as the unit of information retrieval, the
unlabeled pool would be the entire database of video. An
instance would be a video shot, and the two possible labelings for
each shot would be “relevant” or “not relevant”. The goal for the
active learner system is to learn the user’s query concept.

Continuing the summary of [4], the main issue with active
learning is finding a method for choosing informative shots within
the pool to ask the user to label. The request for the labels of a set
of shots can be termed a pool-query. Most machine learning
algorithms are passive in the sense that they are generally applied
using a randomly selected training set. The key idea with active
learning is that it should choose its next pool-query based upon
the past answers to previous pool-queries. In general, and for the
video retrieval task in particular, such a learner must meet two
critical design goals. First, the learner must learn target concepts
accurately. Second, the learner must grasp a concept quickly,
with only a small number of labeled instances, since most users
are too impatient or preoccupied with more critical tasks to
provide a great deal of feedback.

Active learning has demonstrated its effectiveness in reducing the
cost of labeling data. Given an unlabeled pool U, an active
learner / has three components (f; ¢, x). The first component is a
classifier, f{x)— (-1,1), trained on the current labeled data x. The

second component ¢(x) is the querying function that, given a
labeled set x, decides which instance in U to query next. The
active learner can return a classifier f after each iteration or after
some fixed number iterations. Figure 1 illustrates the framework
of active learning. Given labeled data x (upper left pile), the
classifier f trains a model based on x. The querying function ¢
selects the informative data from unlabeled pool (the rectangle).
Users annotate the selected data and feed them into the labeled
data set.
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Figure 1. Illustration of active learning.

The main difference between an active learner and a regular
passive learner is the querying component g. This brings us to the
issue of how to choose the next unlabeled instance in the pool to
query, and what is informative data. This issue also relates to
which classifier you will use. In our framework, we employ
Support Vector Machine (SVM) [3] as our classifier algorithm.

2.1 Support Vector Machine (SVM)

The basic idea of SVM is to separate samples with a hyperplane
that has a maximal margin between two classes. To formulate the
problem of classifying synthesized feature vectors, the training
data are represented as {x; y;}, 1 = 1,2, ..., n, y; is either -1
(negative examples) or 1 (positive examples), n is the number of
training samples. Suppose all training data satisfy the following
constraints:

x;w+b>+1 wheny;=1 (1)

x;w+b<-1 wheny;=-1

The distance between the hyperplane “x;w + b > +1” and the
hyperplane “x;w + b < -17 is 2/||w||, where ||w]|| is the Euclidean
norm of w. Therefore, by minimizing |w||* we get the two
hyperplanes with maximal margins. Quadratic programming
provides well-studied optimizations to maximize the quadratic
functions subject to the linear constraints in equation 1, which
guarantees finding the global maximum.

More generally, SVM can project the original training data in
space X to a higher dimensional feature space F via a Mercer
kernel operator K.

fx)=2 aK(x,x) @



When K satisfies Mercer’s condition [3] we can write: K(u,v) =
®(u) dO(u) where ® : X — F and “-” denotes an inner product. We
can then rewrite f as:

f(x)=w-®(x), where w = Zn:a[d)(xi) 3)

i=1

With the K function, we are implicitly projecting the training
examples into a different feature space F and employ the same
optimization problem as Equation (1) to maximize the margin of
hyperplane in F. By choosing different kernel functions we can
project the training data to different spaces to make more complex
decision boundaries than in the original space. A commonly used
kernel is the radial basis function (RBF) kernel K(u,v) = (e-r(u-
v)*(u-v)) which induces boundaries by placing weighted
Gaussians [3]. Our base classifier algorithm is this RBF SVM.

2.2 SVM Active Learning Algorithm

In active learning, we want to choose the most informative data to
annotate. Following the procedure of [18], we learn a SVM on
the existing labeled data and choose as the next examples those
which come closest to the hyperplane in F. This scheme for
choosing new examples will reduce the corresponding version
space of the SVM, i.e., the “most informative” data for the next
round of annotation are those examples closest to the hyperplane
in F.

We can also explain this scheme more explicitly. We choose the
examples between or close to hyperplanes which will change
SVM hyperplanes, and are more complicated for the current
model to explain. Therefore, those examples will change the
current existing hyperplanes and force the model to deal with
those difficult examples.

To summarize, the SVM active learning algorithm performs the
following steps for each round of user-directed feedback:

1. Randomly select examples from unlabeled pool to annotate
as initial set, or let user decide on an initial set to label.

2. Train a RBF SVM based on the labeled set.

3a. Select the examples which are closest to the hyperplane to be
annotated. Based on [18], if the user’s goal will be to
generate the most accurate model, these examples are the set
to annotate next.

3b. Alternatively, return the best-ranked data to the user, in cases
when the user is motivated to achieve improved precision at
the top N documents. By annotating these assumed “best”
items, the precision at N can be more quickly improved.

4. Add annotated examples into labeled set.

Repeat step 2 to step 4.

3. ENVIE: EXTENSIBLE NEWS VIDEO
INFORMATION EXTRACTION

Regardless of which concept classifiers are provided as part of a
baseline video retrieval system, the user is likely to have
information requirements that are not addressed, a data set to
which classifiers need to be tailored and trained for acceptable
accuracy, and/or security concerns that prohibit the user from
broadly communicating a given need. We believe the best way
for an application to support video exploration and retrieval is by

making extensibility a priority, which led to the development of
ENVIE targeting the broadcast news genre, where ENVIE is an
acronym for Extensible News Video Information Extraction. The
user can extend ENVIE by updating existing classifiers through
positive and negative examples, by developing new classifiers
that take advantage of those concepts already classified within the
system, and by creating summary and video skim templates
appropriate to his or her needs. Our focus here is on the dynamic
definition and refinement of concept classifiers through active
learning, with the architecture for this process shown in Figure 2.
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Figure 2. ENVIE architecture: User iteratively builds and
refines concept classifiers for filtering and browsing video.

Since a user may frequently encounter new training examples to
update or improve a particular concept classifier, an approach is
needed that provides for quick incorporation of new data. Some
stochastic learning algorithms allow the classifier to focus on
learning new examples, instead of building a complete
classification model from scratch each time more examples are
added in. Most studies of stochastic learning algorithms have
focused on “on-line learning” [7]. In each iteration, the algorithm
is fed with one more training example and the model is updated
accordingly. However, the on-line learning algorithm cannot
revisit previous training examples. Compared to standard
machine learning algorithms, on-line learning algorithms cannot
take full advantage of all the existing data because training data
cannot be revisited. Standard machine learning algorithms
likewise also fail to support dynamic extensibility, requiring too
much training data or performing expensive re-evaluations of all
the training data each time the training data is modified. Active
learning offers the advantages of achieving high accuracy while
significantly reducing the need for labeled training instances [4, 8,
13, 15, 18, 20].

Utilizing support vector machines and active learning, users can
develop and refine their own concept classifiers, based on model-
building details discussed in Section 4. The users need not know
anything of these details, instead reviewing results following the
generation of a new model. Based on the actions then taken by
the user, the model itself can be tuned to better meet his or her
information requirements.

Consider a user who needs high precision for a concept. For
example, the user may need to find examples of “aircraft” to serve
as launching points for further inquiry without regard to whether
all of the shots satisfying the “aircraft” concept are retrieved. In
this case, the user can provide feedback on the top-ranked shots in



order to revise the classifier for the concept so that it delivers
higher precision at the top-N ranked items.

Instead, the user may want a better model of the concept to apply
in multiple settings, e.g., to filter out the unwanted shots having
that concept following queries for varying topics, or to isolate
shots with that concept in other query result sets. In that case, the
user can provide feedback on shots close to the SVM decision
boundary, shown to be the most beneficial in iteratively
improving the model through active learning [18].

3.1 ENVIE Concept Building Procedure

Video is decomposed into shots with shots each represented by a
keyframe image, as is typical in news video retrieval systems
today. The user can browse thumbnail representations of
keyframes for shots in many different arrangements, including
map and timeline layouts, named entity graphs, and storyboards,
with “storyboards” the focus here as they provide an ordered set
of shots to the user. Storyboards are also a commonly
encountered interface widget for video retrieval systems [11].
Interactive video search experiments conducted with this same
ENVIE set of storyboards for TRECVID documentary and news
retrieval confirm that both novices and experts can utilize the
storyboards efficiently and effectively for browsing and selection
[1].

A key idea of ENVIE is to reduce the amount of labeling
necessary by the user in building a concept classifier, and so when
the user marks shots in the storyboard for use as a positive sample
set, the shots that they skipped over, up to the last shot
considered, are automatically collected into an “implied” negative
sample set. Likewise, if the user marks shots in storyboards for
use as a negative sample set, the skipped over shots are
automatically collected into an “implied” positive sample set.
The user can review and clean up either the positive or negative
sample set if they so wish. More typically, based on early trials,
the user launches the concept classification process and evaluates
a set returned by that process to iteratively improve the model’s
overall accuracy or top-ranked precision.

The user initializes a classifier by identifying shots that are
positive and negative examples for a new concept to be tagged.
While we anticipate employing different learning strategies to
improve the classification, with the user positioned to evaluate
outputs and determine which classifier, if any, should be
preserved within ENVIE, for this paper we focus on the use of
RBF SVM and active learning. Concepts that are approved by the
user for broader applicability and preservation in the corpus could
be employed as input features for building follow-up concept
classifiers. The goal is that with an increasing number of
concepts, higher order semantics can be derived with a confidence
measure based on the confidence of the contributing classes. For
example, if ENVIE is already armed with detectors for people,
people sitting, and indoors, then a “meeting” classifier might be
developed where “meeting” might be inferred most strongly by
more than 2 people sitting indoors.

This work for now deals with global visual frame classification
only, i.e.., identifying that a concept is represented somewhere in
the keyframe characterizing a video shot, rather than identifying
the precise time and region occupied by a concept in that shot.
Several approaches have been proposed to detect specific objects;
a broad review of this research is given in [6]. However, the

number and type of objects that can be detected by template or
model based methods is limited. In order to work on a large set of
classes, combinations of several approaches are needed. Some
scenes can be identified by using features extracted from the
entire image (e.g., outdoor scenes have certain color and texture
distributions, but no specific shapes or objects). Some objects can
be detected by region-based methods (e.g., an airplane can be
defined as a gray region in the middle of a blue region that
corresponds to sky), whereas faces can be classified with a model-
based approach based on specific feature points [17]. Temporal
features such as camera and object motion direction and rate of
motion can also be specified for inclusion into classifiers. ENVIE
supports a user-driven interactive process for classifier creation,
allows the user more control over which features are utilized and
their relative contributions by providing a fluid, effortless means
for defining positive and negative example sets for active
learning. The two example cases presented in the next sections
illustrate this process, working with a three month test corpus of
American, Arabic, and Chinese news broadcasts.

3.2 Defining a Vehicle Classifier, Revised for

Browsing

Consider a user interested in identifying shots with vehicles. The
user issues a text search “car truck automobile” that for the news
test corpus returns 135 segments, with 270 shots at or near the
aural mention of “car”, “truck”, “automobile”, or derivatives, or at
or near the showing of such words in overlaid text on the
broadcast. A thumbnail-based view of the data termed a segment
grid, presents the thumbnail for the highest rated shot by the text
query service, one thumbnail per news story segment, as shown in
part in Figure 3.

il Grid of 135 segments
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Figure 3. Segment grid with each news story segment
represented by one thumbnail image, ordered by segment
relevance to the query “car truck automobile.”

Another traditional storyboard view shows one thumbnail image
for each of the 270 match shots, as shown in part in the lower left
of Figure 4. The user, interested in building a vehicle detector,
moves the mouse over the thumbnails in the storyboard and
selects those that are positive examples of “vehicle” such as the
white car images in the top 2 storyboard rows shown in Figure 4.
Selection is accomplished via a keyboard shortcut while the
mouse hovers over the thumbnail being judged (fastest operation),
by right-clicking the mouse and selecting from a context-sensitive
menu, or by dragging the thumbnail into the shot collector area.
The user can also review the segment grid and mark items that are
“vehicle” such as the middle image on the top row. In this
manner, the user can make use of multiple views (segment grid
for query, storyboard for query, perhaps storyboard for a
particular daily news broadcast, segment grids and storyboards for



other queries, etc.), as source material for assembling a positive
sample set for the concept “vehicle.”

The shots that the user skips over, e.g., the first and second
images in the segment grid, become the “implied” negative
training set for the concept “vehicle.” Considering the 25
thumbnails shown in the storyboard view of Figure 4 (lower left)
as shots 1, 2, ..., 25, the user selects shots 1, 4, 7, 9, 10, 13, and
25 as positive examples, which causes shots 2, 3, 5, 6, 8, 11, 12,
and 14-24 to be labeled as implicit negative examples. While it is
true that the user might make mistakes and skip over something
that actually is the concept, or that the skipped over shot should
be considered more of a “can’t tell” ambiguous shot than a shot
which is part of the negative training set, the advantages in speed
for quickly defining positive and negative training sets without
unduly burdening the user with detail have outweighed these
disadvantages. Furthermore, by employing active learning the

user is encouraged to correct for any such error, not by revisiting
and correcting the positive and negative sample sets from “round
1”7 of the concept build, but by evaluating and responding to the
round 1 concept classifier output in order to generate an improved
round 2 (and follow-up) classifier.

The user collects positive examples in this manner, where ENVIE
informs the user in the status bar if a shot being judged as positive
is already a member of the positive sample set. Figure 5 shows a
snapshot of the process when 29 examples were identified, shown
in the shot collector area docked to the right of the application
window, and also showing views of the segment grid (Figure 3)
and storyboard. When finished after a few minutes of reviewing
thumbnails, the positive example set holds 42 shots, and the
implied negative example set holds 228 shots, with some shots at
the tail of the segment grid and storyboard not judged explicitly
as relevant nor judged implicitly as irrelevant.
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The user launches a dialog to build a new concept classification
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for a concept she names “vehicle.” The vehicle classifier is built
asynchronously, with the goal of quick performance supporting
interactive review and iteration. Within a minute the classifier
returns the availability of the new concept for review, and the user
thinks about how she wishes to employ this classifier. She wants
to make use of it to browse vehicle shots in the corpus at large,
and to perhaps very restrictively filter down queries to a few shots
with high likelihood of being vehicles. The user is hence
interested in high precision, and so reviews the top-ranked 200
vehicle shots in a storyboard view, shown in Figure 5. Of this set,
47 are actually vehicle shots.



1| 200 marked shots, 156 segments

Figure 5. Best ""vehicle" shots, version 1 of vehicle classifier.

The user wants better precision, and after clearing out the shot
collector with a simple “Clear...” menu operation, decides to start
collecting negative examples by marking shots from the “best
vehicles” storyboard of Figure 5 that are in fact not vehicle shots.
She stops after adding 100 shots to the explicit negative example
set, with an implicit positive example set being generated based
on what the user skipped over in this iteration. Now when the
user selects to rebuild the vehicle classifier, the previous positive
and negative examples from prior rounds are combined with the
new example sets from the latest round as follows:

e  The newest round’s explicitly marked set is taken as
highest confidence truth and overrides all prior choices.

e  The newest round’s implicitly marked set adds to prior
choices, but if any conflict arises, the prior judgment is
kept, as the new round is only “implicit” and hence
lacks the authority to challenge and change prior
judgments.

So, for the case of the round 2 vehicle classification, the 100
negative example shots are definitely part of the new negative
example set for round 2. The implicit positive example shots, if
formerly judged as negative in the prior set of 228 negative shots,
would be kept as negative; otherwise they are added to the
positive example set. The resulting positive example set for
round 2 classification holds 89 shots, with the negative example
set holding 328 shots.

When the round 2 classification is done in a minute or so, the user
checks the “Best Vehicle Version 2” shot set and decides that
performance is good enough for use elsewhere. An inspection of
the best 200 shots, partially shown in Figure 6, finds 116 of 200
correct, nearly three times better than the initial version.

Bl 200 marked shots, 136 segments

Figure 6. Best "'vehicle™ shots, version 2 of vehicle classifier.

The user in this session, or perhaps in a later session, decides to
investigate “Baghdad Iraq” which returns over 500 shots.
Wanting to zero down to just the vehicle shots in this set, the user
opens up a filter tool that provides dynamic query-based sliders
[2] for use in restricting the storyboard to only show shots
meeting the given filter. Version 2 of the vehicle detector is
available for use, and by restricting the display to just the shots
considered as vehicles the display of Figure 7 is produced,
showing 17 shots filtered from the set of 524, of which 9 actually
contain a vehicle. The precision with the quickly built classifier
is high enough to enable investigations to be launched with some
target shots satisfying the need, i.e., vehicles from “Iraq” query,
even if recall is not optimized because of the manner in which the
concept model was built. For the second example in the next
section, recall is optimized by iterating on shots located near the
decision boundary, rather than evaluating the top-ranked set.

1896 segments, " baghdad irag "
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Figure 7. Filtering capability using newly built classifier to
limit 524 shots down to set of 17 with the vehicle concept.

3.3 Defining a Taiwanese News Anchor
Classifier, Revised for Filtering

Consider a user working through a multilingual news corpus and
discovering that the provided anchorperson detector is not
classifying anchorperson shots for a particular Taiwanese
broadcaster well. That broadcaster makes use of numerous digital
effects and keys in field footage as a backdrop for the anchor
shots, rather than keeping the backdrop a consistent image as is
typical for other broadcasters. The user decides he wants to filter
out as many Taiwanese anchor shots as possible from future



queries, and so begins the process of defining a Taiwanese
anchorperson detector (T-Anchor) for subsequent use.

As with Section 3.2, the user starts by browsing a storyboard, in
this case the storyboard for the full Taiwanese broadcast of
January 7 as shown in part in Figure 8. Counting these shots as 1,
2, ..., 30, the user marks shots 5-11 and 29-30 as T-Anchor shots,
causing the remainder (1-4, 12-28) to be implicitly labeled as the
negative example set. The user quickly repeats the process for the
first shots of a January 11 broadcast, producing a positive
example set of 18 shots and implicit negative example set of 114
shots.

Ml 429 shots, 22 segments

Figure 8. Taiwanese news broadcast storyboard.

The user through a dialog box initiates the building of a model
from the collected shots, naming it “T-Anchor.” Based on
experience with TRECVID concept classification, we note that
some concepts apply exclusively or primarily to one broadcaster,
and so we instrumented the ENVIE classifier building dialog to
let the user limit the applicability of the classifier being generated.
Such is the case here: the T-Anchor classifier should only
consider the Taiwanese news broadcasts, not the CNN news
broadcasts or other broadcasters in the test corpus. The user
indicates so, and the result is an asynchronously built model via a
spawned process against the Taiwanese news. The user is
notified when the classification has completed a minute or so
later.

The user inspects the results by opening up a Taiwan news
broadcast from February 1 (different from the test set) and
filtering the storyboard for that day’s half-hour show (393 shots)
into just the T-Anchor shots. He sees that the filter shows 26
anchor shots in a set of 34, but notes that more should have been
found. In actuality, there are 40 anchor shots in this set of 393, so
the round 1 performance tested on this one broadcast is precision
0.76, recall 0.65. He issues a geographic query for the Hong
Kong area, returning 288 matching shots from the multilingual
corpus, and sees that filtering out T-Anchor shots drops out 17
shots. Again, he expected a bit better (in actuality, there are 33 T-
Anchor shots in this set of 288, so round 1 performance is
precision 1, recall 0.52).

Wanting to build a better model for T-Anchor, the user takes
ENVIE’s active learning suggestion and inspects a set of 500
shots located close to the decision boundary, i.e., the set of shots
corresponding to step (3a) from the algorithm in Section 2.2. He
browses the storyboard within a few minutes and marks 38 shots

to be in the positive example set. He initiates a dialog to create a
version 2 of the T-Anchor model, which causes a merge of the
prior positive and negative example sets with the latest ones as
discusses in Section 3.2. In this case, the new positive example
set contains 56 shots (18 before plus 38 new ones now), and the
new negative example set contains 570 shots (114 before, plus
456 new ones now). Note that the user did not mark 456 shots
explicitly; instead, the system recognized that these shots were
passed over in the storyboard when gathering the positive
example set and so they were implicitly marked as negative
training examples.

The updated T-Anchor model earns the approval of the user.
Inspecting the February 1 storyboard, he sees that the T-Anchor
filter returns 39 of 54 at a relaxed setting (precision 0.72, recall
0.98), 37 of 43 shots when restricting to higher confidence for T-
Anchor (precision 0.86, recall 0.93). The model generated
confidences for each shot in the range [0, 1], with 1 indicating
complete confidence that a shot possesses a concept. Similarly,
for the Hong Kong set of 288 images, filtering to just T-Anchor
shots produces the set of 32 shown in Figure 9 (precision 1, recall
0.97). The user intends to use the concept to filter out T-Anchor
shots, e.g., direct inspection to the Hong Kong matching shots
other than T-Anchor ones shown in Figure 9, which is trivial to
accomplish by reversing the interactive filter.

i |32 of 288 matching shots, 120 segments
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Figure 9. Taiwanese anchorperson shots after one iteration of
active learning, demonstrating significant performance boost.

These examples of the T-Anchor and Vehicle concept classifiers
serve to illustrate the interactive, extensible concept building
environment available with ENVIE, and the use of concepts for
browsing and filtering. =~ While anecdotal, the evidence is
convincing that iterative shot labeling improves learner
performance, in agreement with prior literature on the topic. The
benefits of ENVIE include streamlining the labeling process for
positive and negative examples, quick model building and
notification back to the user when the model is ready for use, and
dynamic query sliders allowing fine user control over concepts for
filtering and browsing. The remaining sections of the paper



discuss the underlying model building and evaluation more
thoroughly.

4. MULTIMODAL ACTIVE LEARNING

For any multimedia source, there are many different variants of
features (various texture computations, alternate color spaces,
different audio feature types, etc.) to represent its content.
Assume we have r different feature sets, our training data x; is
composed of {x;}, /=1, 2, ..., 7. Most of the time, the easiest way
to deal with this kind of data, is to concatenate it as a larger
feature vector x; and employ a machine learning algorithm, such
as SVM. This creates two main problems, first and foremost, the
curse of dimensionality [9]. One ends up needing much more
labeled data for the learning algorithm due to the increase in
dimensionality of the feature vector. Second, it becomes more
difficult for a human to understand and analyze the relative
importance and the performance corresponding to a particular
feature set. Furthermore, we effectively eliminate the variations
of individual feature sets and only maintain one, undifferentiated
global model to explain all the data. From our TRECVID
experiments, concatenating feature vectors always perform worse
in evaluation than intelligently selected feature sets.

Therefore, multi-modality fusion can lead us to a better approach
than the concatenation method. Assume we have r different
feature sets; we can construct » individual sub-models for each
feature set. Each model represents its own information according
to the feature space.

We fuse the sub-models by linear combination via a held-out set
to obtain a global model for the multimodality data. This
approach is motivated by an attempt to keep the locality of
different feature spaces but still have a global model to represent
the classification concept. The o in Equation (4) is the weight
parameter for each sub-model.

flx)= Z;:l a;8,; (x./) *)

The fusion approach requires a held-out set to learn the
combinational parameter. Usually, a split of training data is
required and this reduces the number of examples we can use in
training the classifier. However, with the active learning
algorithm, we will choose some informative data from the
unlabeled data pool iteratively, and this data has not already been
used in training process. This provides us with the held-out set
we need for multimodality fusion.

Multimodality active learning works as follows:

1. Randomly select examples from unlabeled data pool. This is
the initial training set for active learning.

2. Build r individual sub-models for the training set according
to the different feature sets and apply their learned models to
the unlabeled data.

3. For each sub-model, choose k examples which are closest to
its hyperplane. In total, £* unlabeled examples will be
chosen for annotation in each iteration.

4. Annotate these examples. The multi-modality fusion weights
are then trained using these new annotated examples. A
global model can then be constructed and evaluated.

Add the newly annotated examples into training set.

6. Repeat step 2 to step 4.

The multimodal active learning algorithm can be formulated as
follows:

Unlabeled dataD= {x;} i=1,2,...,n

Dy = {x;} which randomly chooses from D
Dy,, =Dy

forj=1to¢

{

form=1tor

{

gjm 1s the model constructed from D;_;,
i = {X;my the set of examples closest to hyperplane of gj,,
Djyy = Djyw U djy,

F.(x)= ’

mel a.g im combination parameters trained by dj,,,

Some interesting issues are raised by this approach. The main
idea we want to achieve is to train and select each feature set
individually. Therefore, we split the training data for each feature
set; let’s call it Dj,, which is the training data of feature m in j
iteration. After each iteration, we select new examples for each
feature to annotate and obtain dj,, of them. This means, that for m
different features, we select m sets of data according to each
feature and build sub-models. The reason we keep every feature
set separately is to maintain the specificity of that feature. We
want to train locally for each feature set instead of a global model.

Through experiments, we found the problem of active learning is
that it makes a strong assumption about the correctness of the
previous model and the selected data is to improve the boundary.
However, this assumption leads the whole model to a more and
more restricted area in the feature space with each iteration. Our
hope is that with separate sub-models for each feature set, we can
expand the selected data from different feature spaces and avoid
this problem.

5. EXPERIMENTAL EVALUATION

In this section, we describe experiments on semantic concept
extraction using the development set of the TRECVID 2004
feature extraction task to demonstrate the performance of our
multi-modality active learning approach. We selected 20
concepts in TRECVID 2003 and 2004 semantic feature extraction
tasks. The development set is the collection of news video from
ABC and CNN. It contains 52943 shots and is totally around 60
hours. The 20 concepts are as follows:

* Outdoors * News subject monologue
* News subject face * Non-studio setting

* People * Sporting event

* Building » Weather news

* Road (2003) * Boat/Ship

* Vegetation * Bill Clinton

* Animal * Beach

* Basket scored
* People walking/running

« Female speech
« Car/truck/bus



* Aircraft * Road (2004)

Low-level features including color, edge, texture, and face are
generated to learn the semantic features. After dividing an image
into 5 by 5 grids, the color feature in each grid is computed as the
mean and variance of color histogram from HSV color space. A
canny edge detector is applied to extract edges from the images.
The edge histogram for 5 by 5 grids is quantized at 45 degree
intervals. Six oriented Gabor filters are applied to extract texture
features. Schneiderman’s face detection algorithm [17] is used to
extract frontal and profile faces. The size and location of faces
represent the face detection result.

Figure 10 compares the performance between the multi-modality
active learning approach and single-modality active learning. We
start the initial data with 1000 examples and during each iteration
we choose 250 new examples from the 4 individual feature sets
(for a total of 1000 new examples). The curve labeled multi-
active depicts the results of the new approach and the curve
labeled “single-active” is the approach which concatenates the 4
feature sets into one larger feature vector. The baseline uses the
complete training data set without any active learning. Our
evaluation experiments are performed on the TRECVID 2003 and
2004 ground truth provided by NIST in a separate test set. Our
measurement is the macro-average mean average precision
(MAP) of those 20 topics. From Figure 10, we note that active
learning is very effective. Even the single-modality active
learning approach can reach the same performance as using the
whole training data set with only 7% of the labeled data (4000
over 52943). Furthermore, the new approach works much more
effectively than the single-modality approach. Its performance
was comparable to the baseline with only 3% of the training data.
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Figure 10. Classification performance for multimodality
active learning and basic active learning.

Figure 11 compares the performance between the multimodality
active learning approach and optimal fusion approach. By optimal
fusion we mean that we did all possible combinations of different
feature sets and choose the best performing combination as the
result. It means if we have r different feature sets, we need to run
our classification processes up to 2r times. We use best-active
when, for each active learning iteration, we only choose the best
fusion result. The best-baseline means we use the whole training
set but fuse the multimodality by optimal fusion. The result
shows our multimodality approach can reach as good as optimal
fusion although needing more iterations. However, the optimal

fusion is very computationally expensive. In our experiments, we
have 4 different feature sets, so that for optimal fusion we need to
consider 2* = 16 different combinations. The computation is 16
times as expensive.
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Figure 11. Classification performance for multi-modality
active learning and optimal fusion approaches.

6. CONCLUSIONS

Automated concept classification provides the user with tools to
filter and browse large collections of video for shots of interest.
We present ENVIE, an application allowing the user to
dynamically define and revise additional concepts in a timely
manner through a simple, well understood interface. The
concepts are built using multimodality active learning with RBF
SVMs as the discriminative classifier, without these underlying
details presenting additional cognitive load for the user or
introducing new interface complexity. Rather, through active
learning the user can efficiently improve the accuracy of the
classifier through reduced numbers of training examples
compared to passive machine learning algorithms.

Other researchers have contributed new work toward determining
what imagery should next be labeled in the iterative step of active
learning [4, 15] for better model performance. These
recommendations will be folded into ENVIE so that the user is
asked to annotate even fewer shots, and more informative shots,
between iterations. One of ENVIE’s goals is to provide new
visual search capability for broad multilingual news corpora,
where text metadata is either missing or fails to bridge the
different source languages, but where visual concepts like indoor,
outdoor, face, vehicle, etc., can provide the search strategies
based on visual characteristics alluded to by Trant regarding
growing multimedia collections [19]. Through performance
evaluations using open testing procedures, metrics, and data, we
plan to assess the benefits of ENVIE and its active learning
component for interactive video information retrieval, with
ENVIE’s development driven by the goal of providing efficient,
effective access to relevant shots from video collections.
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