Robust lossy detection using sparse measurements

The regular case

Balakrishnan Narayanaswamy (Joint work with Rohit Negi and Pradeep Khosla)

There's Nothing So Practical As a Good Theory

-Kurt Lewin

A graphical model for measurements

When can we reconstruct the input from the noisy, sparse measurements?

Application : Pooling Designs for population wide genetic screening L A Genetics Primer

The need for population wide genetic screening

Application: Pooling Designs for population wide genetic screening

— A Genetics Primer

The need for population wide genetic screening

Two Homologous copies of each chromosome

Application: Pooling Designs for population wide genetic screening

— A Genetics Primer

The need for population wide genetic screening

Two Homologous copies of each chromosome

Sickle-cell anemia,
Albinism, Cystic Fibrosis,
Tay-Sachs Disease,
Gaucher's Disease

Application: Pooling Designs for population wide genetic screening

— A Genetics Primer

The need for population wide genetic screening

Two Homologous copies of each chromosome

Sickle-cell anemia, Albinism, Cystic Fibrosis, Tay-Sachs Disease, Gaucher's Disease

The need for population wide genetic screening

Two Homologous copies of each chromosome

Sickle-cell anemia, Albinism, Cystic Fibrosis, Tay-Sachs Disease, Gaucher's Disease Application: Pooling Designs for population wide genetic screening Language Graphical model

Pooling designs as a sparse graphical model

Pooling designs as a sparse graphical model

Pooling designs as a sparse graphical model

Application: Pooling Designs for population wide genetic screening Graphical model

Pooling designs as a sparse graphical model

Sparse regular pooling designs due to practical constraints

Connections to many interesting problems/applications

Group Testing

Compressed sensing

Sensor networks

- LT codes / LDGM codes
- Multi-user detection
- Modeling the olfactory system

Connections to many interesting problems/applications

Group Testing

Ψ is OR function

Input/Output binary

Compressed sensing

- Sensor networks
- LT codes / LDGM codes
- Multi-user detection
- Modeling the olfactory system

Connections to many interesting problems/applications

- Group Testing
- Ψ is OR function

 Input/Output binary
- Compressed sensing

Sensor networks

- function Ψ v_1 v_2 v_3 v_4 v_4
- LT codes / LDGM codes
- Multi-user detection
- Modeling the olfactory system

- General functions Ψ
- Non-binary inputs and outputs
- Info. Theoretic
- Focus on noise
- Graph Structure
- Probabilistic priors

The capacity of sparse, regular measurements

Theorem: A rate R is <u>achievable</u> (for an allowable distortion D) if,

The capacity of sparse, regular measurements

Theorem: A rate R is <u>achievable</u> (for an allowable distortion D) if,

$$R < C_{LB}(D) = \min_{\lambda: Dis(\lambda) > D} \frac{I(\lambda)}{[H(\lambda) - H(\gamma)]}$$

The capacity of sparse, regular measurements

Theorem: A rate R is <u>achievable</u> (for an allowable distortion D) if,

$$R < C_{LB}(D) = \min_{\lambda:Dis(\lambda) > D} \frac{T(\lambda)}{[H(\lambda) - H(\gamma)]}$$

For sparse, regular measurement structures

$$T(\lambda) = -H(Y|V) + cH(\lambda) + \inf_{\kappa \text{ : sparse graph constraints}} -H(\kappa) - \sum_{a,b,o} \kappa(a,b) P_{y|v}(o|a) \log P_{y|v}(o|b)$$

Outline

- Application : Pooling Designs for genetic screening
- Related Problems
- Information theoretic formulation
- Intuition
- Illustration of the result

Some definitions

Analogs: channel coding + rate distortion

of inputs

of measurements

Distortion = (1/k) Hamming Distance(v,v')

An Information theory for measurements

Distortion = (1/k) Hamming Distance(v,v')

Error if Distortion > D

Capacity : C(D) : Maximum R such that $Pr(Error) \rightarrow 0$ as $n \rightarrow \infty$

We lower bound the Capacity: CLB(D)

Outline

- Application : Pooling Designs for genetic screening
- Related Problems
- Information theoretic formulation
- Intuition
- Illustration of the result

Intuition
Information Theory

Insight: Parallels to coding theory + rate distortion

Random Coding methods in channel coding

Intuition
Information Theory

Insight: Parallels to coding theory + rate distortion

Random Coding methods in channel coding

Can we develop a random measurement argument?

Intuition

__ Information Theory

A proof using random measurements

Random measurement configuration

→ generates codebook

Random Measurement Intuition
L Information Theory

A proof using random measurements

Random measurement configuration

→ generates codebook

A proof using random measurements

Random measurement configuration

→ generates codebook

Average Error

If average error \rightarrow 0, then for some configuration error \rightarrow 0

Information Theory

A proof using random measurements

Random measurement configuration

→ generates codebook

Choose measurement structure not codewords!

Average Error

If average error \rightarrow 0, then for some configuration error \rightarrow 0

Intuition

Analysis

Union Bounding: Gallager-Fano bounding technique

$$Pr(\text{error}|\mathbf{v} \text{ is true}) = Pr(\text{Decode to } \mathbf{v}' \text{ s.t distortion}(\mathbf{v}, \mathbf{v}') > D \mid \mathbf{v} \text{ is true})$$

$$\leq \sum_{\mathbf{v}' \neq \mathbf{v}} Pr(\text{Decode to } \mathbf{v}' \mid \mathbf{v} \text{ is true})$$

Exponential number of terms !!!

```
Intuition

L Analysis
```

Union Bounding: Gallager-Fano bounding technique

$$Pr(\text{error}|\mathbf{v} \text{ is true}) = Pr(\text{Decode to } \mathbf{v}' \text{ s.t distortion}(\mathbf{v}, \mathbf{v}') > D \mid \mathbf{v} \text{ is true})$$

$$\leq \sum_{\mathbf{v}' \neq \mathbf{v}} Pr(\text{Decode to } \mathbf{v}' \mid \mathbf{v} \text{ is true})$$

Exponential number of terms !!!

Group terms into polynomial number of groups g using symmetry

$$Pr(\text{error}|\mathbf{v} \text{ is true}) \leq \sum_{g} (\text{number of } \mathbf{v}' \text{ in } g) Pr(\text{Decode to } \mathbf{v}' \text{ in } g \mid \mathbf{v} \text{ is true})$$

 $\leq |g| \max_{g} (\text{number of } \mathbf{v}' \text{ in } g) Pr(\text{Decode to } \mathbf{v}' \text{ in } g \mid \mathbf{v} \text{ is true})$

Intuition

L Analysis

Union Bounding: Gallager-Fano bounding technique

$$Pr(\text{error}|\mathbf{v} \text{ is true}) = Pr(\text{Decode to } \mathbf{v}' \text{ s.t distortion}(\mathbf{v}, \mathbf{v}') > D \mid \mathbf{v} \text{ is true})$$

$$\leq \sum_{\mathbf{v}' \neq \mathbf{v}} Pr(\text{Decode to } \mathbf{v}' \mid \mathbf{v} \text{ is true})$$

Exponential number of terms !!!

Group terms into polynomial number of groups g using symmetry

$$Pr(\text{error}|\mathbf{v} \text{ is true}) \leq \sum_{g} (\text{number of } \mathbf{v}' \text{ in } g) Pr(\text{Decode to } \mathbf{v}' \text{ in } g \mid \mathbf{v} \text{ is true})$$

 $\leq |g| \max_{g} (\text{number of } \mathbf{v}' \text{ in } g) Pr(\text{Decode to } \mathbf{v}' \text{ in } g \mid \mathbf{v} \text{ is true})$

Easy when the codewords are i.i.d!

Intuition

L Analysis

Complication - Loss of Symmetry: Non-i.i.d codewords

Complication - Loss of Symmetry: Non-i.i.d codewords

Complication - Loss of Symmetry: Non-i.i.d codewords

Classical proof doesn't work!

Intuition

L Analysis

Reintroducing Symmetry: Permutation invariant measurement ensembles

Reintroducing Symmetry: Permutation invariant measurement ensembles

$$P_{\mathbf{v}}(\mathbf{X})$$

depends only on the type γ of \mathbf{v}

Y

[1/2

1/2]

Reintroducing Symmetry:

Permutation invariant measurement ensembles

$$P_{\mathbf{v}}(\mathbf{X})$$

depends only on the type γ of ${\bf v}$

$$Q_{\mathbf{v}',\mathbf{v}}(\mathbf{X}'|\mathbf{X})$$

depends only on the joint type λ of \mathbf{v} and \mathbf{v}'

Reintroducing Symmetry:

Permutation invariant measurement ensembles

$$P_{\mathbf{v}}(\mathbf{X})$$

depends only on the type γ of \mathbf{v}

$$Q_{\mathbf{v}',\mathbf{v}}(\mathbf{X}'|\mathbf{X})$$

depends only on the joint type λ of \mathbf{v} and \mathbf{v}'

Distortion

Intuition

L Analysis

Using the symmetry

$$\begin{array}{ll} Pr(\text{error}|\mathbf{v} \text{ is true}) & \leq & \sum_g (\text{number of } \mathbf{v}' \text{ in } g) Pr(\text{Decode to } \mathbf{v}' \text{ in } g \mid \mathbf{v} \text{ is true} \) \\ & \leq & |g| \max_g (\text{number of } \mathbf{v}' \text{ in } g) Pr(\text{Decode to } \mathbf{v}' \text{ in } g \mid \mathbf{v} \text{ is true}) \end{array}$$

```
Intuition

L Analysis
```

Using the symmetry

```
\begin{array}{ll} Pr(\text{error}|\mathbf{v} \text{ is true}) & \leq & \sum_g (\text{number of } \mathbf{v}' \text{ in } g) Pr(\text{Decode to } \mathbf{v}' \text{ in } g \mid \mathbf{v} \text{ is true} \ ) \\ & \leq & |g| \max_g (\text{number of } \mathbf{v}' \text{ in } g) Pr(\text{Decode to } \mathbf{v}' \text{ in } g \mid \mathbf{v} \text{ is true}) \end{array}
```

 $Pr(\text{Decode to } \mathbf{v}' \text{ in } g \mid \mathbf{v} \text{ is true})$

Depends only on $P_{\mathbf{v}}(\mathbf{X})$ and $Q_{\mathbf{v}',\mathbf{v}}(\mathbf{X}'|\mathbf{X})$ i.e γ and λ

```
Intuition

L Analysis
```

Using the symmetry

$$Pr(\text{error}|\mathbf{v} \text{ is true}) \leq \sum_g (\text{number of } \mathbf{v}' \text{ in } g) Pr(\text{Decode to } \mathbf{v}' \text{ in } g \mid \mathbf{v} \text{ is true})$$

$$\leq |g| \max_g (\text{number of } \mathbf{v}' \text{ in } g) Pr(\text{Decode to } \mathbf{v}' \text{ in } g \mid \mathbf{v} \text{ is true})$$

 $Pr(\text{Decode to } \mathbf{v}' \text{ in } g \mid \mathbf{v} \text{ is true})$

Depends only on $P_{\mathbf{v}}(\mathbf{X})$ and $Q_{\mathbf{v}',\mathbf{v}}(\mathbf{X}'|\mathbf{X})$ i.e γ and λ

Use the joint types λ as the symmetry groups g

= $Pr(Decode to \mathbf{v}' at \lambda \mid \mathbf{v} is true)$

Using the symmetry

$$\begin{array}{ll} Pr(\text{error}|\mathbf{v} \text{ is true}) & \leq & \sum_g (\text{number of } \mathbf{v}' \text{ in } g) Pr(\text{Decode to } \mathbf{v}' \text{ in } g \mid \mathbf{v} \text{ is true} \) \\ & \leq & |g| \max_g (\text{number of } \mathbf{v}' \text{ in } g) Pr(\text{Decode to } \mathbf{v}' \text{ in } g \mid \mathbf{v} \text{ is true}) \end{array}$$

 $Pr(\text{Decode to } \mathbf{v}' \text{ in } g \mid \mathbf{v} \text{ is true})$

Depends only on $P_{\mathbf{v}}(\mathbf{X})$ and $Q_{\mathbf{v}',\mathbf{v}}(\mathbf{X}'|\mathbf{X})$ i.e γ and λ

Use the joint types λ as the symmetry groups g

= $Pr(\text{Decode to } \mathbf{v}' \text{ at } \lambda \mid \mathbf{v} \text{ is true})$

 $Pr(\text{error}|\mathbf{v} \text{ is true}) \leq |\lambda| \max_{\lambda}(\text{number of } \mathbf{v}' \text{ at } \lambda) Pr(\text{Decode to } \mathbf{v}' \text{ at } \lambda \mid \mathbf{v} \text{ is true})$

Only a polynomial number of joint types λ

Intuition

L Analysis

Some combinatorics and some large deviations

Number of
$$\mathbf{v}'$$
 at $\lambda \leq 2^{k[H(\lambda)-H(\gamma)]}$

Method of types

Intuition

Analysis

Some combinatorics and some large deviations

Number of
$$\mathbf{v}'$$
 at $\lambda \leq 2^{k[H(\lambda)-H(\gamma)]}$

Method of types

$$Pr(\text{Decode to } \mathbf{v}' \text{ at } \lambda \mid \mathbf{v} \text{ is true}) = Pr[P(\mathbf{y}|\mathbf{v}') > P(\mathbf{y}|\mathbf{v})]$$

Intuition — Analysis

Some combinatorics and some large deviations

Number of
$$\mathbf{v}'$$
 at $\lambda \leq 2^{k[H(\lambda)-H(\gamma)]}$ Method of types

$$Pr(\text{Decode to } \mathbf{v}' \text{ at } \lambda \mid \mathbf{v} \text{ is true}) = Pr[P(\mathbf{y}|\mathbf{v}') > P(\mathbf{y}|\mathbf{v})]$$

Large deviations for sparse regular measurements

$$\left| \frac{1}{N} \log \left(\frac{P(\mathbf{y}|\mathbf{v})}{E[P(\mathbf{y}|\mathbf{v})]} \right) \to T(\lambda) \right|$$

Some combinatorics and some large deviations

Number of
$$\mathbf{v}'$$
 at $\lambda \leq 2^{k[H(\lambda)-H(\gamma)]}$ Method of types

$$Pr(\text{Decode to } \mathbf{v}' \text{ at } \lambda \mid \mathbf{v} \text{ is true}) = Pr[P(\mathbf{y}|\mathbf{v}') > P(\mathbf{y}|\mathbf{v})]$$

Large deviations for sparse regular measurements

$$\frac{1}{N} \log \left(\frac{P(\mathbf{y}|\mathbf{v})}{E[P(\mathbf{y}|\mathbf{v})]} \right) \to T(\lambda)$$

Introduce tilting distributions

 $Pr(\text{Decode to } \mathbf{v}' \text{ at } \lambda \mid \mathbf{v} \text{ is true}) \leq 2^{-nT(\lambda)}$

Result: Lower Bound on Capacity

A rate R is <u>achievable</u> for a joint type λ is

$$\frac{T(\lambda)}{[H(\lambda) - H(\gamma)]}$$

Result: Lower Bound on Capacity

A rate R is <u>achievable</u> for a joint type λ is

$$R < \frac{T(\lambda)}{[H(\lambda) - H(\gamma)]}$$

A rate R is <u>achievable</u> for a distortion D if

$$R < C_{LB}(D) = \min_{\lambda: Dis(\lambda) > D} \frac{T(\lambda)}{[H(\lambda) - H(\gamma)]}$$

Result: Lower Bound on Capacity

For sparse, regular measurement structures

$$T(\lambda) = -H(Y|V) + cH(\lambda) + \inf_{\kappa \text{ : sparse graph constraints}} -H(\kappa) - \sum_{a,b,o} \kappa(a,b) P_{y|v}(o|a) \log P_{y|v}(o|b)$$

A rate R is achievable for a distortion D if

$$R < C_{LB}(D) = \min_{\lambda:Dis(\lambda) > D} \frac{T(\lambda)}{[H(\lambda) - H(\gamma)]}$$

Outline

- Application : Pooling Designs for genetic screening
- Related Problems
- Information theoretic formulation
- Intuition
- Illustration of the result

Capacity predicts performance of practical decoder

Excellent agreement for very sparse priors

Insights

- 1. Analog between measurements and
 - communication/coding
- 2. Random Measurements Argument
- 3. Symmetry through permutation invariance
- 4. Method of Types + Large Deviation
- 5. Tightness/Relevance of the result

5.00

More combinatorics

Suppose all pools are of size c All inputs are in alphabet of size L

δ Type/distribution over L^c with marginals Υ

Joint type/distribution over (L^c , L^c) with marginals λ

More combinatorics

Suppose all pools are of size c All inputs are in alphabet of size L

δ Type/distribution over L^c with marginals Υ

K

Joint type/distribution over (L^c , L^c) with marginals λ

$$P_m(\vec{\mathbf{Z}}) = P^{\vec{\gamma}, \vec{\delta}} = \begin{cases} 2^{-ncH(\vec{\gamma})} & \vec{\delta} \text{ consistent with } \vec{\gamma} \\ 0 & \text{otherwise} \end{cases}$$

$$P_{m,m'}(\vec{\mathbf{Z}},\vec{\mathbf{Z'}}) = P^{\vec{\boldsymbol{\lambda}},\vec{\boldsymbol{\kappa}}} = \begin{cases} 2^{-ncH(\vec{\boldsymbol{\lambda}})} & \vec{\boldsymbol{\kappa}} \text{ consistent with } \vec{\boldsymbol{\lambda}} \\ 0 & \text{otherwise} \end{cases}$$

The capacity of sparse, regular measurements

Theorem : A rate R is <u>achievable</u> (for an allowable distortion D) if,

$$R < C_{LB}(D) = \min_{\lambda:Dis(\lambda) > D} \frac{T(\lambda)}{[H(\lambda) - H(\gamma)]}$$

For sparse, regular measurement structures

$$T(\lambda) = -H(Y|V) + cH(\lambda) + \inf_{\kappa \text{ : sparse graph constraints}} -H(\kappa) - \sum_{a,b,o} \kappa(a,b) P_{y|v}(o|a) \log P_{y|v}(o|b)$$