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Key Contributions 
1. Reduce model capacity by exploring data sparsity 
2. Highly efficient distributed training

The Challenge 
Both computation and storage costs of k-dimension FM 
are k times larger than linear model  

✦ On Criteo CTR dataset with 1.5B examples and 0.36B features 

k
model 

size
FLOP per  
data pass

time for a single 
CPU (in theory)

100 288GB 10 P 5 hours
1,000 3TB 100 P 50 hours

Key Take Away 
Make large-scale FM as cheap as linear model
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✦ The count of feature occurrence often obeys a pow law 
distribution. e.g the Criteo dataset 

Our solution 
 Data and model adaptive regulazations to reduce 

model capacity on unimportant features
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✦ Choose ki according to the number of  
occurrence of feature i, ni 
✦ simple choice: 

 

✦ three levels: 

 Memory Adaptive Constraints
✦ Limit the effective embedding 

dimension ki for “tail” feature i

X

VVij = 0 for all j > ki

ki =

(
k if ni � k

0 otherwise

ki =

8
><

>:

10k if ni � 10k
k if 10k > n i � k
min(ni, k) otherwise

ki       2     2     1      3     1
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Sparse Regularization
✦ Model adaptive capacity control by sparse regularization  
✦ Encourage a sparse linear term  
 

Vi = 0 if wi = 0

w

w

V

✦ Need sparse V too: 
✦ Structured sparsity on V 

✦ A simpler solution 
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Distributed Asynchronous SGD

Workers run independently  

✦ For each iteration 
✦ read a new minibatch 
✦ pull weights from the servers 
✦ compute gradients 
✦ push gradients into the servers

Servers update weights: 

✦ Update V by adagrad 
✦ Update w by FTRL

Scheduler node: 
✦ manages load balanced 
✦ achieves fault tolerance

Worker machines

Server machines Scheduler 
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Theoretical Analysis
✦ Key assumptions 

✦ maximal delay is upper-bonded by !  
✦ stochastic gradient is L-Lipschitz, and variance is bounded by ! 2

✦ If choose a constant step-size                    
then for every  
 
 

✦ LHS is an intuitive measure of distance from stationary point 
✦ Delay may slow convergence 
✦ We can use a large learning rate for large minibatch size or sparse 

dataset 
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Scalability 
✦ Scaling from 1 machine to 16 machines
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Conclusion
✦ Goal: scale factorization machine into large-scale datasets 
✦ Solution 1: Data and model adaptive regularizations  to 

reduce model capacity on unimportant features 
✦ Solution 2:  Efficient distributed training  by asynchronous 

SGD using the parameter server framework 
✦ Results: FM with a 100-dimension embedding provides 

significant accuracy improvement over linear model, with 
only ~2x more computation and storage cost 

✦ Codes are publicly available at the DMLC project

https://github.com/dmlc/difacto

https://github.com/dmlc/difacto

