Robust detection using sparse measurements

Balakrishnan N
Carnegie Mellon University

Joint work with Rohit Negi and Pradeep Khosla

Allerton, October 2009

There's Nothing So Practical As a Good Theory
-Kurt Lewin

Motivating Application: Distributed Sensor Networks

Monitor a large area

Motivating Application: Distributed Sensor Networks

Monitor a large area

Many cheap, low power nodes

Motivating Application: Distributed Sensor Networks

Monitor a large area

Many cheap, low power nodes

Correlated, imprecise measurements

Distributed Sensor Networks: Task 1: Detection

Distributed Sensor Networks: Task 2: Communication

Task 1: Detection: Modeling the problem

Task 1: Detection: Modeling the problem

Task 1: Detection: Graphical Model [1]

Task 2: Distributed Source Coding: Problem Setup

Remote sensor measurement

Task 2: Distributed Source Coding: Naive Strategy

Task 2: Distributed Source Coding: Naive Strategy

Task 2: Distributed Source Coding: In Theory

Remote sensor measurement

Remote sensor measurement

Task 2: Distributed Source Coding: Graphical Model

Important Questions in

Detection and Distributed Source Coding

What is the effect of prior information?

Important Questions in

Detection and Distributed Source Coding

Robustness to model mismatch and model uncertainty

What is the effect of prior information?

Important Questions in

Detection and Distributed Source Coding

Robustness to model mismatch and model uncertainty

We develop a theoretical analysis of the robustness of practical encoders

What is the effect of choice of measurement configuration?

Related Problems

- Group Testing
- Sketching / Streaming in networks
- LT codes / LDGM codes
- Multi-user detection
- Compressed sensing with sparse

measurements

Detection and source coding can be cast into a common framework

We analyze the robustness to noise, mismatch and uncertainty using techniques from information theory

We use the theory to make design decisions

Outline

- Motivating applications
- Problem statement
- Intuition behind the analysis
- An application

Problem Statement

Distortion = (1/k) Hamming Distance(v,v')

Problem Statement

Distortion = (1/k) Hamming Distance(v,v')

Error if Distortion > D

Sensing Capacity [4]: C(D): Maximum R such that $Pr(Error) \rightarrow 0$ as $n \rightarrow \infty$

We lower bound the Sensing Capacity: CLB(D)

Insight: Parallels to Information Theory

Random Binning methods in source coding

Random Coding methods in communication

Random Measurements ?

Insight: Parallels to Information Theory

Proof using Random Measurements

- Random measurement configuration → generates codebook
- Calculate average error across random ensemble of measurements
- If average error \rightarrow 0, then for some configuration error \rightarrow 0

Outline

- Motivating applications
- Problem statement
- Intuition behind the analysis
- An application

Description of the decoder

A similarity metric S(x, y)

find measurement vector x and corresponding environment v that maximizes S(x, y)

Union bounding - Gallager-Fano bounding technique [5]

Pr[Error | v is true] = Pr[Decode to v' s.t distortion(v,v') > D | v is true]

=
$$\sum$$
 Pr[Decode to v' | v is true]
dist(v') > D

Exponential number of terms !!!

Group terms into polynomial number of groups g using symmetry

 $Pr[Error | v \text{ is true}] = \sum (number \text{ of } v' \text{ in } g) Pr[Decode \text{ to } v' \text{ in } g | v \text{ true}]$

 $\leq |g| \max(\text{number of } v' \text{ in } g) \Pr[\text{Decode to } v' \text{ in } g | v \text{ true}]$

Non-i.i.d codewords

Non-i.i.d codewords

Permutation invariant measurement ensembles

P(X)

depends only on type Y of v

$$Q(\overline{X} \mid X)$$

depends only on joint type λ of v and \overline{v}

Large deviations

Pr[Error given v] $\approx \max_{\lambda : Distortion(\lambda) > D}$ (number of v' at λ) Pr[Decode to v' at λ]

Number of v' at
$$\lambda \leq 2^{k[H(\lambda)-H(Y)]}$$

$$Pr[Decode to v' at \lambda] = Pr[S(x', y) > S(x, y)]$$

$$\leq 2^{-nT(\lambda)}$$

Heart of the main theorem

$$\frac{1}{N} log(\frac{S(x, y)}{E[S(x', y)]}) \longrightarrow T(\lambda)$$

Lower Bound on Sensing Capacity

A rate R is achievable (for a joint type λ) if,

$$\frac{T(\lambda)}{[H(\lambda)-H(\Upsilon)]}$$

A rate R is achievable (for a distortion D) if,

$$R < C_{LB}(D) = \min_{\substack{\lambda : \\ Dis(\lambda) > D}} \frac{T(\lambda)}{[H(\lambda)-H(\Upsilon)]}$$

Generality of the result

Different similarity metrics

-ML decoder -
$$S(x, y) = \prod P(y_i | x_i)$$

-Mismatch -
$$S(x, y) = \prod P_{\theta}(y_i | x_i)$$

-Uncertain
$$-S(x, y) = \sum_{\theta} \prod P_{\theta}(y_i | x_i)$$

Different random measurement ensembles

- -Check regular ensembles
- -Check and bit regular ensembles

Outline

- Motivating applications
- Problem statement
- Intuition behind the analysis
- An application

true value of parameter

estimated value of parameter

true value of parameter

larger <=> fewer meas.

estimated value of parameter

true value of parameter

Design of robust measurements

true value of parameter

Design of robust (threshold) measurements

true value of parameter

Take-away / Conclusions

Detection and source coding can be cast into a common framework

We analyze the robustness to noise, mismatch and uncertainty using insights from information theory

We use the theory to make design decisions

References

- [2] [1]J. Moura, R. Negi, and M. Pueschel, "The network as the sensor, distributed sensing and processing: a graphical model approach," DARPA ISP Review, St. Petersburg, FL., October 2003.
- [2] [2]Slepian, D and Wolf, J K (1973). Noiseless coding of correlated information sources. IEEE Transactions on information Theory 19: 471-480.
- [3] Wyner, A D (1974). Recent results in the Shannon theory. IEEE Transactions on information Theory 20: 2-10.
- [4]Y. Rachlin, R. Negi, and P. Khosla, "Sensing capacity for discrete sensor network applications," in Proc. Fourth Int. Symp. on Information Processing in Sensor Networks, April 25-27 2005.
- [2] [5]Sason, I. and Shamai, S. 2006. Performance analysis of linear codes under maximum-likelihood decoding: a tutorial. Commun. Inf. Theory 3,

Backup Slides

Why do we need a different analysis?

Random binning

VS.

Random measurements

any mapping

independent codewords

$$Q(\overline{X} \mid X) = P(\overline{X})$$

mappings constrained by kind of measurements and configurations

dependent codewords

$$Q(\overline{X} \mid X)$$

