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When can we reconstruct the input from the noisy,

sparse measurements ?
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Pooling designs as a sparse graphical model
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Pooling designs as a sparse graphical model
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Sparse regular pooling designs due to practical constraints
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A detour
L Related Problems

Connections to many interesting problems/applications

: W is OR function
" Group Testing = General functions W

Input/Output binary
- Compressed SenSing Compute

function W

" Non-binary inputs

and outputs

2
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= Sensor networks @ = FOCUS ON Noise
s
" T codes / LDGM codes " Graph Structure

: : " Probabilistic priors
® Multi-user detection

" Modeling the olfactory system
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The capacity of sparse, regular measurements

Theorem : A rate R is achievable (for an
allowable distortion D) if,

- I'(A)
R < CLp(D) = )\;Dg(1>1\1)>D H(\) — H(v)]

For sparse, regular measurement structures

T(\) = —H(Y|V)+cH\) +
inf —H(r) = Y £(a,b)Py,(ola)log Py, (olb)

K . sparse graph constraints ;
a,b,o



" Application : Pooling Designs for genetic screening

m Related Problems
" Information theoretic formulation
" Intuition

m ||lustration of the result



Problem Statement
L Some definitions

Analogs : channel coding + rate distortion
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Problem Statement
L_ What we want

An Information theory for measurements
# of inputs

Rate R=k/n=
/ # of measurements

Distortion = (1/k) Hamming Distance(v,Vv’)

Error if Distortion > D

Capacity : C(D) : Maximum R such that

Pr(Error) > 0as n -oo

We lower bound the Capacity : Cs(D)
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Random Coding methods
in channel coding

Can we develop a random

measurement argument ?
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Random measurement configuration
Random
Measurement

— generates codebook

— TS

If average error - 0, then

i

for some configuration error > 0 12




Intuition

L information Theory

Choose measurement structure

not codewords!
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g

|g| max(number of v’ in g) Pr(Decode to v’ in g | v is true)
g

VAN

Easy when the codewords are i.i.d |
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Complication - Loss of Symmetry : Non-i.i.d codewords

Change one
Input

Changes only
a few outputs

00000

Classical proof doesn’t work !
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Using the symmetry

Pr(error|v is true) < Z(number of v/ in g)Pr(Decode to v' in g | v is true )
g
< |g| max(number of v’ in ¢g)Pr(Decode to v’ in g | v is true)
g

Pr(Decode to v' in g | v is true)

Depends only on P, (X) and Qv (X'|X) i.e 7 and A

Use the joint types A as the symmetry groups g

= Pr(Decode to v’ at \ | v is true)

Pr(error|v is true) < |\ mixx(number of v/ at A\)Pr(Decode to v' at A | v is true)

Only a polynomial number of joint types A




Intuition
L Analysis

Some combinatorics and some large deviations

Number of v/ at \ < 2MHN)~H()




Intuition
L Analysis

Some combinatorics and some large deviations

Number of v/ at \ < 2MHN)~H()

Pr(Decode to v' at A\ | v is true) = Pr[P(y|v') > P(y|v)]




Intuition
L Analysis

Some combinatorics and some large deviations

Number of v/ at \ < 2FHAN)=H()]

Pr(Decode to v' at A\ | v is true) = Pr[P(y|v') > P(y|v)]

Large deviations for sparse regular measurements




Intuition
L Analysis

Some combinatorics and some large deviations

Number of v/ at \ < 2FHAN)=H()]

Pr(Decode to v' at A\ | v is true) = Pr[P(y|v') > P(y|v)]

Large deviations for sparse regular measurements

N

L og (EP(y\V))]) N

Introduce tilting distributions

Pr(Decode to v at \ v is true) < 9—nT(A)



Intuition
L Analysis

Result : Lower Bound on Capacity
# of inputs

Rate R=k/n=
/ # of measurements

A rate R is achievable for a joint type A is

R <



Intuition
L Analysis

Result : Lower Bound on Capacity
# of inputs

Rate R=k/n=
/ # of measurements

A rate R is achievable for a distortion D if

- | T'(A)
R < Crp(D) = A:D£1%>D H(\) — H(v)]

19




Intuition
L Analysis

Result : Lower Bound on Capacity

# of inputs
# of measurements

Rate R=k/n=

For SpParse, regular measurement structures

T(N) = —HY|V)+cH()\) +
inf —H(k) — Z k(a,b) Py, (ola)log Py, (o|b)

K . sparse graph constraints 7
a,b,o

A rate R is achievable for a distortion D if

| I\
R < Crp(D) = )\:Dgl(lil)>p H(\) — H(7)
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lllustration of the result
L Tightness

Capacity predicts performance of practical decoder

Rate R=k/n= # of inputs
# of measurements
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Distortion allowed .002
Probability of 0 = .9

3.75 Very low noise Achievable Rate
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1.25 Performance of L1
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lllustration of the result
L Tightness

Excellent agreement for very sparse priors

Rate R=k/n= # of inputs
# of measurements

5.00

Distortion allowed .002 Achievable Rate

Probability of 0 = .99 =
3.75 Very low noise )

2.50

Performance of L1
decoding

|.25

3 4 5 6 7 8

Pool size —>
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Conclusion ‘

I—Recap ‘ ‘
o0

1.Analog between measurements and ®

communication/coding

s

2.Random Measurements Argument

3.Symmetry through permutation invariance

4.Method of Types + Large Deviation

5.00
2.50
0

5.Tightness/Relevance of the result T
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More combinatorics

Suppose all pools are of size c
All inputs are in alphabet of size L

O Type/distribution over L with marginals Y

Joint type/distribution over (L€, L¢) with
marginals A

P (Z’) _ pYS 2—neH(¥) § consistent with 97
N 0 otherwise

& - T = 9—nc (%) R consistent with X
Pm.m’(za ,) P)\’n — {

0 otherwise
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Look Ahead
L Main Result

The capacity of sparse, regular measurements

Theorem : A rate R is achievable (for an
allowable distortion D) if,
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For sparse, regular measurement structures
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