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Motivating Application : Distributed Sensor Networks

Monitor a large area
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Motivating Application : Distributed Sensor Networks

Many cheap, low power nodes
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Motivating Application : Distributed Sensor Networks

Correlated, imprecise measurements
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Distributed Sensor Networks : Task 1 : Detection

ectrical & Computer
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Distributed Sensor Networks : Task 2 : Communication

1. Detect state of environment

2. Communicate measurements
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Task 1 : Detection : Modeling the problem
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Task 1 : Detection : Modeling the problem
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: Detection : Graphical Model [1]
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Task 2 : Distributed Source Coding : Problem Setup
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Task 2 : Distributed Source Coding : Naive Strategy
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Task 2 : Distributed Source Coding : Naive Strategy

Inefficient
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Task 2 : Distributed Source Coding : In Theory
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Task 2 : Distributed Source Coding : In Practice

e, Parity check ' H Decode
from a code [3] i '
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Task 2 : Distributed Source Coding : In Practice

Remote sensor
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Task 2 : Distributed Source Coding : In Practice
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Task 2 : Distributed Source Coding : In Practice

Remote sensor Compute A
measurement
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Task 2 : Distributed Source Coding : Graphical Model
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Important Questions in

Detection and Distributed Source Coding

How many

0 measurements?

What is the i
effect of @ ‘ V\;f at 'Sft €
orior G effect o

noise?

information? @
What is the effect of choice of

measurement configuration ?
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Important Questions in

Detection and Distributed Source Coding

Robustness to model mismatch and model uncertainty

How many

0 measurements?

What is the it
effect of @ ‘ V\;f at 'Sft €
orior G effect o

noise?

information? @
What is the effect of choice of

measurement configuration ?
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Important Questions in

Detection and Distributed Source Coding

We develop
a theoretical analysis

of the robustness of
practical encoders
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Related Problems

" Group Testing

= Sketching / Streaming in networks

" | T codes / LDGM codes
" Multi-user detection
" Compressed sensing with sparse

measurements
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Message

Detection and source coding can be
cast into a common framework

We analyze the robustness to
noise, mismatch and uncertainty using
techniques from information theory

We use the theory
to make design decisions
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Outline

" Problem statement
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Problem Statement

# of inputs
# of measurements

Rate R=k/n=

Distortion = (1/k) Hamming Distance(v,v’)

. @
o ~@ )0 @ [
variables

@ n sparse

measurements

Estimate
() ENGNERRRE || CyLapbsem arnegie Mellc




Problem Statement

# of inputs

Rate R=k/n=
/ # of measurements

Distortion = (1/k) Hamming Distance(v,Vv’)

Error if Distortion > D

Sensing Capacity [4] : C(D) : Maximum R such
that Pr(Error) > 0as n —eeo

We lower bound the Sensing Capacity : Cs(D)
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Insight : Parallels to Information Theory

" Random Binning methods in source coding

random bin

oo

" Random Coding methods in communication

random code

oo

= Random Measurements ?
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Insight : Parallels to Information Theory

" Proof using Random Measurements

— Random measurement configuration - generates codebook
— Calculate average error across random ensemble of measurements

— If average error = 0, then for some configuration error - 0

Average Error
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Outline

" [ntuition behind the analysis
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Description of the decoder

Binning or A similarity metric
Measurement S(X y )

find measurement vector x and
corresponding environment v
that maximizes S(x, v)
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Union bounding - Gallager-Fano bounding technique [5]

Pr[Error|v is true] = Pr[Decode to Vv’ s.t distortion(v,v’) > D|v is true]

= > Pr[DecodetoV’|vis true]
dist(v) > D

Exponential number of terms !!!

Group terms into polynomial number of groups g using symmetry

Pr[Error|v is true]= S(number of v’ in g)Pr[Decode to v’ in g|v true]
g

<|g|max(number of v’ in g)Pr[Decode to v’ in g|v true]
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Non-i.i.d codewords
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Non-i.i.d codewords

Change one
iInput

Changes only
a few outputs
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Permutation invariant measurement ensembles

S X o AN PX)
‘glﬁ ‘ VL - depends only on type Y of v

random

measurements Q(X | X)

depends only on joint type A
of vandVv

| —
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Large deviations

Pr[Error given v] = max (number of v’ at A) Pr[Decode to v’ at A]
A :Distortion(1)>D

Number of v atA < 2KHA)-H(Y)]

Pr[Decode to v’ at A] = Pr[S(x’, y) > S(x, v)]

< 2-nT(A)

Heart of the main theorem

S(X, Y)
E[S(x, y)
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Lower Bound on Sensing Capacity

A rate R is achievable (for a joint type A) if,
T(4)
[H(M)-H(Y)]

R <

A rate R is achievable (for a distortion D) if,

R < CLB(D) = m1n T(/At)
wr[H(A)-H(Y)]
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Generality of the result

" Different similarity metrics

—ML decoder - S(x, v) = TTP(vi | xi)
—Mismatch - S(x, v) = TTPs(vi]| ;)

—Uncertain - S(X, y) = gﬂPe(yilxi)

= Different random measurement ensembles

oo
—Check and bit regular ensembles NN

—Check regular ensembles
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Outline

" An application
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Performance of mismatched decoders

true value of parameter

>

estimated value|of parameter
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Performance of mismatched decoders

true value of parameter

A

Achievable
rates

larger <=>
fewer meas.

estimated value
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Performance of mismatched decoders
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Performance of mismatched decoders
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Design of robust measurements
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Design of robust (threshold) measurements

true value of parameter
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Take-away / Conclusions 0000600

Detection and source coding can be
cast into a common framework

We analyze the robustness to
noise, mismatch and uncertainty using
insights from information theory

We use the theory
to make design decisions

O feveeane | CyLabse ‘ arnegie Mellc



References

[1]). Moura, R. Negi, and M. Pueschel, “The network as the sensor,
distributed sensing and processing: a graphical model approach,” DARPA
ISP Review, St. Petersburg,FL., October 2003.

[2]Slepian, D and Wolf, J K (1973). Noiseless coding of correlated
information sources. IEEE Transactions on information Theory 19: 471-480.

[3]Wyner, A D (1974). Recent results in the Shannon theory. IEEE
Transactions on information Theory 20: 2-10.

[4]Y. Rachlin, R. Negi, and P. Khosla, “Sensing capacity for discrete sensor
network applications,” in Proc. Fourth Int. Symp. on Information
Processing in Sensor Networks,April 25-27 2005.

[5]Sason, I. and Shamai, S. 2006. Performance analysis of linear codes

under maximume-likelihood decoding: a tutorial. Commun. Inf. Theory 3,

) ENGINEERING | CyLab™am Carnegie Mellon



=Backup Slides

Electrical & Computer

) ENGINEERRE Carnegie Mellon



Why do we need a different analysis ?

Random binning Random measurements

Q@QA GQ@ 00

random random measurement
b/n configuration

60 oo

_ mappings constrained by
any mapping kind of measurements
and configurations

independent codewords

dependent codewords

QX | X)=P(X) Q(X | X)
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