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Abstract In this paper we describe a multi-strategy approach
to improving semantic extraction from news video. Experi-
ments show the value of careful parameter tuning, exploiting
multiple feature sets and multilingual linguistic resources,
applying text retrieval approaches for image features, and
establishing synergy between multiple concepts through
undirected graphical models. We present a discriminative
learning framework called Multi-concept Discriminative Ran-
dom Field (MDREF) for building probabilistic models of video
semantic concept detectors by incorporating related concepts
as well as the low-level observations. The model exploits the
power of discriminative graphical models to simultaneously
capture the associations of concept with observed data and the
interactions between related concepts. Compared with previ-
ous methods, this model not only captures the co-occurrence
between concepts but also incorporates the raw data observa-
tions into a unified framework. We also describe an approx-
imate parameter estimation algorithm and present results
obtained from the TRECVID 2006 data. No single approach,
however, provides a consistently better result for all concept
detection tasks, which suggests that extracting video semantics
should exploit multiple resources and techniques rather than
naively relying on a single approach
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1 Introduction

Increasingly, the detection of a large number of semantic
concepts is being seen as an intermediate step in enabling
semantic video search and retrieval [1]. Early video
retrieval systems [2, 3] usually modeled video clips with a
set of (low-level) detectable features generated from
different modalities. These low-level features like histo-
grams in the HSV, RGB, and YUV color space, Gabor
texture or wavelets, structure through edge direction histo-
grams and edge maps can be accurately and automatically
extracted from video. However, because the semantic
meaning of the video content cannot be captured faithfully
by these low-level features, these systems had a very
limited success in retrieving video for complex and
semantically-rich queries. Several studies have confirmed
the difficulty of addressing information needs with such
low-level features [4, 5].

To fill this “semantic gap”, one approach is to utilize a
set of intermediate “textual descriptors that can be reliably
applied to visual content (e.g., outdoors, faces, animals,
etc.) [6]. Many researchers have been developing automatic
semantic concept classifiers such as those related to people
(face, anchor, etc), acoustics (speech, music, significant
pause), objects (image blobs, buildings, graphics), location
(outdoors/indoors, cityscape, landscape, studio setting),
genre (weather, financial, sports) and production (camera
motion, blank frames) [7]. The task of automatic semantic
concept detection has been investigated by many studies in
recent years [8—13], showing that these classifiers could,
with enough training data, reach the level of maturity
needed to be helpful filters for video retrieval [14, 15].

Since so far only very few high-level concepts can
machine reliably extracted, the quest for developing better
concept classifiers is never ending. Instead of focusing on
single approach we test a wide collection of approaches in
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improving video concept extraction. The approach de-
scribed in Section 4 spans a wide range of classifier
development process from parameter tuning (Section 4.1),
combining multiple features (Section 4.2), exploiting
relationship between multiple concepts (Section 4.3), and
fusing multiple linguistic resources (Section 4.4). The
multi-facetted approach, unlike previous work that focus
on only developing better features or fusing techniques,
may provide a more holistic answer to the question how we
can achieve the most improvement for extracting video
semantics? We tested the described multi-strategy approach
on a well-established testbed, TRECVID [16] (Section 2)
using common low-level features (Section 3). The findings
and future direction are summarized in Section 5.

2 The TRECVID Semantic Concept Detection Task

The main forum for studying video retrieval, and in the last
few years, video retrieval aided by semantic concepts, has
been organized by the National Institute of Standards and
Technology (NIST) in the form of the TRECVID video
retrieval evaluations [17][Smeaton06]. In 2001, NIST
started the TREC Video Track (now referred to as
TRECVID [18]) to promote progress in content-based video
retrieval via an open, metrics-based evaluation, where the video
corpora have ranged from documentaries, advertising films,
technical/educational material to multi-lingual broadcast news.
As the largest video collections with manual annotations
available to the research community, the TRECVID collections
have become the standard large-scale testbeds for the task of
multimedia retrieval [19]. These evaluations provide a
standard collection available to all participants, separated into
training and development sets.

Currently, TREVID focuses on the video news domain
because it is structured video and contains a broad range of
information. The TRECVID 2006 collection contains three
different languages: Arabic, Chinese and English. The
video collection comes from 11 different sources, including
different Arabic news, a variety of Chinese news, CNN,
NBC and MSNBC for English news. The development and
test sets each contains about 160 hours of video. Each video
in the collection is decomposed into shots, which are used
as the basic units of the video content. We use the
keyframes as defined by the TRECVID benchmark,
allowing more standardized testing and comparison. We
split this data into two parts, with half used for training the
models (development set) and the other half is used to
evaluate the models (testing set). Since many experiments
require parameter tuning, the development set is further
split into two parts, with roughly 65% used for training the
basic labels (including cross-validation), and the rest for
tuning the combination parameters.
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Since the video contains rich information from visual,
audio, and text extracted from screen and speech recogni-
tion, in our experimental setting, we use a number of color,
texture, and text features extracted from key-frame images
in each shot, described below.

In the following experiments, we utilized the semantic
labels of 39 concepts from Large Scale Concept Ontology
for Multimedia Understanding (LSCOM) [20] workshop.
This set of manual annotation labels for the development
set is publicly available.

3 Low-level Features

Low-level features constitute the most “atomic” building
blocks of our analysis. They are used as the initial features
in a variety of machine learning approaches.

Our experiments to detect high-level features are based
on 4 different types of low-level features: color moment
feature, Gabor texture feature, local image features, and text
(transcript) feature, briefly described as follows:

* Color moment & Gabor texture: Columbia University
[21] provided color and texture features. To generate the
color moment feature, each image (key-frame) is divided
into 5x5 grids, and each grid is described by the mean,
standard deviation, and third root of the skewness of
each color channel in the LUV color space. This results
in a 225-dimension (5x5x3x3) color moment feature.
Texture feature comes from the Gabor filter, which
denotes an image by mean and standard deviation from
the combination of four scales and six orientations. [22]

* Local features: The local feature of each image is
computed from the local interest points (as known as
keypoints) detected from the image. We use the key-
points [23] provided by City University of Hong Kong,
which are detected using the DoG detector and depicted
by SIFT descriptors [24]. Details on experiments with
these keypoints are described later in this paper.

+ Text features: Text features have been shown to
successfully complement visual features in constructing
effective multi-modal visual classifiers. Extracting text
features on a multilingual corpus, such as TRECVID’06,
however, faces an additional problem: how should we
effectively combine information from multiple lan-
guages? One straightforward solution is to translate
multilingual text (e.g., ASR transcripts) into a common
target language (e.g., English), and we can proceed
classifier learning and evaluation protocols as if there
were no multiple languages. The advantage of this
approach is that number of training examples in English
will be abundant. The disadvantage, however, is that
automatic translation systems inevitably introduce errors
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in addition to errors from automatic speech recognition
systems. To leverage abundant training examples and
discriminative power from native languages, we ex-
plored multilingual text features for learning text-based
visual classifiers.

4 A Multi-Pronged Approach
4.1 Importance of Classifier Tuning

Our basic approach is to use the training set to train our
baseline classifiers for all concepts based on various
combinations of low-level features. Support vector
machines (SVM) with radial basis kernel function (RBF)
are used in the training of baseline classifiers. Based on our
experience, the parameter setting of SVM is critical to the
performance. Therefore, we perform grid search of the
parameter space using cross-validation to find the optimal
parameters for each concept in the training set, particularly
the gamma parameter of the kernel function and the cost
parameter. As shown in Table 1, using the optimal
parameter setting achieves an average of 27% improvement
(0.2633 to 0.3352) over the default setting in terms of the
mean average precision (MAP) metric on the 39 concepts in
the cross-validation experiment. Table 1 shows how the
optimal SVM parameters provide improvements for each
individual feature set over the default parameters in the
fusion set based only on color moment feature. Of the 39
semantic concepts, 37 improved as a result, one (Maps) was
virtually unchanged, and only one (Boats/Ships) decreased
due to overfitting. The results underscore the strong need
for careful tuning and parameter normalization.

4.2 Using Multiple Feature Sets

In the experiments with the TRECVID 2006 feature
classification data we also explored the use of image
local features as an alterative of the global color/texture
features for detecting semantic concepts in video data.
Local features describe the regions around the salient
keypoints detected in an image. We propose to explore a
text categorization approach to the problem of shot
classification based on vector-quantized keypoint features
or visual-word features. That is, we treat visual words in
images as words in documents, and apply techniques
widely used in text categorization (or generally, in
information retrieval) to the concept classification prob-
lems. These include choosing vocabulary size, feature
weighting methods such as tf and tf-idf, stop word removal,
and so on. These techniques seek for the most effective bag-
of-word representation for text categorization, and in this
case the most effective “bag of visual words” representation

Table 1 Comparison between default SVM parameters and the
optimal SVM parameters.

Semantic Concepts MAP

SVM-Default SVM Optimal

Parameters Parameters

Airplane 0.0135 0.1469
Animal 0.3863 0.4978
Boat/Ship 0.2131 0.1699
Building 0.3048 0.3481
Bus 0.0088 0.0778
Car 0.3151 0.4458
Charts 0.1265 0.1815
Computer TV-screen 0.3525 0.4971
Corporate-Leader 0.0059 0.0103
Court 0.0879 0.1882
Crowd 0.5288 0.5818
Desert 0.0602 0.109

Entertainment 0.0975 0.2999
Explosion/Fire 0.1413 0.2504
Face 0.7752 0.8634
Flag-US 0.1227 0.1344
Government-Leader 0.1822 0.2672
Maps 0.4816 0.4805
Meeting 0.1708 0.2578
Military 0.2049 0.2711
Mountain 0.1718 0.2512
Natural-Disaster 0.0403 0.0521
Office 0.0895 0.1181
Outdoor 0.4816 0.7954
People-Marching 0.0759 0.1695
Person 0.8531 0.9004
Police/Security 0.0078 0.0121
Prisoner 0.1693 0.1546
Road 0.2481 0.3023
Sky 0.6502 0.6526
Snow 0.1725 0.2232
Sports 0.4481 0.5478
Studio 0.7541 0.8389
Truck 0.0251 0.0341
Urban 0.1127 0.1651
Vegetation 0.3203 0.3969
Walking/Running 0.1635 0.2491
Waterscape/Waterfront 0.3171 0.4421
Weather 0.5887 0.6869
Average 0.2633 0.3351

for scene classification. Therefore, a major contribution of
this section is to provide the beginnings of a comparative
study of various implementation choices related to image
representation based on local keypoint features. Although
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some of these techniques have been already adopted in
scene classification, such as stop word removal and tf-idf
weighting [23, 25], their effectiveness has been so far
taken for granted without empirical evidence showing that
they indeed enhance the performance.

Each image is represented as an unordered collection of
real-valued keypoint descriptors with varying cardinality.
This representation, however, creates difficulties for super-
vised classifiers which demand feature vectors of fixed
dimension as input. The solution is to cluster the keypoint
descriptors in their feature space into a large number of
clusters using clustering algorithms such as K-means [26],
and encode each keypoint by the index (an integer) of the
cluster it is assigned to. This process is described as the
generation of a vocabulary (or codebook), where the index
of each cluster can be seen as a visual word in the
vocabulary. Each image can be thus represented by a
histogram-like vector of the count of each visual word in
the image (i.e., the number of keypoints in each cluster).
The dimension of this feature is determined by the number
of clusters, or the vocabulary size, which usually varies
from hundreds to tens of thousands or even more. In this
way, we transform descriptors of image keypoints into a
discrete, high-dimensional “bag of visual words” represen-
tation of the whole image, which is analogous to the “bag-
of-words” representation of text documents.

Given its similarity to the “bag-of-keywords” represen-
tation of text documents, we applied text categorization
methods for classifying video data by the presence (or
absence) of semantic concepts, and studied the influence of
feature dimension, weighting and normalization, feature
selection, spatial information to the classification perfor-
mance. Experiments show that using local features achieves
comparable performance to that of the global features, and
significantly higher performance when these two types of
feature are used together.

In a text corpus, the size of word vocabulary is
determined by the language, while for images the size of
the visual word vocabulary is specified as the number of
keypoint clusters in the vocabulary generation process.
Choosing the right vocabulary size involves the trade-off
between the discriminative power of the feature and its

generalization ability. When a small vocabulary is used, the
resulting visual-keyword feature lacks discriminative power
because two keypoints can be assigned into the same
cluster, even if they are not very similar. As the vocabulary
size increases, the feature becomes more discriminative but
also less generalizable and forgiving to noises, since similar
keypoints can be assigned to different clusters. we
experiment with vocabulary containing 200, 1000, 5000,
20000, 80000, and 320,000 visual words, which cover most
of the vocabulary sizes ever used in existing work. Note
that even 320,000 is not terribly huge as the number of
clusters given that the dimension of the keypoint descriptor
space. A single partition at each dimension of the original
descriptor space will result in 236 clusters for the 36-
dimensional PCA-SIFT features, or 2128 Clusters for the
128-dimensional SIFT features.

The main observation, as summarized in Table 2, is that
the performance of scene classification improves signifi-
cantly as the vocabulary size (or feature dimension)
increases. The MAP achieved by linear-kernel SVM almost
triples when the vocabulary sizes increases from 200 to
80,000 or 320,000. The increase with RBF-kernel SVM is
not as dramatic but still remarkable. The performance starts
to level off or even slightly drop after the vocabulary size
reaches 80,000 for linear kernel or 20,000 for RBF kernel.

Interesting observations can be made by comparing the
performance of the two kernel functions. For small
vocabularies, the RBF kernel has a clear advantage over
the linear one, but this advantage is reversed once the
vocabulary size reaches 80,000. This suggests that the
visual words in a small vocabulary are highly correlated,
but they become more independent and gain the nice
property of linear separability (of data) as the vocabulary
gets larger. Finally, the results of combining local features
represented as visual words and the more standard color/
texture features can be found in Table 3.

Practical insights emerge from our experiments. Some are
consistent with the findings in text categorization, some are
not. Some of the common implementation choices in scene
classification are shown to be ineffective. Overall, we find
these representation issues critical to the scene classification
performance: 1) a vocabulary much larger than the ones

Table 2 The MAP of concept
classification using region-based
visual-term features computed at
various spatial partitions.

Vocabulary Size

Spatial Partitioning

200 (RBF SVM)

1,000 (RBF SVM)

5,000 (RBF SVM)

20,000 (RBF/Linear SVM)
80,000 (Linear SVM)

The percentage in the parenthesis
shows the relative improvement
over the performance at 1x1

1x1 2x2 3x3 4x4
0.137 0.258 (+89%) 0.267 (+95%) 0.272 (+99%)
0.235 0.249 (+6%) 0.291 (+24%) 0.286 (+22%)
0.245 0.279 (+14%) 0.285 (+16%) 0.268 (+9%)
0.271 0.280 (+3%) 0.290 (+7%) 0.293 (+8%)
0.280 0.290 (+4%) 0.290 (+4%) 0,288 (+3%)

partition.
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Table 3 MAP for concept
classification of various global

Visual Words (3x3 Partition)

features, local features based
on 3x3 image grid, and their
combinations.

Color
Gabor
Color+Gabor

Global Feature

Vocab 200 1,000 5000 20,000 80,000
Bascline MAP  0.267 0291 0285  0.289 0.290
0.250 0295 0301 0321 0334 0.334
0.182 0273 0293 0286 0291 0.315
0.292 0318 0329 0339 0349 0.349

currently used is preferred; 2) binary features that indicate
the presence/absence of visual words are as effective as tf or
tf-idf features that encode the word count information; 3)
normalizing the feature vector into unit length hurts the
classification performance; 4) frequent visual words are not
“stop words” but the informative ones; 5) feature selection
can reduce the vocabulary by more than half without loss of
performance; 5) the benefit of spatial information is much
more significant with small vocabularies than with large
vocabularies.

Our experiments yielded deeper insights into these
findings by exploring their connections with the properties
of visual words. We find the distribution of visual words in
a video corpus bears many similarities yet important
differences to the word distribution in a text corpus. This
explains some of our experiment results, such as why there
are no “stop visual words” and why feature selection can
reduce the vocabulary size without hurting the perfor-
mance. We also show that the classification performance of
local keypoint features (visual words) is comparable to that
of global color/texture feature, and combining the two
features leads to a further improvement of 10-20%.

4.3 Exploiting Multiple-Concept Relationships

The most common approaches to concept detection
translate the concept learning task into a set of binary
one-versus-all classification problems with a presence/
absence label for each individual concept, thereby decou-
pling any connection between semantic concepts. Then, for
each video shot, its associated video concepts can be
detected using unimodal or multimodal classifiers based on
visual, audio and speech-transcript features. These binary
classification approaches thus assume independence be-
tween concepts and ignore the important fact that semantic
concepts do not exist in isolation to each other.

However, when looking at the data, it becomes obvious
that the semantic concepts to be detected are not indepen-
dent to each other. They are interrelated and connected by
their semantic interpretations and hence exhibit a certain
co-occurrence pattern in the video collection. For example,
the concept "sky" usually co-occurs in a video shot with the
concept "outdoor" while the concept "studio" is not likely
to appear together with "sky". Such kinds of concept

relationships are quite frequent and mining these multi-
concept relationships could provide a useful source of
information to improve concept detection accuracy. More-
over, such a correlated context could also be used to
automatically construct a semantic network or ontology
derived from the video collection in a bottom-up manner.
This automatic ontology construction may be helpful to
discover unknown concept relationships that could be
complementary to manually specified ontologies.

To automatically exploit multi-concept relationships,
several approaches have been proposed, which build upon
advanced pattern recognition techniques within a probabilistic
framework. For example, Naphade [9] et al. explicitly
modeled the linkage between various semantic concepts via
a Bayesian network that offers an ontology semantics
underlying of the video collection. Snoek et al. [27, 28]
proposed a semantic value chain architecture including a
multi-concept learning layer called the context link. At the
top level, this tries to merge the results of detection output
from different concept detectors. Two configurations were
explored: one was based on a stacked classifier on top of a
context vector and the other was based on an ontology with
certain common sense rules. Hauptmann et al. [29] fused the
multi-concept predictions and captured the inter-concept
causation by constructing an additional logistic regression
classifier on top of the single concept detection results. Amir
et al. [30] concatenated the concept prediction scores into a
long vector called a model vector and stacked a support vector
machine on top to learn a binary classification for each
concept. An ontology-based multi-classification algorithm was
proposed by Wu et al. [13] which attempted to model possible
influence relations between concepts based on a predefined
ontology hierarchy.

One direction that has not been explored much, despite
the much work on learning multiple concept detectors of
video, are undirected probabilistic graphical models. These
probabilistic graphic models provide an alternate, elegant
approach to handle the semantic concept detection problem.
In computer vision, researchers have started to utilize
contextual information to enhance pattern recognition
performance. This is similar to the idea of using related
concepts to boost multi-concept detection performance.
Markov Random Field (MRF) [31] is a commonly used
model in computer vision to utilize contextual information.
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Figure 1 A graph demonstrates the framework of MDRF. There are
three semantic concepts in this video shot: building, tree and sky. The
top layer shows the concepts relations with each other and constitutes
an undirected graph. The edges between each concept can be viewed
as interaction potentials in the MDRF formula. The dotted lines from
concepts to the video shot illustrate the classifications of each concept
which act as association potentials in the MDRF model. In the MDRF
model, concepts are denoted as variable y and a video shot is denoted
as observation X.

MRFs are generally used in a probabilistic generative
framework that models the joint probability of the observed
data and the corresponding labels. However, for classifica-
tion purposes, we are more interested in estimating the
posterior probability over labels given the observation
rather than the joint probability. Conditional Random Fields
(CRF) [32] are a conditional probabilistic graphical model
for segmenting and labeling sequence data. It specifies the
probabilities of the possible label sequences given an
observation sequence. Because the conditional probabilities
of the label sequence depend on the observation sequence,
any arbitrary/non-independent features can be derived from
the observation sequence, without forcing the model to
account for the distribution of these dependencies. There-
fore, CRF provide a new type of random field model that
incorporate the dependency among observations rather than
single matches. Discriminative random fields (DRF) [33]
provide a more advanced model to jump from a 1-D
sequence dependency to a 2-D spatial dependency. DRF
was first proposed for structure detection in natural images.
The model has two major building blocks: an association
term that consists of local discriminative models to capture
the association between observations and labels for each
individual node and an interaction term that exploits pair-
wise co-classification within nearby nodes. DRF uses local
discriminative models to model interactions in both the
observed data and the labels in a principled manner. This
means the classification result will derive from not only
the observation for a certain node but also the context
nearby.
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Thus, exploiting relationships between multiple semantic
concepts in video could be an effective approach to
enhancing the concept detection performance. Using the
TRECVID 2006 evaluation data, we developed and tested a
multi-concept fusion technique called Multiple Discrimina-
tive Random Field (MDRF) to detect multiple semantic
concepts of the video. Our model expands DRF by jointly
learning multiple classifications instead of a single classifier
at a time. Our MDRF introduces several new aspects
compared to previous work. First, MDRF is an undirected
graph model which does not require prior causation
analysis to understand the dependencies between concepts
[9, 27, 30]. Second, MDREF learns both classification and
interaction simultaneously. No additional training data is
required for concept linkage discovery, unlike [9, 27, 29].
Third, the concept interactions are also linked to direct raw
data observations which allows the model to not only
capture the co-occurrence between concepts but also learn
pair-wise relations in the low-level feature space [34]. In
the following paragraphs, we will present the MDRF model
with its parameter learning and inference, followed by
evaluation results on the TRECVID 2006 test.

Figure 1 illustrates the framework of MDRF on top of a
single video shot, which consists of three different semantic
concepts, such as “building”, “tree”, and “sky”. We
assume that low-level features describe the video shot in
its entirety, without spatial or temporal segmentation. We
construct an undirected graphical model to represent the
relationships between concepts and the video shot, and also
the relationships between various concepts. Figure 2 illus-
trates such a graphical model. In this model, we use a set of
pair-wise linkages between concept nodes to model the
inter-concept relationship and associate the observed low-
level features with every single concept node, so that the
conceptual relationship and low-feature modeling can be

Figure 2 MDREF is a fully connected undirected graphical model. Y
nodes denote the semantic concepts. X is the observation extracted
from the video. All concepts are dependent on the observation.
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jointly optimized in such a unified framework. Based on
this graphical model, the conditional probability of the
labels Y given the observations X can be written as:

p(Y1X) :% €Xp <%Ai(%, W, X)+> > Iij(yiayja VvX)>

i€S jeN;
(1)

where Y=(y;, v, ..., ¥,) is the vector of multiple concept
labels, with y; denoting the label of ith concept. In this
work, each semantic concept is either present or absent in
the shot, i.e. y;={-1, 1}. X (in R®) is the observation or
feature vector extracted from the video shot. 4y, W, X) is
called the association potential function. In MDRF, the
association potential provides links between concept labels
and observation, as a normal classifier does. £;(y;y; V, X) is
the interaction potential function. The interaction potential
tries to model the interactions between various concepts
with observation. For example, if there are some shots in
the training set that have both the “sky” and “tree”
concept, the bluish and greenish color feature (which are
typical for the two concepts) might be emphasized in the
learning process via the interaction potential. When a new
shot comes out with big blue which is easy to be
recognized with unclear green area, the tree detector will
benefit from the interaction potential to detect the tree
concept. 0={W, V'} are the parameters of the model. W is
the parameter of the association potential, and V is the
parameter of the interaction potential. In eq. (1), the
summation of association potentials corresponds to the set
of individual classifiers for each concept, and the
summation of interaction potentials models the relation-
ship of each concept pair.

Now we can take a closer look at Fig. 2. In Fig. 2, we
could interpret MDRF as a fully connected undirected
graphical model. There are 3 concepts as Y;, Y, and Y; that
are linked to each other as well as to the observation X. The
linkages between concepts encode the interaction potential
in MDRF and the linkages to the observations encode the
association potential.

4.3.1 The Association Potential

The association potential function works like a single
concept classifier. In this paper, we use discriminative
models in the association potential function to achieve our
classification goal. Theoretically, A(y;, W, X) can be any
model which functions as a classification. This provides the
flexibility so people can choose specific models for certain
domain problems. In MDRF, we try to model the
classification using local discriminative models which
output a label y; given the association with observation X.

Thus the association potential function can be written in a
conditional probability format,

Ai(yi, W, X) = log(p(y;| X)) (2)

where the log function here maps the probability value to a
real number.

In our work, a logistic model then serves as our basic
classification model, since it is a well-known and
efficient discriminative model for estimating the posterior
probability given the observation. Therefore, for each
individual concept, the posterior probability can be
written with the logistic formula,

o S R
pyvi = 11X) Hef(wloﬂ.»l_flh,(x))

= O'(W,-O +wl-T1h,-(X)) (3)

where w;={w;o, w;;} is the parameter for the i semantic
concept classification and the hy(X) function maps the
observation to the feature space as a vector. The mapping
function also provides the flexibility to allow dimensionality
reduction and other transforms to enhance the representation
of the observations, for example, if the % function is a
nonlinear function, this will extend the logistic model to
model a nonlinear decision boundary in the feature
space. W, here works as a constant term to stabilize the
logistic function. y; is a binary label as {-1, 1}. Therefore,
we can add an additional constant term into the trans-
formed vector and then re-write association potential
function by combining (2) and (3) as,

= log(o (y;w{ hi(X)))

If the interaction potential function is defined as zero,
MDREF is equivalent to building » individual logistic
regressions for each concept. This illustrates how the
association potential function plays the role of capturing
the association between observations and labels which
originally define the classification.

In our work, we apply Principle Component Analysis
(PCA) as the hy(X) function mainly for the purpose of
dimensionality reduction. However, in principle, any
mapping or transformation function can be used here. In
computer vision, researchers often use a kernel function to
utilize contextual information. In the multimedia domain,
multi-modality fusion can be performed at this point to
improve the power of the model to capture more complex
aspects.

4.3.2 The Interaction Potential

The interaction potential function plays an important role in
the MDRF model. This potential expands the model to
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utilize pair-wise relationships that cooperate with the
observation. It can be seen as a measure of how concepts
i and j which are related should interact with each other
given the observed video shot. As an example, if our
concept set contains sky and building, the sky detector
might emphasize the color features while a building
detector could emphasize edge features. If a detector detects
some blue colors in a shot, there is a high possibility for
this shot to contain a view of the sky. If there are some
vertical edges, the shot has high possibility to include
buildings. However, the interaction potential here can learn
a model which contains both color and edge features to
predict a co-occurrence of sky and building.

To design the interaction term, we borrow the commonly

used form from the MRF model, I=ay;yj, which is a
smoothing term that penalizes every dissimilar pair of
labels. However, in the MRF framework, this does not
permit the use of observations and the interaction term turns
out to model the co-occurrence only. Therefore, in MDREF,
we define the interaction potential function as,
(i, V. X) = vV (X) (5)
with parameter V and function u;(X) converting an
observation into a feature vector. Similar to the h;(X)
function in the association potential, u;j(X) can be designed
for specific usage in different domains. In our work, we use
the same function as h;(X) in the association potential, i.e.,
the PCA function, to reduce the dimensionality.

This form of interaction potential models the agreement
or disagreement between related concepts. The potential
function tries to capture the observations which support
agreement between two concepts and learns the model of
this pair-wise incorporation. Ideally, if there are enough
training data, the parameters should emphasize strongly
related concept pairs. Therefore, MDRF is designed as a
fully connected, undirected graphical model. We hope this
type of model captures useful linkages between concepts
that may not be obvious to a human but useful in
classification. However, MDRF can always be applied after
co-occurrence analysis from another source to eliminate
very weak linkages between concepts. The fully connected
graph has an exponential number of interactions based on
the number of concepts; therefore, the flexibility to choose
related concepts makes the model more efficient. As
mentioned earlier, once we set those pair-wise potentials
to zeros, the model will act just like a traditional semantic
concept detector. In that case, the model is not able to
capture the interactions between concepts and instead
makes the assumption that each concept is independent. In
that case, MDRF acts as a logistic classifier which
calculates the conditional probability of each concept given
the observation. The interaction potential function comes
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from the MRF model which is a generalization of the
MDRF model. In the MRF model, this term works as a
smoothing term to absorb the errors if the classification
terms. Although our interaction potential becomes observa-
tion dependent, it can still perform as a smoothing term to
absorb errors of the association potential. Moreover, we can
also set up a penalization for parameter V if we expected the
association potential to have better classification power than
the interaction potential. This will make the model empha-
size the association potential more and decrease the effect of
the interaction potential. It also makes the model more
flexible for application in different domains.

4.3.3 Parameter Estimation

In our MDRF model, we have two parameters, V and W, to
be estimated. The parameter learning process of MDRF will
learn both parameters simultaneously, which is a very
attractive feature of our approach. MDRF is able to achieve
the goal of training multiple classifications and modeling
the relationships between them simultaneously and does not
require additional data or further splitting of the training
data to obtain an additional held-out set for the combination
step. With the association and interaction potential func-
tions defined as above, the MDRF can be written as,

”U( ))

Vi/T”ij(x)}
(6)

Y’ here is denoted as all possible combination of vector
Y which means 2" combinations of possible concept sets, n
is the number of the concepts. Z is the partition function
which normalizes the exponential value to a probability.

Maximum likelihood estimation with a gradient descent
approach is commonly used in undirected graphical model
learning process. Given that we have M shots in our video
collection, the log-likelihood of MDRF model is written as,

P(Y|X,0) =L exp (Z log(o (v hi(X))) + 3 > v,

€S i€SjeNi

where Z = Zexp{Zlog( (y;W,.Th,-(X))) +3 > vy

icS i€S jeNi

P(rix) = T P(riae)
10) = log(P(Y1X)) = 5~ log(P(Y"[x")
> log(o (y”’WTh( "))

N RSP AATIC )

ieS jeNi

I
N

~ log(2")

(7)

However, this involves estimating the partition function
Z. Partition function Z is to simulate all possible combina-
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tions though vector Y which is the set of concepts. To get
the exact value of Z is an NP-hard problem. Therefore, we
can use various sampling methods to estimate the partition
function, i.e. Markov Chain Monte Carlo (MCMC) [35]
sampling, or an approximate Z value. In this work, we
applied the pseudo-likelihood approach [31]. Pseudo-
likelihood is a simple but solid approach to approximate
Z. It gives consistent results when the vector set of Y is
large. In pseudo-likelihood, we factorize the probability p
Y[X)=]Ip(yilyni»X). This assumes a concept is indepen-
dent to other non-related concepts. Therefore, applying a
pseudo-likelihood to the partition function, we can re-write
the partition function as,

z=11%

ieS

Z;= Z

{ }eXp{10g<0(yiVVtThi(X))) +> yiyij”v(X)}
yie{-1,1

(8)

With this formula, we assume the concepts are independent
in the partition function.

The inference step involves finding the optimal label
configuration given an observed shot [36]. The optimal
label configuration represents our estimate of the content of
that shot. These are the semantic concept predictions from
the model. There are two popular approaches for this
inference; Maximum A Posteriori (MAP) and Maximum
Posterior Marginal (MPM). MAP is widely used to estimate
the prediction for binary classifiers. It tries to estimate the
configuration which yields the highest probability given
the video shot. Exact inference would result in obtaining
the true MAP, however, this is not tractable when the
number of concepts n is large. A max-flow/min-cut [37]
type algorithm is frequently used to estimate MAP.
However, we use Mean Average Precision (MAP) as the
core metric for detection accuracy in TRECVID and this
requires us to compute the marginal probability for each
concept. Therefore, we apply MPM type inference in this
work. MPM tries to marginalize each concept variable
which is another NP-hard problem. Belief Propagation (BP)
[38] provides an efficient method to estimate the MPM
solution. BP is a commonly used inference method for
MRF models. It was first proposed to solve non-loopy
graphs but also shows stable results when applied to
loopy graphs. BP simulates flows between nodes within
the graph and estimates the marginal probabilities for each
node when the flows are stable. To reduce the computa-
tional effort in this parameter estimation process, we
proposed a generalized multi-concept discriminative ran-
dom field model (GMDRF) which unifies the computation
of the interaction and association potential using the same
method.

4.3.4 Generalized MDRF (GMDRF)

Our MDRF model is constructed from local discriminative
models combined with pair-wise interactions. However, we
realized it is not necessary to have both log and logistic
functions inside the exponent which makes the derivation
complicated and takes more computation for the partition
function. Therefore, we propose a revised version of MDRF
called generalized MDRF. The generalized MDRF can be
written as,

P(Y|X, W) =7 exp (ZMWﬁT“ii(X) +X nyJ%/VVf“U(X)>
ics ieS jeNi

i€S jENi

Z= ;exp{g)’iWihﬁ(X) +> ZyiJﬁVKf“y(X)}
9)

Basically, we eliminated the log and logistic function in
the association potential and made association potential
similar to the interaction potential. If we take the interaction
potentials to be zero, the generalized MDRF will merely be
the product of logistic classifiers, which still matches the
discriminative framework. In the generalized form, there is
only one parameter W. The parameter estimation can be
done much more easily than what we described earlier with
easier derivations using a maximum likelihood estimation
approach.

However, when we take a deep look at eq. 9, we discover
some interesting properties. If we extend our label set as
{ Y1 Y25 oo Yo Y1Y2o Y1Y35 -+ YiYjs .-y, the generalized
MDREF can be consider as a family of Generalized Linear
Model (GLM) [39]. Therefore, the value of the parameters
can be obtained by maximum likelihood estimation, which
requires iterative computational procedures. Moreover, we
can approximate the probability by,

i€S jeNi

— [T exp (¥ ua(X)) T TT exp (s W] (X))

i€S i€S jeNi

P(Y|X, W) ~ exp (Z;inﬁTuii(X) +>2 yiijgT“y'(X)>
i€

(10)

Table 4 Semantic concept extraction with MDRF.

Runs Average precision
SVM, multi-modal feature (baseline) 0.146
GMDRF with chi-square feature selection 0.148
GMDRF without chi-square feature selection 0.114
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Table 5 Comparison of logistic regression and SVM for multi-
modality fusion.

Multi-modality Comparisons Average
precision
logistic regression (color-texture+local+monolingual text) 0.146
SVM (color-texture+local+monolingual text) 0.121
logistic regression (color-texture+local+multilingual text) 0.153
SVM (color-texture+local+multilingual text) 0.126

If we approximate the probability without the partition
function, we can factorize the probability to exponential
values. This transforms the whole generalized MDRF into an
independent logistic function given the labels as { yy, y», ...,
Yno Y1¥25 Y1¥3s ---» Yi¥j» --- . In other words, we decompose
the model into several logistic models. The first n terms
denote the conditional probabilities for each semantic
concept given the observation and the remaining terms
work as the pair-wise logistic classifiers which depend on
the data. Although this decomposition assumes the
independence property for each concept given the pair-
wise dependent, in our experimental results, it provides
consistent result with eq. 6.

The parameter estimation of eq. 10 is a comparatively easy
problem. The learning process can be easily decomposed
into several logistic regression training steps. Since we
factorize the model into multiple logistic models, we also
decompose parameters into lower dimensional parameter
sets. In each logistic regression, the sub-model tries to fit the
training data to its own parameters and the overall training
time is much faster than optimizing the whole parameters
globally. This makes the generalized MDRF model more
tractable if the concept set is large. Belief propagation is still
used to estimate the marginal probabilities for each concept.
The BP inference is the same as for MDRF but follows the
modified definition of the association and interaction
potential from eq. 9.

4.3.5 Experimental Results for GMDRF

We predict the validation set and test set using models built
from our TRECVID 20005 training set and applied to the
TRECVID 2006 test data. For shots in the validation set
and testing set, predictions become our observations for this
shot. To be more specific, we have 39 different concepts
and every concept has 4 different modalities. The observa-
tion thus is a 156-dimensional vector (39x6). We adopt a
logistic function as association potential.

From Eq. (2), we know the association potential works
like a logistic regression classifier which outputs the
probability of label given the observation. Eq. (3) shows
the interaction potential function. u;(X) can be any function
to deal with the observation. V7 is the parameter of
interaction potential, which emphasizes the agreement
between two concepts and searches the observation that
supports the agreement.

Table 4 shows the performance of MDRF in the
TRECVID 2006 evaluation in comparison with a SVM
approach that does not consider inter-concept relationships.
We use feature selection method based on chi-square
statistics to filter out some concept pairs which are not
related in order to remove noises from the model. We
discovered that even when the threshold of chi-square
statistics is set as small as 0.05, very few concepts in 39
concept corpus connected to each other. Not many concepts
are related to each other in TRECVID 2006 set, and we so
didn’t obtain a significant improvement by considering the
multi-concept relationships. We also found that chi-square
feature selection is critical since without it the performance
was much worse.

4.4 Multi-modal Feature Combination
Multiple types of low-level features need to be combined in

an effective way to provide better performance than any
single type of features (Table 5).

Table 6 The high-level seman-
tic concept extraction as evalu-
ated by NIST.

Method

Official Result Mean
Average Precision

Features

SVM, multi-modality
(early fusion)
SVM, multi-modality (late fusion)

GMDRF without x* selection
GMDRF with x* selection

SVM, multi-modality (late fusion)
Borda voting

color, texture 0.099
color, texture, local feature, monolingual text  0.146
color, texture, local feature, monolingual text  0.114
color, texture, local feature, monolingual text — 0.148
color, texture, local feature, multilingual text  0.153
color, texture, local feature, multilingual 0.159

& monolingual text
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Monolingual text features are a bag-of-words represen-
tation of words spoken in a shot of dimensions of V', where
Vi is the vocabulary size of English. Multilingual text
features, on the other hand, contain both native languages
and translations (e.g., Chinese and English translation), and
is of the dimension Vgp+V-+V,, where V- and V, are the
vocabulary sizes of Chinese and Arabic, respectively. We
built text classifiers on this multi-lingual feature using SVM
with a linear kernel. We evaluated the proposed multilin-
gual text features on the development set of TRECVID’06.
Experimental results showed that multilingual text features
were remarkably more effective than monolingual text
features (i.e., English only). Multilingual run improved the
mean average precision (MAP) of the 39 concepts from
0.134 to 0.175 (30% improvement) on the held-out
development-test set. Contrasting two runs in our officially
evaluated submission also shows multilingual text features
consistently perform better than monolingual text features
(see Table 6 for the official results). In addition to the ASR
transcripts and translations by provided by NIST, text
features were also obtained using the SAIL Labs [www.
sail-technology.com] speech recognition engine for English
and Arabic speech recognition. The Arabic transcripts were
further translated into English using Google translation
[www.google.com/translate_t] through automated scripts.

To fuse results from different classifiers using different
techniques, we adopted a mixture of the early fusion and
late fusion strategy. To color and texture features are
stacked into a large feature vector of 273 dimensions (i.e.,
early fusion) due to their low dimensionality and close
relationships. In contrast, we use late fusion strategy to
combine this color-texture feature with the local feature and
the textual feature. Specifically, we trained an SVM
classifier for each concept based on each type of feature,
and apply the trained classifiers to predict the label of each
shot in the testing set. Therefore, for any shot, there will be
predictions based on color-texture feature, local feature, and
text feature, respectively. We train meta-level classifiers
using logistic regression or SVM, which take the compo-
nent prediction scores as input and output an overall
prediction. Table 5 shows the comparison between the
two meta-level classifiers with different low-level features.
Clearly, logistic regression outperforms SVM as the meta-
level classifier in this corpus. We thus choose logistic
regression to fuse the predictions based on multi-modal
features, as seen in Table 5.

5 Conclusions
Unfortunately, these experiments, as presented here, do not

lend themselves to one simple conclusion. The unfortunate
fact is that there is no one approach that consistently

outperforms others on all concepts and data sets. In fact, it is
likely that our quest for the one cure-all approach is doomed to
failure. However, this does not mean we should stop trying.
Each of the successful comparisons points to some technique
or trick that can play a role for some concept in some dataset.
The research, as results suggested, should be focused on
uncovering as many techniques as possible, and to leave it as
an engineering exercise to determine which combinations of
techniques appears to work, based on empirical evidence for a
given set of concepts and the specific collection character-
istics. This has been the approach of the Pathfinder system
[40] and others. [1], who explore different approaches and
carefully select the combination of approaches on a concept
by concept basis.

A long-term research goal is to devise methods for
predicting for a particular concept and data combination which
combination approaches are most likely to yield the best
results, without empirically trying all possible methods. This
grand scientific goal would then also result in an explanation
why some methods work for a specific concept and some don’t.

We have presented some ideas of techniques that may
contribute to improved detection performance. It is our
hope that by establishing the synergy between them
substantial progress is possible. Current detection rates are
still low for many concepts, but there is hope [41] that even
this limited detection accuracy with large numbers of
concepts will be sufficient for substantial help with
concept-based video retrieval.
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