

Sensor Modeling and Simulation

- How can we make "virtual sensors" that will pass a "Sensor Turing Test", i.e., impersonate real sensors?
- Such "virtual sensor software agents" are needed for ...
 - "Wished for" sensor simulation in iteratively-developed systems
 - Testing large systems outside dynamic range of existing sensors
 - Real sensors too valuable to divert during system development
- Hypothesis: simulating the signal is relatively easy; the hard part is getting the noise right
 - Note analogy with computer graphics: the best fakes are betrayed by being too good
 - lacking "dirt" in the world model
 - lacking distortions in the imaging system
- Essential challenge is simulating chaotic features

2005-03-11 13:12

What I Do - mws@cmu.edu

Instrument Modeling (2)

• Optimization with a "person in the loop"

Instrument Modeling

 Ray tracing and Monte Carlo approaches to generating "impulse response functions" of instruments for which we have no closed-form models

Fusion of Competing Modalities

- "Coin Tap Test" for skin integrity
 - Manual methods use mostly sound
 - Automated instruments use hammer acceleration
- We show that fusion is the best "alternative"

Stereo Capture and Display

- Optics and optical algorithms: microstereopsis
- Human factors: perceptions of cross-talk as ghosting and as blur
- Release of engineering design constraints: toward a *zoneless autostereoscopic* display

What_L_Do - mws@cmu.edu

Trinocular Stereo Camera

- HDTV cameras inconvenient for stereo (too big, too expensive, too much data to process)
- Trinocular design uses central HDTV camera with left and right outriggers for stereo capture (outriggers monochromatic, low resolution)
- Disparity generated from outrigger data stream allows synthesis of left and right HDTV stereo

2005-03-11 13:12

What I Do - mws@cmu.edu

Range from Focus Error

- Human eye focuses anomalously rapidly, as if it can *measure focus error* vs. hunt for focus point
- Dithered (longitudinally oscillating) image sensor generates a focus error signal at 2x dither frequency
- Ratio of signals at 1x and 2x dither frequency is independent of the image gray level values
- · Good application for complex on-chip processing

2005-03-11 13:12 What I Do - mws@cmu.ec

Lip-Reading Telephone Handset

- Communication between hearing and/or speech impaired users; improving audio in high noise environments (e.g., cell phones in subways)
- Local extraction of lip/tongue/teeth line drawing allows transmission of speech animation within audio channel bandwidth

2005-03-11 13:12

Vhat I Do-mws@cmu.edu

Laboratory Robotics

- Tailoring chemical or drug to function requires searching a large multidimensional space
- Robot work-cell permits uniform repetition of numerous evaluations and efficient search
- Automated repetitive thin layer chromatograph y (TLC) analyses with dynamic planning

Biotechnology Process Control

Instrumentation and distributed rule-based control of complex industrial biochemical processes, e.g., fermentation

What I Do- mass@cmu.edu 20

Scaling Relations in Robotics

- How do robot capabilities and constraints scale as their dimensions change by multiple orders of magnitude?
- For example, energy carrying capacity of small devices
 - Onboard energy reservoir ~R³
 - Internal and external friction ~R²
 - So operating time ~R
 - Conclude that small robots will need to "forage" for fuel
- Science of scaling relations have a long and (usually) successful history in engineering and life sciences
- Has not been systematically applied to robotics
- Proper analysis and application will determine, literally, "the shape of future robots"

What I Do - mws@cmu.edu

23

Power Transmission Lines

- Fault diagnosis
 - Expert system to aid set-up of microprocessor-based fault-protection relay
 - Expert system for fault-diagnosis by analysis of data captured by smart relay
- Communications
 - Investigate purported channeling of microwaves by powerline's magnetic field

Vhat I Do - mws@cmu.edu

24

- Sensor fusion using arrays of inexpensive, sensitive, but relatively non-selective sensors (nonlinear: neural net calibration)
- Gradient sensors: chemically sensitive surface, continuously-varying sensitivity in 2D (so can use image understanding tools)

High Speed Color Sensing

- RGB+IR LED-based
- Demonstrated rapid sorting of fruits and vegetables by type and ripeness

2005-03-11 13:12

What I Do - mws@cmu.edu

Finger-Tip Binary Imager

- LED + fiber-optic shadow detector array
- Demonstrated rapid identification of variety of small screws, nuts, etc

2005-03-11 13:12

What I Do - mws@cmu.edu

Palm-like Tactile Array

- PVDF piezo-electric sensor pad array
- Parallel signal digitization & processing
- Fusion into tactile pressure "video"
- Demonstrated robotic surface

C)

2005-03-11 13:12

hat I Do - mws@cmu.edu

32

Education: Sensing & Sensors

- PhD-level course covering fundamental principles of sensing, measurement, communication, digitization, networking, in context of sensors for robots and robots for sensor deployment
 - Level suitable for well prepared Master's and very well prepared Senior undergrads
- Course videotaped; distance education version drafted on CDROM

