# Robust lossy detection using sparse measurements

The regular case

Balakrishnan Narayanaswamy (Joint work with Rohit Negi and Pradeep Khosla)

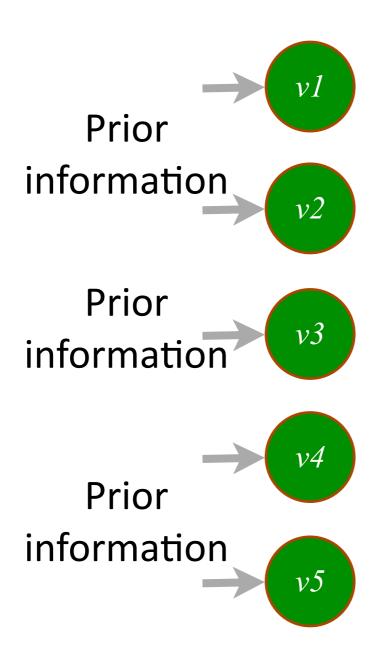
There's Nothing So Practical As a Good Theory

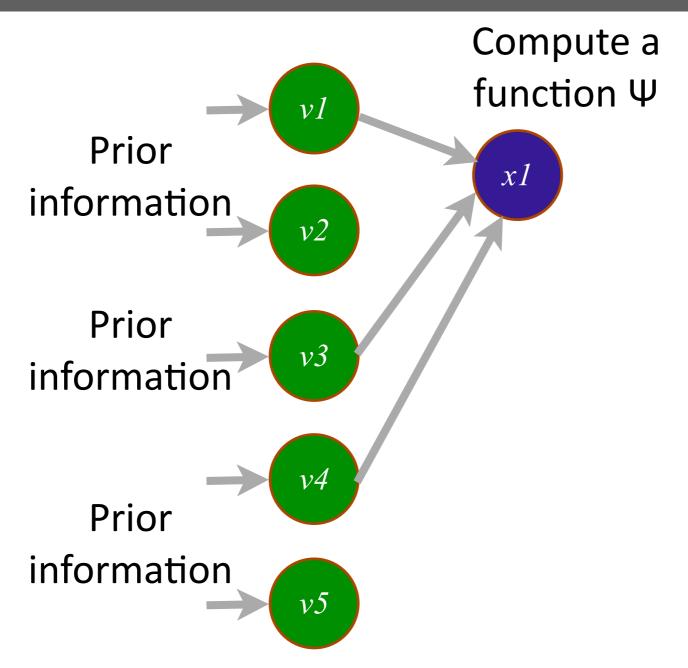
-Kurt Lewin

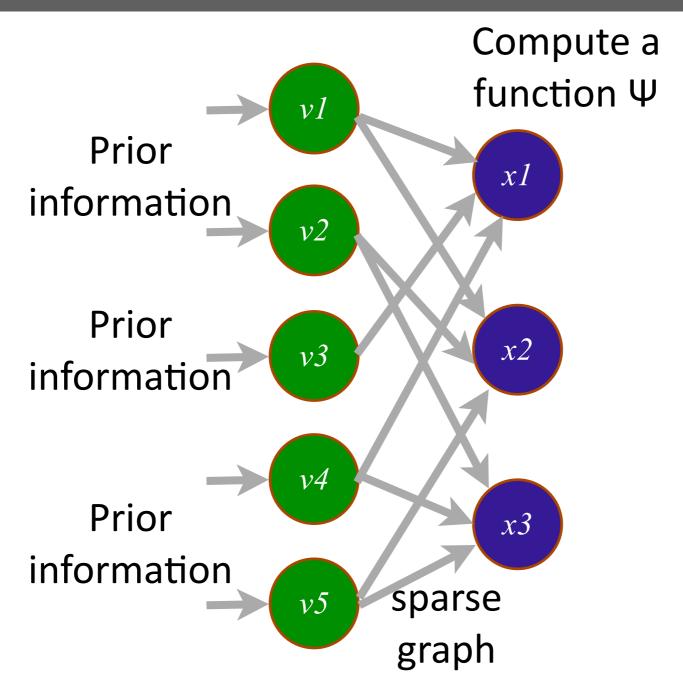


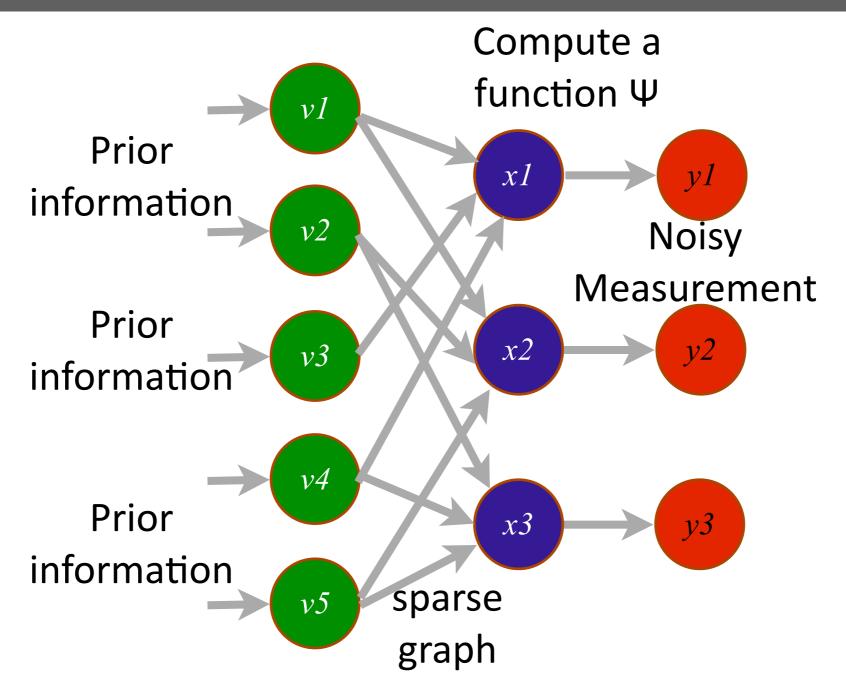




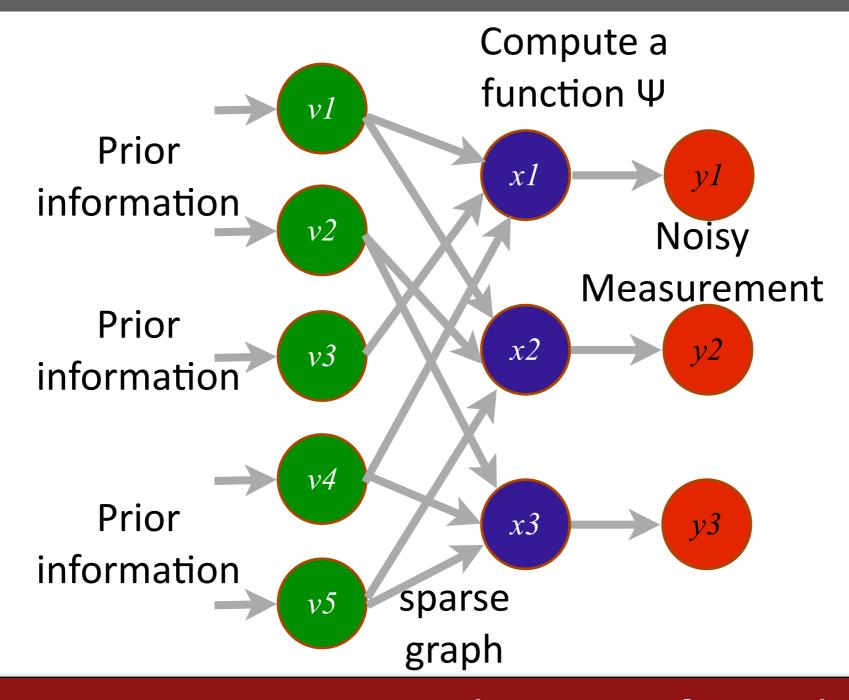








#### A graphical model for measurements



When can we reconstruct the input from the noisy, sparse measurements?

Application : Pooling Designs for population wide genetic screening L A Genetics Primer

# The need for population wide genetic screening

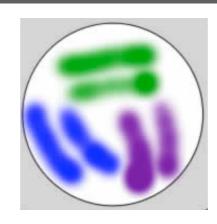
Application: Pooling Designs for population wide genetic screening

— A Genetics Primer

# The need for population wide genetic screening







Two Homologous copies of each chromosome

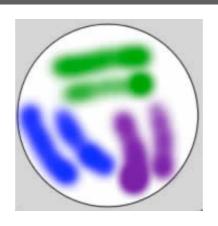
Application: Pooling Designs for population wide genetic screening

— A Genetics Primer

# The need for population wide genetic screening







Two Homologous copies of each chromosome

Sickle-cell anemia,
Albinism, Cystic Fibrosis,
Tay-Sachs Disease,
Gaucher's Disease

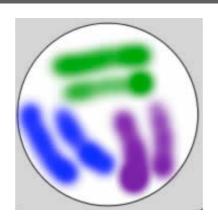
Application: Pooling Designs for population wide genetic screening

— A Genetics Primer

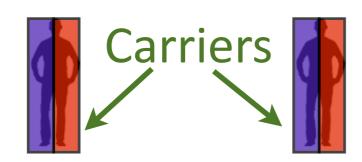
## The need for population wide genetic screening







Two Homologous copies of each chromosome

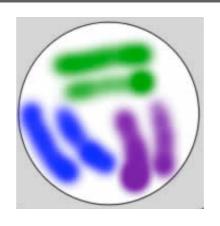


Sickle-cell anemia, Albinism, Cystic Fibrosis, Tay-Sachs Disease, Gaucher's Disease

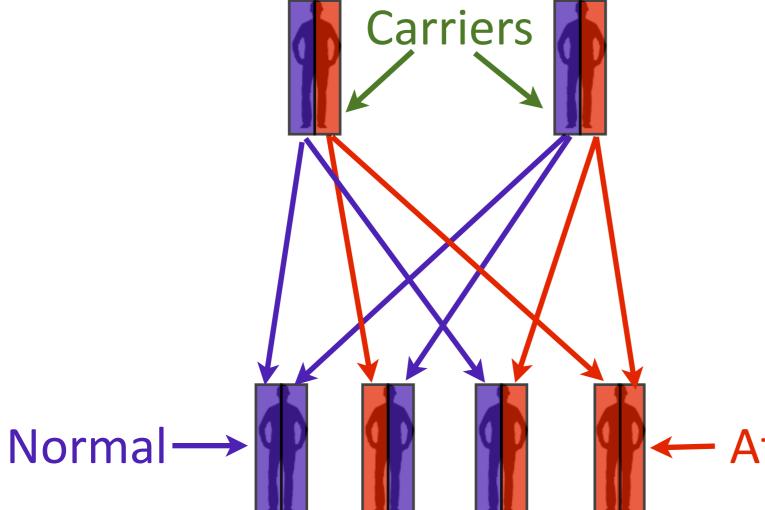
## The need for population wide genetic screening





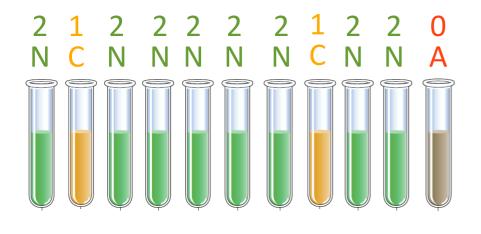


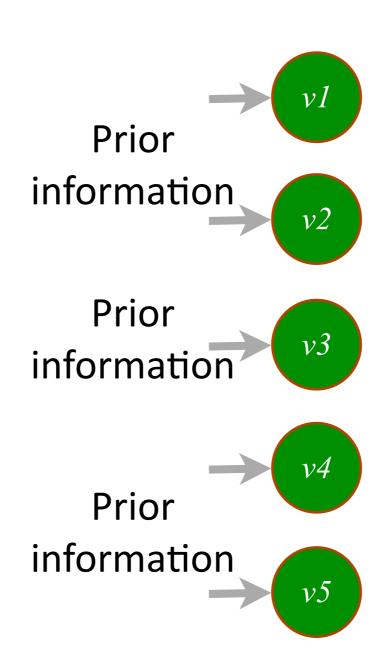
Two Homologous copies of each chromosome



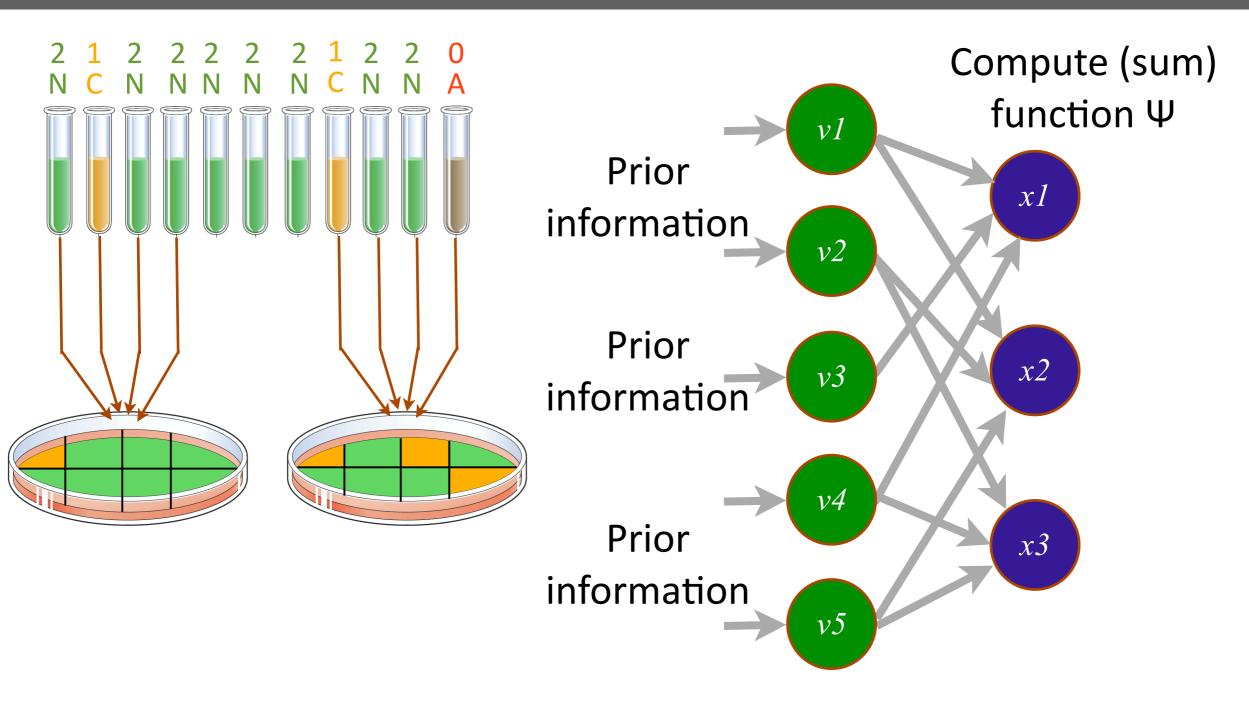
Sickle-cell anemia, Albinism, Cystic Fibrosis, Tay-Sachs Disease, Gaucher's Disease Application: Pooling Designs for population wide genetic screening Language Graphical model

## Pooling designs as a sparse graphical model

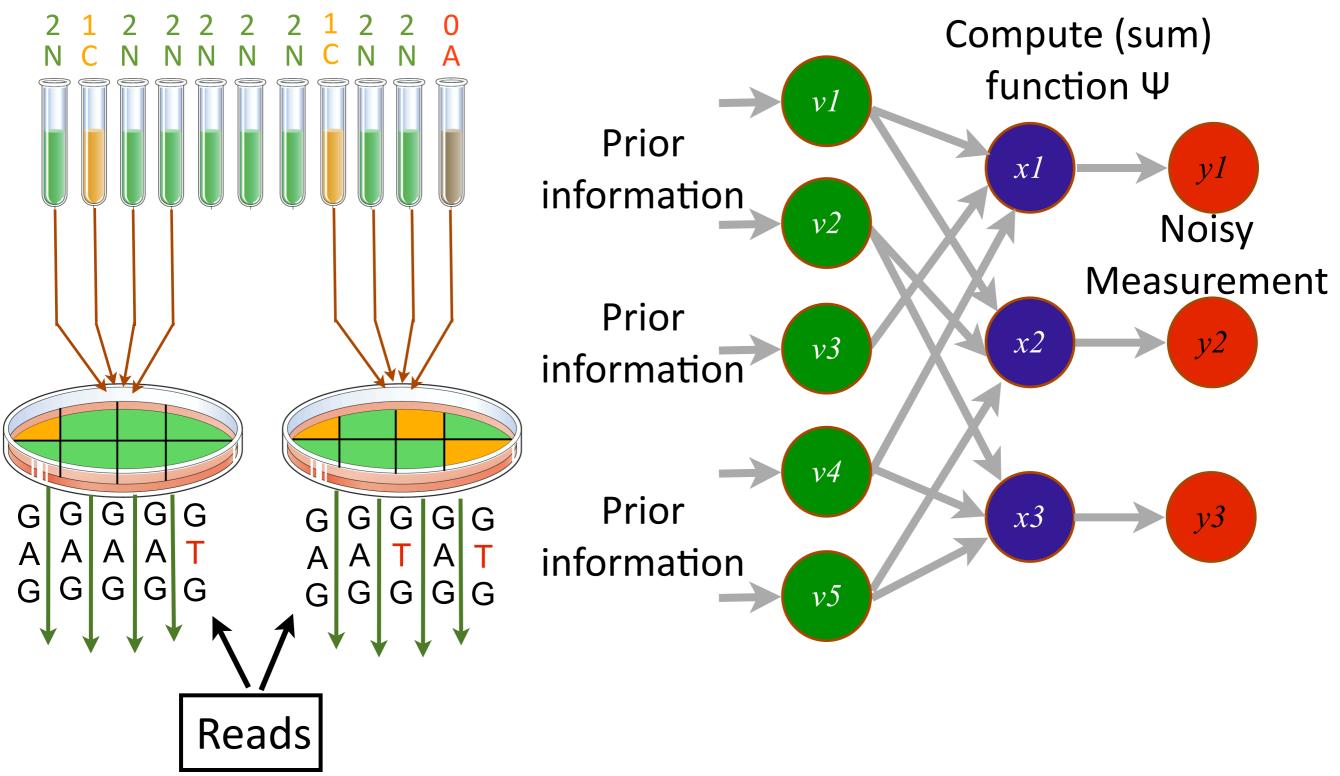




# Pooling designs as a sparse graphical model

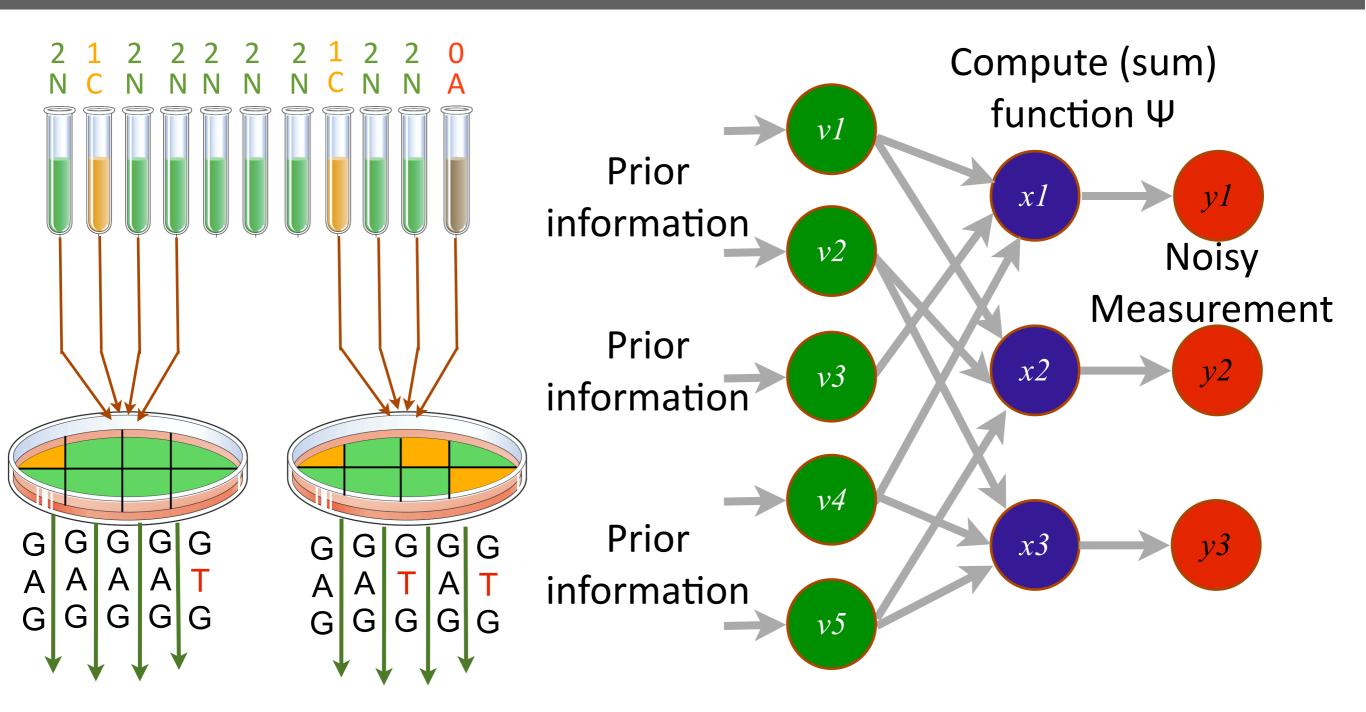


## Pooling designs as a sparse graphical model



Application: Pooling Designs for population wide genetic screening Graphical model

#### Pooling designs as a sparse graphical model



Sparse regular pooling designs due to practical constraints

# Connections to many interesting problems/applications

Group Testing

Compressed sensing

Sensor networks



- LT codes / LDGM codes
- Multi-user detection
- Modeling the olfactory system

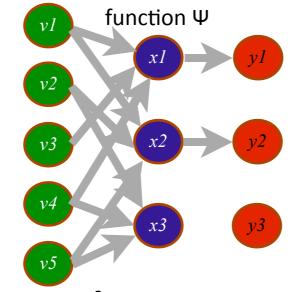
# Connections to many interesting problems/applications

Group Testing

Ψ is OR function

Input/Output binary

Compressed sensing



- Sensor networks
- LT codes / LDGM codes
- Multi-user detection
- Modeling the olfactory system

# Connections to many interesting problems/applications

- Group Testing
- Ψ is OR function

  Input/Output binary
- Compressed sensing

Sensor networks

- function  $\Psi$   $v_1$   $v_2$   $v_3$   $v_4$   $v_4$
- LT codes / LDGM codes
- Multi-user detection
- Modeling the olfactory system

- General functions Ψ
- Non-binary inputs and outputs
- Info. Theoretic
- Focus on noise
- Graph Structure
- Probabilistic priors

#### The capacity of sparse, regular measurements

Theorem: A rate R is <u>achievable</u> (for an allowable distortion D) if,

#### The capacity of sparse, regular measurements

Theorem: A rate R is <u>achievable</u> (for an allowable distortion D) if,

$$R < C_{LB}(D) = \min_{\lambda: Dis(\lambda) > D} \frac{I(\lambda)}{[H(\lambda) - H(\gamma)]}$$

## The capacity of sparse, regular measurements

Theorem: A rate R is <u>achievable</u> (for an allowable distortion D) if,

$$R < C_{LB}(D) = \min_{\lambda:Dis(\lambda) > D} \frac{T(\lambda)}{[H(\lambda) - H(\gamma)]}$$

#### For sparse, regular measurement structures

$$T(\lambda) = -H(Y|V) + cH(\lambda) + \inf_{\kappa \text{ : sparse graph constraints}} -H(\kappa) - \sum_{a,b,o} \kappa(a,b) P_{y|v}(o|a) \log P_{y|v}(o|b)$$

#### Outline

- Application : Pooling Designs for genetic screening
- Related Problems
- Information theoretic formulation
- Intuition
- Illustration of the result

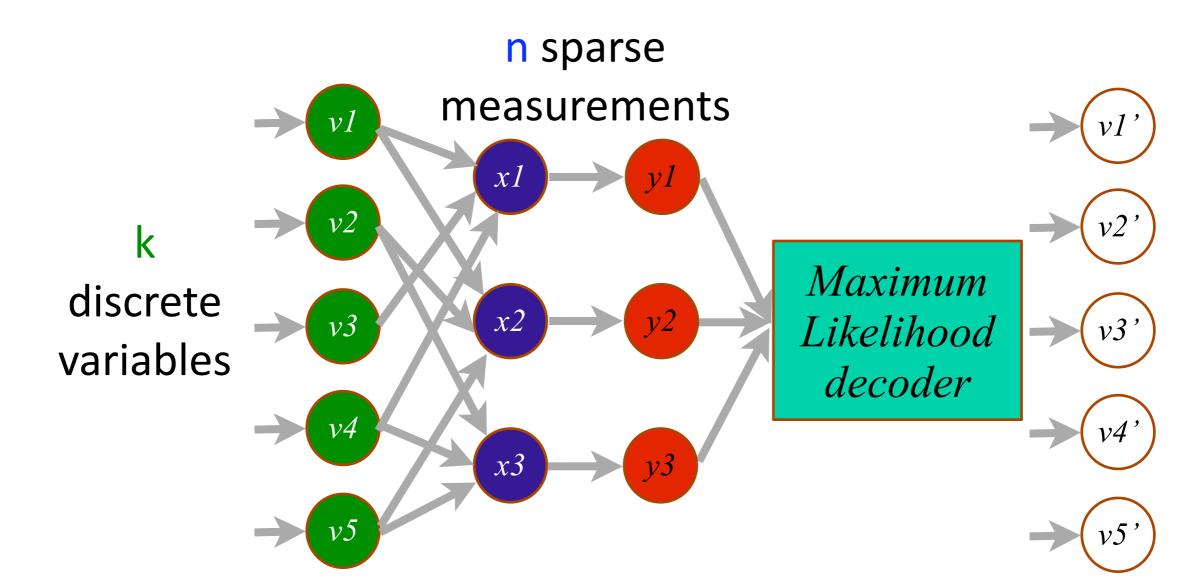
Some definitions

## Analogs: channel coding + rate distortion

# of inputs

# of measurements

Distortion = (1/k) Hamming Distance(v,v')



# An Information theory for measurements

Distortion = (1/k) Hamming Distance(v,v')

Error if Distortion > D

Capacity : C(D) : Maximum R such that  $Pr(Error) \rightarrow 0$  as  $n \rightarrow \infty$ 

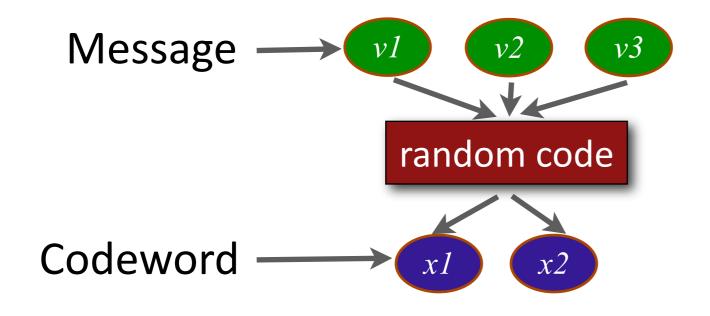
We lower bound the Capacity: CLB(D)

#### Outline

- Application : Pooling Designs for genetic screening
- Related Problems
- Information theoretic formulation
- Intuition
- Illustration of the result

Intuition
Information Theory

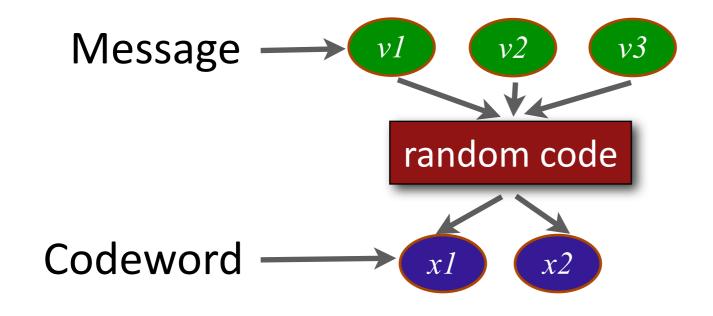
## Insight: Parallels to coding theory + rate distortion



Random Coding methods in channel coding

Intuition
Information Theory

## Insight: Parallels to coding theory + rate distortion



Random Coding methods in channel coding

Can we develop a random measurement argument?

Intuition

\_\_ Information Theory

# A proof using random measurements

Random measurement configuration

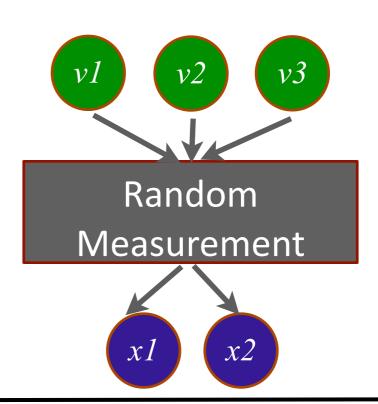
→ generates codebook

Random Measurement Intuition
L Information Theory

#### A proof using random measurements

Random measurement configuration

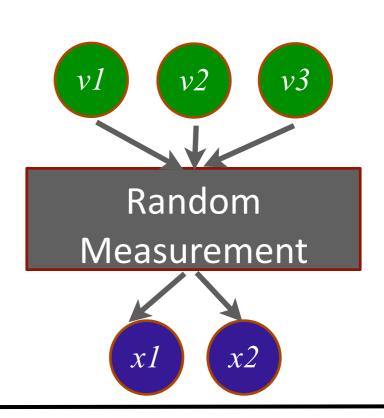
→ generates codebook

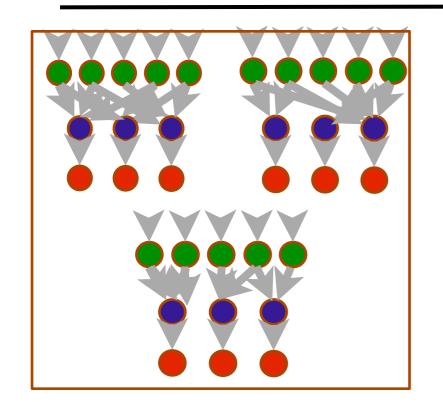


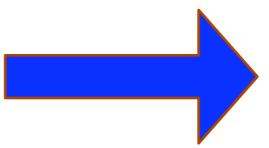
#### A proof using random measurements

Random measurement configuration

→ generates codebook







# Average Error

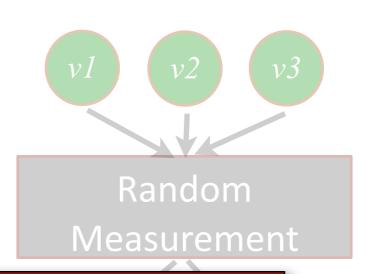
If average error  $\rightarrow$  0, then for some configuration error  $\rightarrow$  0

Information Theory

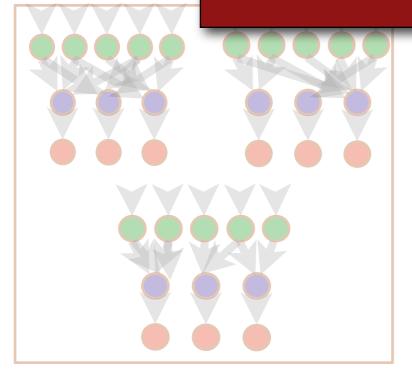
#### A proof using random measurements

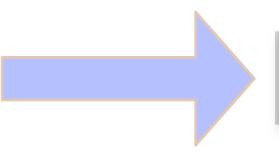
Random measurement configuration

→ generates codebook



Choose measurement structure not codewords!





Average Error

If average error  $\rightarrow$  0, then for some configuration error  $\rightarrow$  0

Intuition

Analysis

# Union Bounding: Gallager-Fano bounding technique

$$Pr(\text{error}|\mathbf{v} \text{ is true}) = Pr(\text{Decode to } \mathbf{v}' \text{ s.t distortion}(\mathbf{v}, \mathbf{v}') > D \mid \mathbf{v} \text{ is true})$$

$$\leq \sum_{\mathbf{v}' \neq \mathbf{v}} Pr(\text{Decode to } \mathbf{v}' \mid \mathbf{v} \text{ is true})$$

Exponential number of terms !!!

```
Intuition

L Analysis
```

# Union Bounding: Gallager-Fano bounding technique

$$Pr(\text{error}|\mathbf{v} \text{ is true}) = Pr(\text{Decode to } \mathbf{v}' \text{ s.t distortion}(\mathbf{v}, \mathbf{v}') > D \mid \mathbf{v} \text{ is true})$$

$$\leq \sum_{\mathbf{v}' \neq \mathbf{v}} Pr(\text{Decode to } \mathbf{v}' \mid \mathbf{v} \text{ is true})$$

Exponential number of terms !!!

#### Group terms into polynomial number of groups g using symmetry

$$Pr(\text{error}|\mathbf{v} \text{ is true}) \leq \sum_{g} (\text{number of } \mathbf{v}' \text{ in } g) Pr(\text{Decode to } \mathbf{v}' \text{ in } g \mid \mathbf{v} \text{ is true})$$
  
  $\leq |g| \max_{g} (\text{number of } \mathbf{v}' \text{ in } g) Pr(\text{Decode to } \mathbf{v}' \text{ in } g \mid \mathbf{v} \text{ is true})$ 

Intuition

L Analysis

# Union Bounding: Gallager-Fano bounding technique

$$Pr(\text{error}|\mathbf{v} \text{ is true}) = Pr(\text{Decode to } \mathbf{v}' \text{ s.t distortion}(\mathbf{v}, \mathbf{v}') > D \mid \mathbf{v} \text{ is true})$$

$$\leq \sum_{\mathbf{v}' \neq \mathbf{v}} Pr(\text{Decode to } \mathbf{v}' \mid \mathbf{v} \text{ is true})$$

Exponential number of terms !!!

#### Group terms into polynomial number of groups g using symmetry

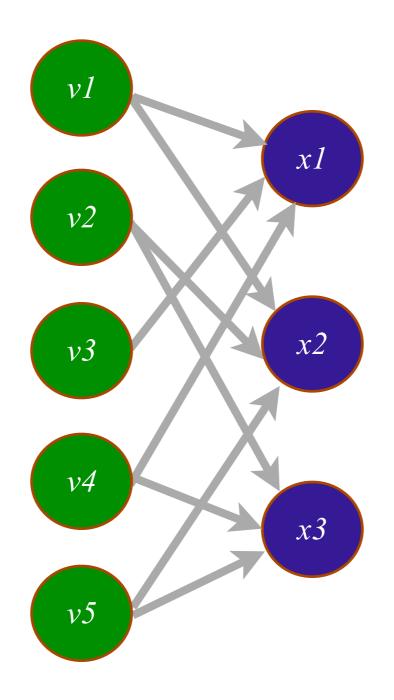
$$Pr(\text{error}|\mathbf{v} \text{ is true}) \leq \sum_{g} (\text{number of } \mathbf{v}' \text{ in } g) Pr(\text{Decode to } \mathbf{v}' \text{ in } g \mid \mathbf{v} \text{ is true})$$
  
  $\leq |g| \max_{g} (\text{number of } \mathbf{v}' \text{ in } g) Pr(\text{Decode to } \mathbf{v}' \text{ in } g \mid \mathbf{v} \text{ is true})$ 

Easy when the codewords are i.i.d!

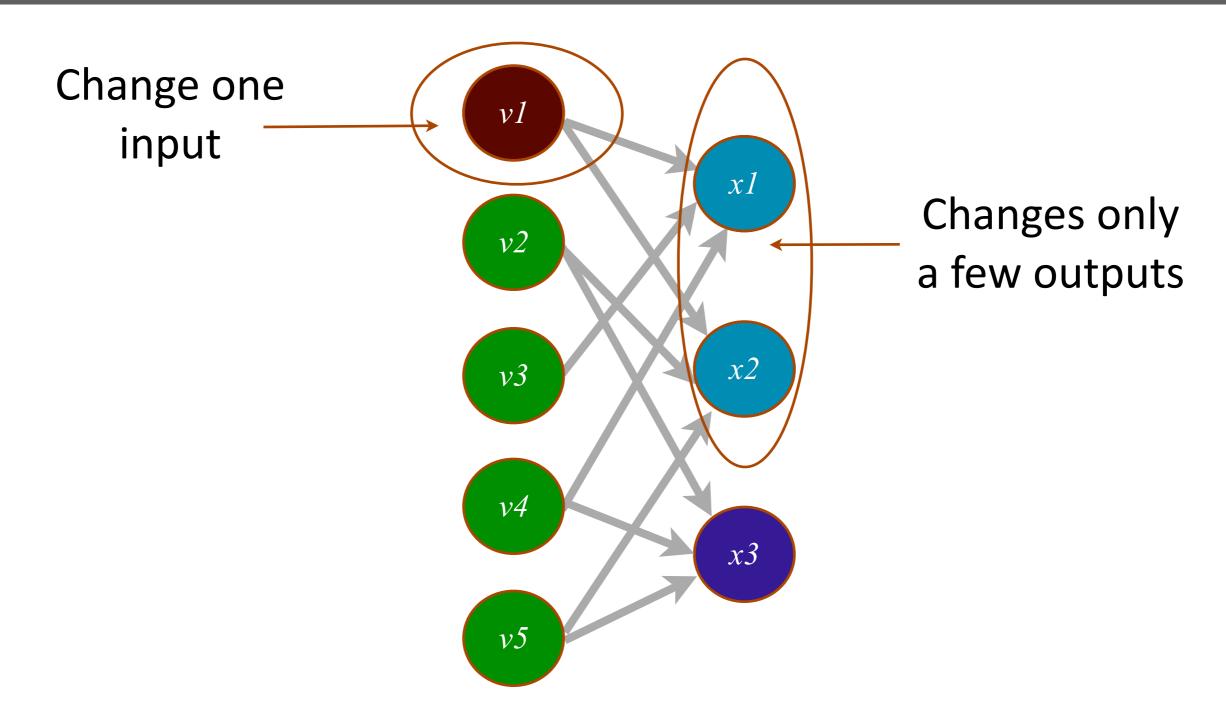
Intuition

L Analysis

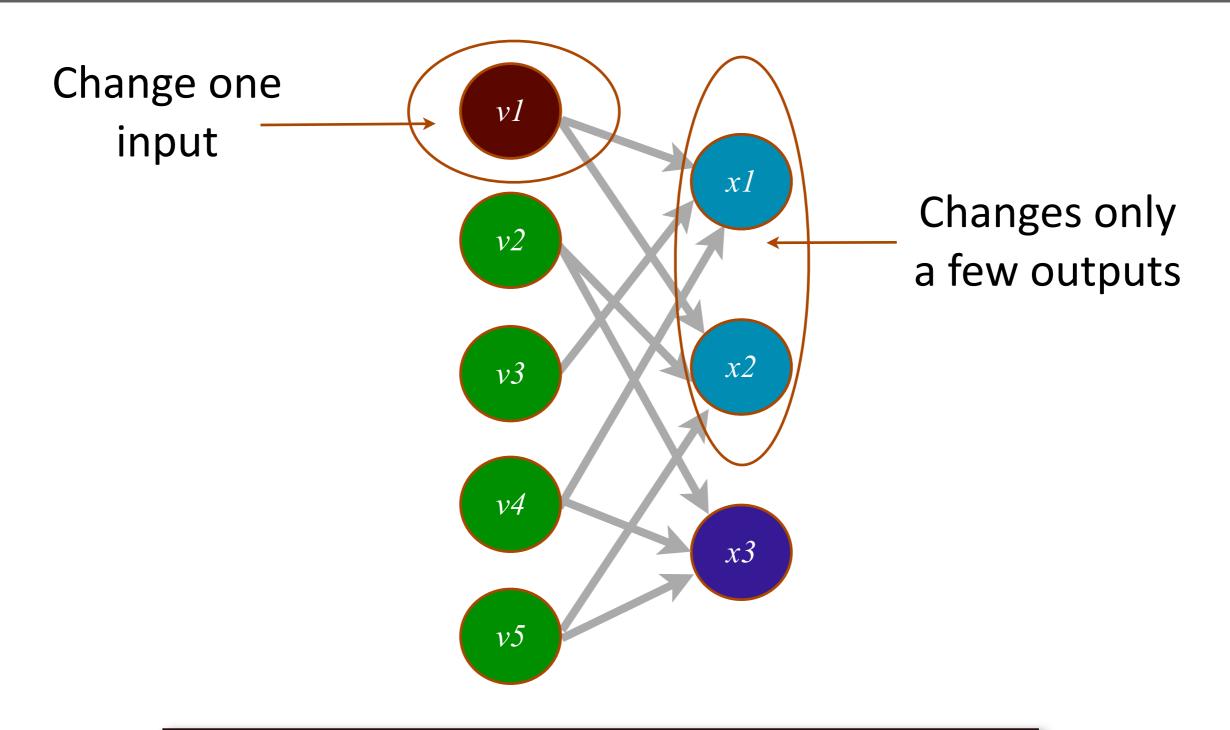
# Complication - Loss of Symmetry: Non-i.i.d codewords



## Complication - Loss of Symmetry: Non-i.i.d codewords



## Complication - Loss of Symmetry: Non-i.i.d codewords

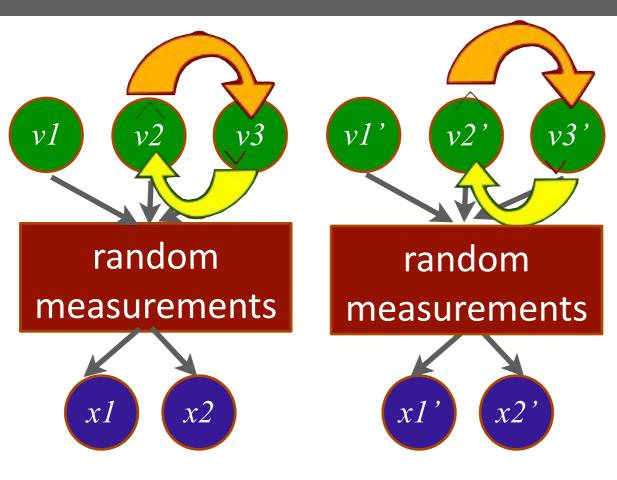


Classical proof doesn't work!

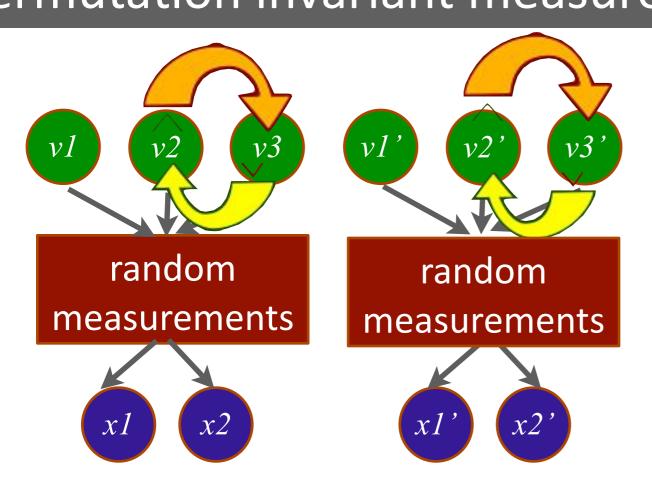
Intuition

L Analysis

# Reintroducing Symmetry: Permutation invariant measurement ensembles



# Reintroducing Symmetry: Permutation invariant measurement ensembles



$$P_{\mathbf{v}}(\mathbf{X})$$

depends only on the type  $\gamma$  of  $\mathbf{v}$ 



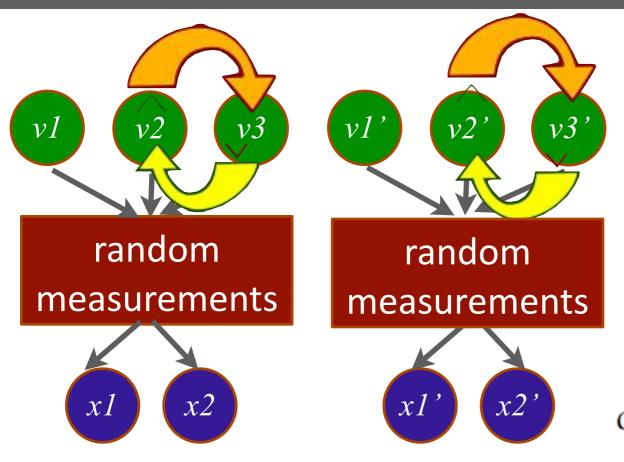
Y

[1/2

1/2]

## Reintroducing Symmetry:

## Permutation invariant measurement ensembles



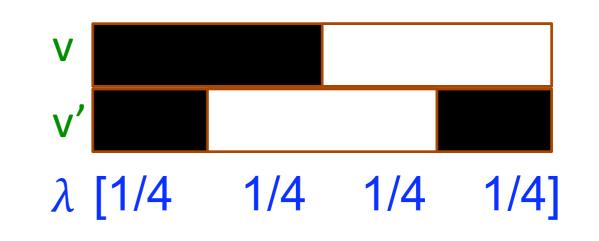
$$P_{\mathbf{v}}(\mathbf{X})$$

depends only on the type  $\gamma$  of  ${\bf v}$ 

$$Q_{\mathbf{v}',\mathbf{v}}(\mathbf{X}'|\mathbf{X})$$

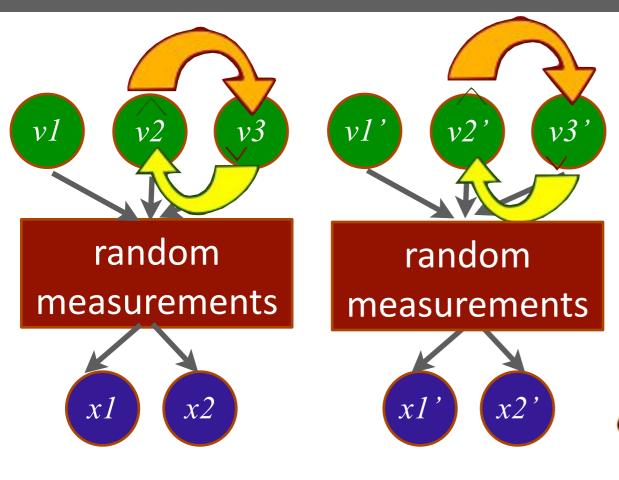
depends only on the joint type  $\lambda$  of  $\mathbf{v}$  and  $\mathbf{v}'$ 





## Reintroducing Symmetry:

#### Permutation invariant measurement ensembles



$$P_{\mathbf{v}}(\mathbf{X})$$

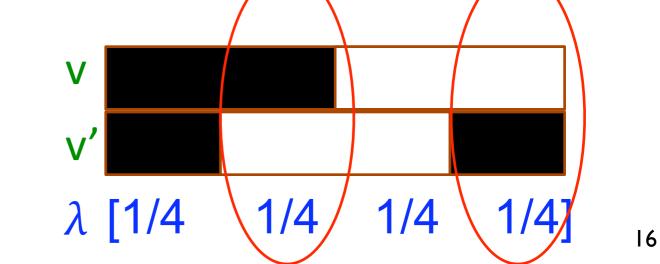
depends only on the type  $\gamma$  of  $\mathbf{v}$ 

$$Q_{\mathbf{v}',\mathbf{v}}(\mathbf{X}'|\mathbf{X})$$

depends only on the joint type  $\lambda$  of  $\mathbf{v}$  and  $\mathbf{v}'$ 

Distortion





Intuition

L Analysis

## Using the symmetry

$$\begin{array}{ll} Pr(\text{error}|\mathbf{v} \text{ is true}) & \leq & \sum_g (\text{number of } \mathbf{v}' \text{ in } g) Pr(\text{Decode to } \mathbf{v}' \text{ in } g \mid \mathbf{v} \text{ is true} \ ) \\ & \leq & |g| \max_g (\text{number of } \mathbf{v}' \text{ in } g) Pr(\text{Decode to } \mathbf{v}' \text{ in } g \mid \mathbf{v} \text{ is true}) \end{array}$$

```
Intuition

L Analysis
```

## Using the symmetry

```
\begin{array}{ll} Pr(\text{error}|\mathbf{v} \text{ is true}) & \leq & \sum_g (\text{number of } \mathbf{v}' \text{ in } g) Pr(\text{Decode to } \mathbf{v}' \text{ in } g \mid \mathbf{v} \text{ is true} \ ) \\ & \leq & |g| \max_g (\text{number of } \mathbf{v}' \text{ in } g) Pr(\text{Decode to } \mathbf{v}' \text{ in } g \mid \mathbf{v} \text{ is true}) \end{array}
```

 $Pr(\text{Decode to } \mathbf{v}' \text{ in } g \mid \mathbf{v} \text{ is true})$ 

Depends only on  $P_{\mathbf{v}}(\mathbf{X})$  and  $Q_{\mathbf{v}',\mathbf{v}}(\mathbf{X}'|\mathbf{X})$  i.e  $\gamma$  and  $\lambda$ 

```
Intuition

L Analysis
```

## Using the symmetry

$$Pr(\text{error}|\mathbf{v} \text{ is true}) \leq \sum_g (\text{number of } \mathbf{v}' \text{ in } g) Pr(\text{Decode to } \mathbf{v}' \text{ in } g \mid \mathbf{v} \text{ is true})$$

$$\leq |g| \max_g (\text{number of } \mathbf{v}' \text{ in } g) Pr(\text{Decode to } \mathbf{v}' \text{ in } g \mid \mathbf{v} \text{ is true})$$

 $Pr(\text{Decode to } \mathbf{v}' \text{ in } g \mid \mathbf{v} \text{ is true})$ 

Depends only on  $P_{\mathbf{v}}(\mathbf{X})$  and  $Q_{\mathbf{v}',\mathbf{v}}(\mathbf{X}'|\mathbf{X})$  i.e  $\gamma$  and  $\lambda$ 

Use the joint types  $\lambda$  as the symmetry groups g

=  $Pr(Decode to \mathbf{v}' at \lambda \mid \mathbf{v} is true)$ 

## Using the symmetry

$$\begin{array}{ll} Pr(\text{error}|\mathbf{v} \text{ is true}) & \leq & \sum_g (\text{number of } \mathbf{v}' \text{ in } g) Pr(\text{Decode to } \mathbf{v}' \text{ in } g \mid \mathbf{v} \text{ is true} \ ) \\ & \leq & |g| \max_g (\text{number of } \mathbf{v}' \text{ in } g) Pr(\text{Decode to } \mathbf{v}' \text{ in } g \mid \mathbf{v} \text{ is true}) \end{array}$$

 $Pr(\text{Decode to } \mathbf{v}' \text{ in } g \mid \mathbf{v} \text{ is true})$ 

Depends only on  $P_{\mathbf{v}}(\mathbf{X})$  and  $Q_{\mathbf{v}',\mathbf{v}}(\mathbf{X}'|\mathbf{X})$  i.e  $\gamma$  and  $\lambda$ 

Use the joint types  $\lambda$  as the symmetry groups g

=  $Pr(\text{Decode to } \mathbf{v}' \text{ at } \lambda \mid \mathbf{v} \text{ is true})$ 

 $Pr(\text{error}|\mathbf{v} \text{ is true}) \leq |\lambda| \max_{\lambda}(\text{number of } \mathbf{v}' \text{ at } \lambda) Pr(\text{Decode to } \mathbf{v}' \text{ at } \lambda \mid \mathbf{v} \text{ is true})$ 

Only a polynomial number of joint types  $\lambda$ 

Intuition

L Analysis

## Some combinatorics and some large deviations

Number of 
$$\mathbf{v}'$$
 at  $\lambda \leq 2^{k[H(\lambda)-H(\gamma)]}$ 

Method of types

Intuition

Analysis

## Some combinatorics and some large deviations

Number of 
$$\mathbf{v}'$$
 at  $\lambda \leq 2^{k[H(\lambda)-H(\gamma)]}$ 

Method of types

$$Pr(\text{Decode to } \mathbf{v}' \text{ at } \lambda \mid \mathbf{v} \text{ is true}) = Pr[P(\mathbf{y}|\mathbf{v}') > P(\mathbf{y}|\mathbf{v})]$$

Intuition — Analysis

## Some combinatorics and some large deviations

Number of 
$$\mathbf{v}'$$
 at  $\lambda \leq 2^{k[H(\lambda)-H(\gamma)]}$  Method of types

$$Pr(\text{Decode to } \mathbf{v}' \text{ at } \lambda \mid \mathbf{v} \text{ is true}) = Pr[P(\mathbf{y}|\mathbf{v}') > P(\mathbf{y}|\mathbf{v})]$$

#### Large deviations for sparse regular measurements

$$\left| \frac{1}{N} \log \left( \frac{P(\mathbf{y}|\mathbf{v})}{E[P(\mathbf{y}|\mathbf{v})]} \right) \to T(\lambda) \right|$$

## Some combinatorics and some large deviations

Number of 
$$\mathbf{v}'$$
 at  $\lambda \leq 2^{k[H(\lambda)-H(\gamma)]}$  Method of types

$$Pr(\text{Decode to } \mathbf{v}' \text{ at } \lambda \mid \mathbf{v} \text{ is true}) = Pr[P(\mathbf{y}|\mathbf{v}') > P(\mathbf{y}|\mathbf{v})]$$

#### Large deviations for sparse regular measurements

$$\frac{1}{N} \log \left( \frac{P(\mathbf{y}|\mathbf{v})}{E[P(\mathbf{y}|\mathbf{v})]} \right) \to T(\lambda)$$

#### Introduce tilting distributions

 $Pr(\text{Decode to } \mathbf{v}' \text{ at } \lambda \mid \mathbf{v} \text{ is true}) \leq 2^{-nT(\lambda)}$ 

## Result: Lower Bound on Capacity

A rate R is <u>achievable</u> for a joint type  $\lambda$  is

$$\frac{T(\lambda)}{[H(\lambda) - H(\gamma)]}$$

## Result: Lower Bound on Capacity

A rate R is <u>achievable</u> for a joint type  $\lambda$  is

$$R < \frac{T(\lambda)}{[H(\lambda) - H(\gamma)]}$$

A rate R is <u>achievable</u> for a distortion D if

$$R < C_{LB}(D) = \min_{\lambda: Dis(\lambda) > D} \frac{T(\lambda)}{[H(\lambda) - H(\gamma)]}$$

## Result: Lower Bound on Capacity

#### For sparse, regular measurement structures

$$T(\lambda) = -H(Y|V) + cH(\lambda) + \inf_{\kappa \text{ : sparse graph constraints}} -H(\kappa) - \sum_{a,b,o} \kappa(a,b) P_{y|v}(o|a) \log P_{y|v}(o|b)$$

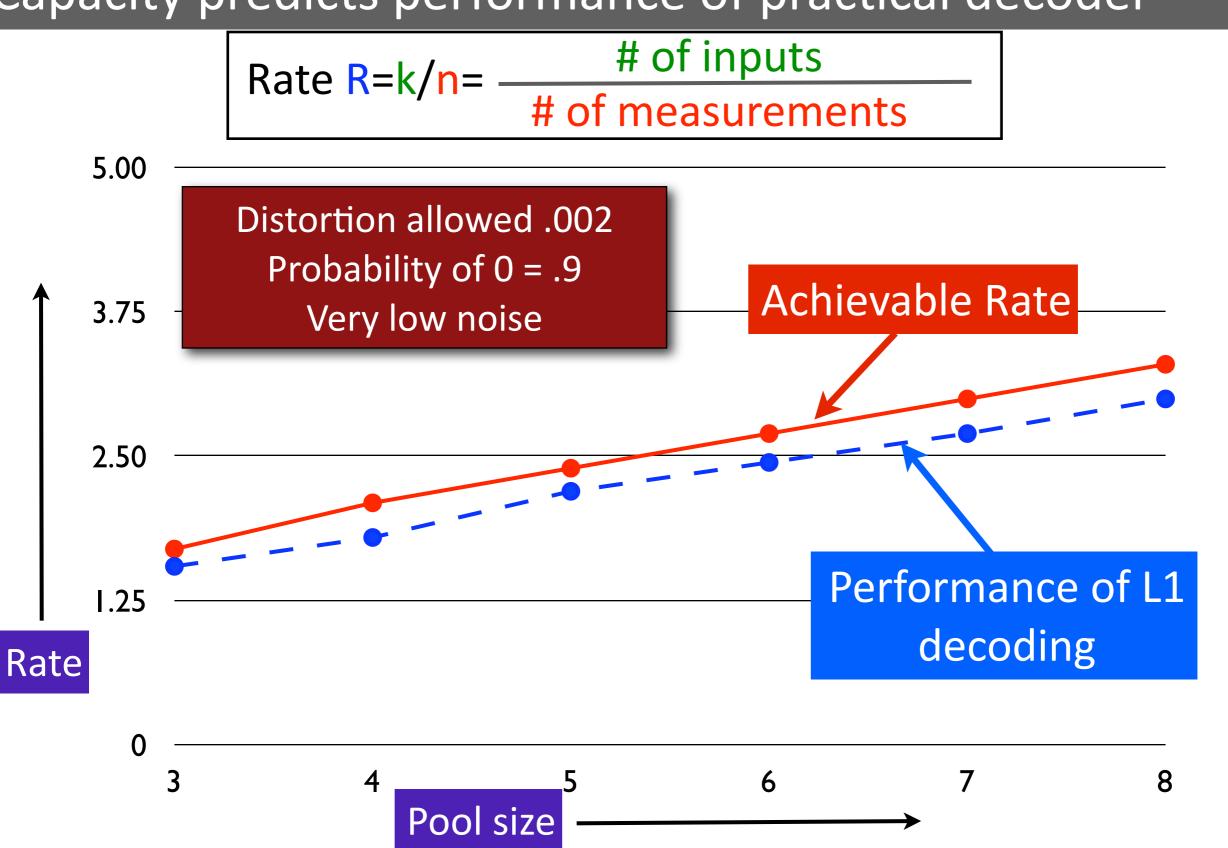
## A rate R is achievable for a distortion D if

$$R < C_{LB}(D) = \min_{\lambda:Dis(\lambda) > D} \frac{T(\lambda)}{[H(\lambda) - H(\gamma)]}$$

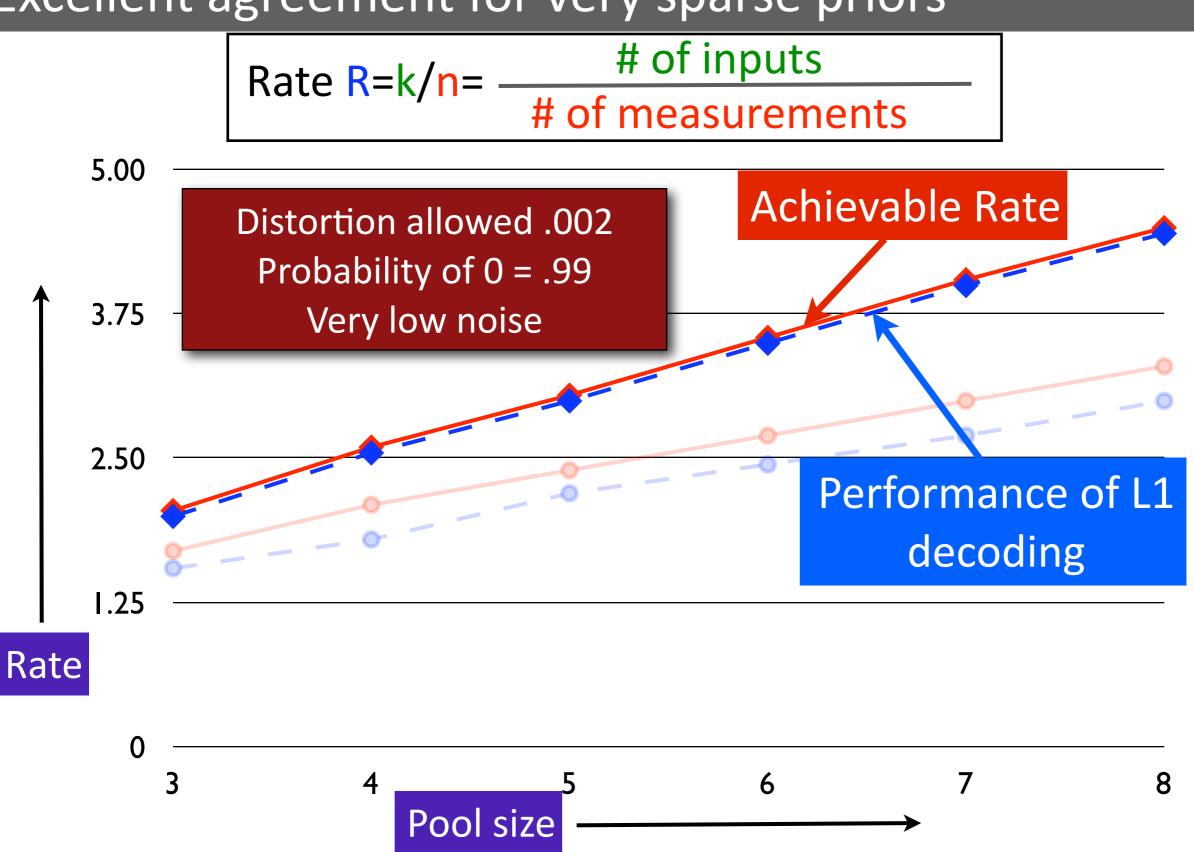
#### Outline

- Application : Pooling Designs for genetic screening
- Related Problems
- Information theoretic formulation
- Intuition
- Illustration of the result

## Capacity predicts performance of practical decoder

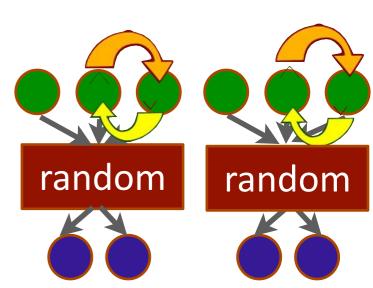


## Excellent agreement for very sparse priors



## Insights

- 1. Analog between measurements and
  - communication/coding
- 2. Random Measurements Argument
- 3. Symmetry through permutation invariance
- 4. Method of Types + Large Deviation
- 5. Tightness/Relevance of the result



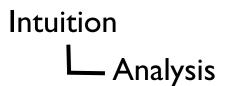
5.00

#### More combinatorics

Suppose all pools are of size c All inputs are in alphabet of size L

δ Type/distribution over L<sup>c</sup> with marginals Υ

Joint type/distribution over ( $L^c$ ,  $L^c$ ) with marginals  $\lambda$ 



#### More combinatorics

Suppose all pools are of size c All inputs are in alphabet of size L

δ Type/distribution over L<sup>c</sup> with marginals Υ

K

Joint type/distribution over ( $L^c$ ,  $L^c$ ) with marginals  $\lambda$ 

$$P_m(\vec{\mathbf{Z}}) = P^{\vec{\gamma}, \vec{\delta}} = \begin{cases} 2^{-ncH(\vec{\gamma})} & \vec{\delta} \text{ consistent with } \vec{\gamma} \\ 0 & \text{otherwise} \end{cases}$$

$$P_{m,m'}(\vec{\mathbf{Z}},\vec{\mathbf{Z'}}) = P^{\vec{\boldsymbol{\lambda}},\vec{\boldsymbol{\kappa}}} = \begin{cases} 2^{-ncH(\vec{\boldsymbol{\lambda}})} & \vec{\boldsymbol{\kappa}} \text{ consistent with } \vec{\boldsymbol{\lambda}} \\ 0 & \text{otherwise} \end{cases}$$

## The capacity of sparse, regular measurements

Theorem : A rate R is <u>achievable</u> (for an allowable distortion D) if,

$$R < C_{LB}(D) = \min_{\lambda:Dis(\lambda) > D} \frac{T(\lambda)}{[H(\lambda) - H(\gamma)]}$$

#### For sparse, regular measurement structures

$$T(\lambda) = -H(Y|V) + cH(\lambda) + \inf_{\kappa \text{ : sparse graph constraints}} -H(\kappa) - \sum_{a,b,o} \kappa(a,b) P_{y|v}(o|a) \log P_{y|v}(o|b)$$