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Abstract
For a lot of important machine learning problems, due to the rapid growth of data and

the ever increasing model complexity, which often manifests itself in the large number of
model parameters, no single machine can solve them fast enough. Therefore, distributed
optimization and inference is becoming more and more inevitable for solving large scale
machine learning problems in both academia and industry. Obtaining an efficient distributed
implementation of an algorithm, however, is far from trivial. Both intensive computational
workloads and the volume of data communication demand careful design of distributed com-
putation systems and distributed machine learning algorithms.

In this thesis, we focus on the co-design of distributed computing systems and distributed
optimization algorithms that are specialized for large machine learning problems. We pro-
pose two distributed computing frameworks: a parameter server framework which features
efficient data communication, and MXNet, a multi-language library aiming to simplify the
development of deep neural network algorithms. In less than two years, we have witnessed
the wide adoption of the proposed systems. We believe that as we continue to develop these
systems, they will enable more people to take advantage of the power of distributed com-
puting to design efficient machine learning applications to solve large-scale computational
problems. Leveraging the two computing platforms, we examine a number of distributed op-
timization problems in machine learning. We present new methods to accelerate the training
process, such as data partitioning with better locality properties, communication friendly op-
timization methods, and more compact statistical models. We implement the new algorithms
on the two systems and test on large scale real data sets. We successfully demonstrate that
careful co-design of computing systems and learning algorithms can greatly accelerate large
scale distributed machine learning.

1 Introduction
Among the recent machine learning technology advances, there are two prevalent trends: the
training data is getting bigger and bigger [13], and the models are becoming deeper and deeper [7].
The scaling in both training data and model complexity provides both opportunities and chal-
lenges. Both “big data” and “deep learning” significantly increase the computational cost of
machine learning applications. For example, companies often need to learn machine learning
model from data with terabytes size [2], and a state-of-the-art image classifier employs hundreds
of layers in convolutional networks [5], in which processing a single image requires billions of
float-point operations. At such a large scale, although the computational power of modern hard-
ware grows exponentially, no single machine can finish the training tasks at the speed that meets
the industrial demands.

Distributed computing is a common approach to tackle the problem of large scale machine
learning. The basic idea of distributed computing is to partition the computational workload and
assign different parts to different machines, which coordinate to complete the overall workload.
Recently, thanks to the increasingly convenient access to public cloud services, such as Amazon
AWS [1], Google Cloud [4] and Microsoft Azure [14], using distributed computing to accelerate
large scale machine learning has led to a surge of research interest in both academia and industry.
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However, it is highly non-trivial to either design or implement efficient machine learning
algorithms using multiple machines. In particular, both the iterative nature of a lot of learning
algorithms and the sheer size of the models and the training data require a large amount of
communication between different machines. Nevertheless, today even in the leading industrial
data centers, both the network bandwidth and the latency for communication between multiple
machines is 10 times worse than that within a single machine. The communication overhead is
indeed the major bottleneck that prevents us from enjoying the benefit of distributed computing in
large scale machine learning problems. There are also other challenges brought into the machine
learning applications by distributed computing, such as fault tolerance when one or few of the
machines break down, and frequent synchronization among different machines, which all need
to be carefully addressed.

This thesis aims to address the problem of large scale machine learning using careful co-
design of distributed computing systems and distributed learning algorithms. For a wide class of
large scale machine learning applications, we propose new distributed computing frameworks,
new machine learning models, and new optimization methods with theoretical guarantees to
shows that distributed machine learning can be made simple, fast, and scalable. Next, we give a
briefly overview of the three areas and highlight the corresponding challenges.

2 Background

2.1 Statistical Models
The realm of machine learning is mainly divided into supervised and unsupervised learning. In
supervised learning, the training data consists of pairs of input objects and output values, and
the learning goal is to infer a mapping from input objects to output values, which can be used
for mapping new instances. While in unsupervised learning, the training data contains only the
input objects with unknown output values, and the learning goal is to find “interesting patterns”
from the data. In this thesis, we consider several representative applications in each category as
motivating examples for our system and algorithm design. These applications range from simple
linear model to complex neural network with hundreds of layers.

Today, the key challenge in a lot of applications is the rapidly increasing size of training data
and the model complexity. For instance, a large Internet company wants to use one year’s ads
impression log to train an ad click predictor [6]. The training data thus consists of trillions of
examples, each is typically represented by a high-dimensional feature vector [2]. Figure 1 shows
that the size of training data for ad click estimation in a leading Internet company doubled every
year form 2010 to 2014. A lot of widely used machine learning algorithms process the training
data in an iterative way, requiring a large amount of computing and communication resources
when the data is at such a large scale. Meanwhile, larger data sets also enable and encourage the
developers to use more complex machine learning models to discover finer structures in the data.
Take deep learning as an example, the model size in terms of the depth of the neural network has
been consistently increasing since the 1980s. In 1989, LeNet, the most widely used convolutional
neural network back then, only had 5 convolutional layers; while the recent ImageNet challenge
winners [5, 17] employed hundreds of convolutional layers. More complex models are often
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Figure 1: The size of training data for ad click estimation in a leading Internet company from
year 2010 to 2014.
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Figure 2: The number of floating-point operations required for processing a single image using
LeNet and several recent ImageNet challenge winners.

associated with higher computational cost. Figure 2 shows that the number of floating-point op-
erations to process a single example in the training data has increased from 10 million in the late
1980s to over 10 billion today. Besides the total computational cost, deeper neural networks also
bring in more complex computational patterns—even just evaluating a single example involves
hundreds of tensor operations.

With larger amount of training data and more complex machine learning models, the rapidly
increasing computation workload calls for new solutions from the system design and algorithm
implementation.
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2.2 Distributed Computing
A distributed computing system consists of multiple nodes with computing power, which are
connected through a network. We focus on cluster computing in which actual computers are
connected via local networks. Examples of cluster computing include campus cluster machines,
or public cloud service such as Amazon AWS. In this setting, the structure of the system and the
network topology are often known in advance.

In a distributed computing system, each computing machine has its own private memory,
which is difficult to be directly accessed by another machine. Information exchange between
machines is conducted via exchanging messages over the communication network. Also, the
network that connecting the machines has limited bandwidth, which makes communication one
of the scarcest resources in the system. Moreover, a machine may fail at any time, so that an
running job can be preempted. Such unreliability gets worse when the number of machines and
the workload increase. These features of distributed systems indeed impose great challenges on
developing efficient and reliable applications using distributed computing.

Next, we introduce three desired properties of distributed computing systems:

Efficiency Even though the computing cost may be shared among multiple machines, dis-
tributed computing also incurs the cost of machine synchronization and communication. Com-
pared to accessing data within a single machine, both the communication latency and the commu-
nication bandwidth in distributed computing are significantly worse. In addition to the commu-
nication cost, since the machines may be running heterogeneous tasks, and thus some machines
may finish their tasks faster or slower. In this case, if machine synchronization is required in the
algorithm implementation, the computing power of all the machines may not be fully used at any
time.

A good distributed computing system should incur only a small communication cost and
should take full advantage of the available computing power.

Fault Tolerance As we mentioned, in distributed computing, a single machine may fail at any
time, and an running job can be preempted due to such machine breakdown. The number of
failures increases with the number of machines in the systems and with the running time of the
tasks. An important feature of a good distributed computing system is the robustness to such
failures, namely fault tolerance.

To illustrate the importance of fault tolerance, we collect the job logs from a computing
cluster running batch machine learning tasks for production in a large Internet company, over a
three month period. Here, task failures are mostly due to being preempted or losing machines
without necessary fault tolerance mechanisms. Table 1 shows the statistics of failure rate for
different tasks at various scale. The failure rate can be as high as 25% for large scale problem
needs over 10 thousand machine hours.

Easy to use It is desired that the programming interface of a distributed system strikes a balance
between simplicity and flexibility. On one hand, the interface should hide as much as possible
implementation details of using multiple machines, such as task allocation, data communication,
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≈ #machine × time # of jobs failure rate
100 hours 13,187 7.8%

1, 000 hours 1,366 13.7%
10, 000 hours 77 24.7%

Table 1: Failure rate for machine learning jobs in a data center over a three month period.

synchronization and machine failure, from the developers. On the other hand, the interface
should also be flexible enough so that developers can conveniently implement a wide range of
algorithms in the system.

2.3 Optimization Methods
In machine learning, a lot of model parameter learning problems can be formulated into the
following minimization problem [18]:

minimize
w∈Ω

f(w) =
1

n

n∑
i=1

fi(w), (1)

where w denotes the parameter of the model and Ω denotes the parameter space. The function fi
is the objective function evaluated with the i-th example, describing how well the model w fits
the particular example in the training data.

For general objective function fi, there is usually no explicit solution to the optimization
problem. A common way to get a numerical solution is the iterative gradient method, which
refines the model w through multiple iterations of gradient flow operations. The basic idea
is to start with an arbitrary point w0 ∈ Ω at time 0, and then update the model as below for
t = 1, 2, . . . .

wt+1 = wt − ηt
n∑

i=1

∂fi(wt), (2)

where ∂fi is the partial gradient of fi with respect to the model parameter w, and the scalar ηt is
the learning rate specifying the step size. The iterations terminate if a stopping criteria is reached.

The computational bottleneck of iterative gradient methods is often the cost of calculating
the gradients ∂fi(w) in each iteration. It is possible to partition and share this computational
workload among multiple machines. Algorithm 1 sketches the approach called data parallelism,
where in each iteration, the training data is partitioned and shared among all machines, and each
machine only calculates the gradients of the objective function evaluated on the part of data
assigned to it.

One important measure of the performance of an iterative optimization algorithm is its con-
vergence rate, namely the amount of computing time required in order to achieve desirable accu-
racy. There is a rich body of research results on accelerating the vanilla gradient descent method.
For example, stochastic gradient descent (SGD) [15] only samples a small subset of examples
to compute the gradients so that each iteration takes much less time. Given the same amount of
total time, this approach can run more number of iterations to update the model parameter, and
can hopefully get faster convergence.
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Algorithm 1 Distributed Gradient-based Optimization
1: Initialize w0 at every node
2: Partition data into m parts, {1, . . . , n} =

⋃m
k=1 Ik

3: for t = 0, . . . do
4: for k = 1, . . . ,m do in parallel
5: Compute g(k)

t ←
∑

i∈Ik ∂fi(wt) on node k
6: end for
7: Aggregate gt ←

∑m
k=1 g

(k)
t on node 0

8: Update wt+1 ← wt − ηtgt on node 0
9: Broadcast wt+1 from node 0 to all nodes

10: end for

calc ∂fnode 0:

node 1: calc ∂f

calc ∂f

updt w calc ∂f

calc ∂f

calc ∂fnode m:

communication synchronization

Figure 3: The communication and synchronization overhead of Algorithm 1.

Another critical measure of the performance is the communication cost, including the amount
of communication required between the machines when they coordinated to complete the task,
and the amount of time that the machines stay idle due to communication latency or for the pur-
pose of system synchronization. For example, Figure 3 illustrates a possible distributed imple-
mentation of Algorithm 1. The problem with this implementation is that if the data is partitioned
unevenly or one machine is significantly slower than other machines, all other machines would
waste a large amount of time in the synchronization.

An efficient distributed optimization method should aim to achieve fast convergence and
small communication cost simultaneously.

3 Thesis Statement
This thesis seeks to address the multifaceted challenges arising in distributed computing, statistic
modeling, and numerical optimization methods to make large-scale distributed machine learning
more accessible. These three areas are not independent technological blocks. They influence
each other, which is illustrated in Figure 4, and thus must be handled simultaneously.

In particular, this thesis provides evidence to support the following statement:

Thesis Statement: With appropriate frameworks and algorithms, distributed ma-
chine learning can be made simple, fast, and scalable, both in theory and in practice.
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Figure 4: Three aspects towards efficient distributed machine learning.

We believe that the frameworks and algorithmic ideas developed in this thesis will enable more
people to take advantage of the power of distributed computing to develop efficient machine
learning applications to solve large-scale computational problems.

All the codes developed when completing this thesis are made publicly available at https:
//github.com/dmlc/ under Apache 2.0 license.

4 Tentative Outline of the Thesis
Next, we briefly describe the tentative structure of the thesis. The thesis is mainly divided into
two parts: distributed computing system (Section 2 to 4), distributed optimization methods (Sec-
tion 5 to 10). Figure 5 visualizes the connections between different sections.

Part 1 In the first part of the thesis, we introduce two computing frameworks designed for large
scale distributed computing: a new generation parameter server and MXNet. The key features of
these two systems are summarized below.

Parameter server is a general purpose distributed machine learning framework. Compared
to existing frameworks, it has the following prominent features: flexible data consistency model,
which lowers the communication and synchronization cost; elastic scalability, which enables
adding new machines to the system without restarting the running framework; continuous fault
tolerance, which prevents non-catastrophic machine failures to interrupt the overall computation
process; and an efficient implementation of vector clocks, which ensures well-defined behavior
after network failure.

This is joint work with David Andersen, Alex Smola, and Junwoo Park from CMU, together
with Amr Ahmed, Vanja Josifovski, James Long, Eugene Shekita and Bor-Yiing Sufrom Google.
Part of the work has been published in OSDI’14 [8].

MXNet is a multi-language library aiming to simplify the development of large scale deep
neural network algorithms. It is developed based on Parameter Server. It outperforms many
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Figure 5: Connections of the sections in the thesis

existing platforms by exploiting the following features: a mixed interface with imperative pro-
gramming and symbolic programming to achieve both flexibility and efficiency; a more general
asynchronous execution engine that extends parameter server’s asynchronous communication
model to alleviate the data dependencies in deep neural networks; and more flexible ways for
distributed deep learning for hetogenous computing.

This is joint work with a large number of collaborators from difference university and com-
panies, including Tianqi Chen (U. Washington), Yutian Li (Standford), Min Li (NUS), Naiyan
Wang (TuSimple), Minjie Wang (NYC), Tianjun Xiao (Microsoft), Bing Xu (Apple), Chiyuan
Zhang (MIT), and Zheng Zhang (NYU Shanghai). Part of the work has been published in the
learning system workshop on NIPS’16 [3].

Part 2 In the second part of the thesis, we present new distributed optimization algorithms
for a couple of important machine learning problems. We implement the algorithms on either
PS or MXNet and demonstrate that careful co-design of computing systems and optimization
algorithms can greatly accelerate large scale distributed machine learning.

We first study the problem of using data partitioning to reduce the communication and syn-
chronization cost. We formulate data placement as a submodular load-balancing problem and we
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propose a parallel partition algorithm named Parsa to solve it approximately. We show that with
high probability the objective function is at least n/ log(n) of the that with the best partition. The
runtime of the algorithm is in the order of O(k|E|), where k is the number of partitions and |E|
is the number of edges in the graph.

This is joint work with David Andersen and Alexander Smola, and the results appeared in
arXiv [11].

Then we study the problem of speeding up coordinate descent and stochastic gradient descent
(SGD), which are widely used optimization methods in distributed computing environments.

To speed up coordinate descent We propose a new algorithm named DBPG based on the
proximal gradient method to solve non-convex and non-smooth problems. It updates parameters
in the blockwise style and allows delays between blocks to reduce the synchronization cost.

This is joint work with David Andersen, Alexander Smola and Kai Yu from Baidu. The
results were published in NIPS’14 [9]

To speed up SGD in parallel computing, minibatch training has been used to reduce the com-
munication cost, at the cost of a slower convergence rate. We propose a new minibatch training
algorithm called EMSO. Instead of just running gradient descent with each minibatch, for each
minibatch the algorithm solves an optimization with a conservatively regularized objective func-
tion. We show that this more efficient use of minibatches speeds up the convergence while
maintaining low communication cost.

This is joint work with Alexander Smola together with Tong Zhang and Yuqiang Chen from
Baidu. The results were published in KDD’14 [10]

To speed up asynchronous SGD, we propose a new algorithm AdaDelay, which allows the
parameter updates to be sensitive to the actual delays experienced, rather than to worst-case
bounds on the maximum delay. We show that this delay sensitive update rule leads to larger
stepsizes, that can help gain rapid initial convergence without having to wait too long for slower
machines, while maintaining the same asymptotic complexity.

This is joint work with Suvrit Sra, Adams Yu and Alex Smola, and the results were published
in AISTATS’16 [16].

Finally we study a promising application for recommendation systems and polynomial gen-
eralized linear models—Factorization Machines. To make it scale to large amounts of data and
large numbers of features, we propose a new algorithm DiFacto, which uses a refined Factoriza-
tion Machine model with sparse memory adaptive constraints and frequency adaptive regulariza-
tion.

This is joint work with Ziqi Liu, Alexander Smola, and Yu-Xiang Wang. The results were
published in WSDM’16 [12].

5 Timeline to Completion
Oct 14th: Thesis committee meeting for proposal review

Oct 25th: Submit thesis draft to committee members for feedback

Nov 25th: Thesis Defense

10



October 13, 2016
DRAFT

Nov 30th: Final Thesis submission
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