
DiFacto — Distributed
Factorization Machines

Mu Li
Joint work with Ziqi Liu, Alex Smola,

and Yu-Xiang Wang

Carnegie Mellon University

0
175

350
525
700

2010 2011 2012 2013 2014

Training data size (TB) of linear model  
for Ads CTR estimation  
in an Internet company

Linear model is widely used for large-scale datasets

0
175

350
525
700

2010 2011 2012 2013 2014

Training data size (TB) of linear model  
for Ads CTR estimation  
in an Internet company

Linear model is widely used for large-scale datasets

Reach model capacity limit when the data go very large

Factorization Machine
✦ Linear model predicts by

x

w

f (x) =
!

i

xi wi +
!

i != j

xi xj !Vi , Vj "

Factorization Machine
✦ Linear model predicts by

x

w

f (x) =
!

i

xi wi +
!

i != j

xi xj !Vi , Vj "

x

V

✦ Factorization machine (Rendle et al, ’10) adds a k-dimensional embedding

Factorization Machine
✦ Linear model predicts by

x

w

f (x) =
!

i

xi wi +
!

i != j

xi xj !Vi , Vj "

x

V

✦ Factorization machine (Rendle et al, ’10) adds a k-dimensional embedding

f (x) =
!

i

xi wi +
!

i != j

xi xj !Vi , Vj "

f (x) =
!

i

xi wi +
!

i<j

xi xj !Vi , Vj "

Factorization Machine
✦ Linear model predicts by

x

w

f (x) =
!

i

xi wi +
!

i != j

xi xj !Vi , Vj "

x

V

✦ Factorization machine (Rendle et al, ’10) adds a k-dimensional embedding

f (x) =
!

i

xi wi +
!

i != j

xi xj !Vi , Vj "

f (x) =
!

i

xi wi +
!

i<j

xi xj !Vi , Vj "

+
X

i<j<k

xixjxktr
⇣
V

(3)
i ⌦ V

(3)
j ⌦ V

(3)
k

⌘
(can go beyond second-order)

The Challenge
Both computation and storage costs of k-dimension FM
are k times larger than linear model

✦ On Criteo CTR dataset with 1.5B examples and 0.36B features

k
model

size
FLOP per
data pass

time for a single
CPU (in theory)

100 288GB 10 P 5 hours
1,000 3TB 100 P 50 hours

Key Contributions
1. Reduce model capacity by exploring data sparsity
2. Highly efficient distributed training

The Challenge
Both computation and storage costs of k-dimension FM
are k times larger than linear model

✦ On Criteo CTR dataset with 1.5B examples and 0.36B features

k
model

size
FLOP per
data pass

time for a single
CPU (in theory)

100 288GB 10 P 5 hours
1,000 3TB 100 P 50 hours

Key Contributions
1. Reduce model capacity by exploring data sparsity
2. Highly efficient distributed training

The Challenge
Both computation and storage costs of k-dimension FM
are k times larger than linear model

✦ On Criteo CTR dataset with 1.5B examples and 0.36B features

k
model

size
FLOP per
data pass

time for a single
CPU (in theory)

100 288GB 10 P 5 hours
1,000 3TB 100 P 50 hours

Key Take Away
Make large-scale FM as cheap as linear model

Statistic Model
Distributed Optimization

Evaluation

Key Observation
✦ High-dimensional datasets are often extremely sparse

✦ The count of feature occurrence often obeys a pow law
distribution. e.g the Criteo dataset 

occurrence > 1 10 100

features (%) 53% 5.8% 0.49%

Key Observation
✦ High-dimensional datasets are often extremely sparse

✦ The count of feature occurrence often obeys a pow law
distribution. e.g the Criteo dataset 

occurrence > 1 10 100

features (%) 53% 5.8% 0.49%

10x 10x

Key Observation
✦ High-dimensional datasets are often extremely sparse

✦ The count of feature occurrence often obeys a pow law
distribution. e.g the Criteo dataset 

occurrence > 1 10 100

features (%) 53% 5.8% 0.49%

✦ If feature i appears less than k+1 times in the data, then the
problem of estimating (wi, Vi) is underdetermined

10x 10x

Key Observation
✦ High-dimensional datasets are often extremely sparse

✦ The count of feature occurrence often obeys a pow law
distribution. e.g the Criteo dataset 

Our solution 
 Data and model adaptive regulazations to reduce

model capacity on unimportant features

occurrence > 1 10 100

features (%) 53% 5.8% 0.49%

✦ If feature i appears less than k+1 times in the data, then the
problem of estimating (wi, Vi) is underdetermined

10x 10x

 Memory Adaptive Constraints
✦ Limit the effective embedding

dimension ki for “tail” feature i

X

VVij = 0 for all j > ki

ki 2 2 1 3 1

✦ Choose ki according to the number of
occurrence of feature i, ni
✦ simple choice:

 

✦ three levels:

 Memory Adaptive Constraints
✦ Limit the effective embedding

dimension ki for “tail” feature i

X

VVij = 0 for all j > ki

ki =

(
k if ni � k

0 otherwise

ki =

8
><

>:

10k if ni � 10k
k if 10k > n i � k
min(ni, k) otherwise

ki 2 2 1 3 1

Sparse Regularization
✦ Model adaptive capacity control by sparse regularization
✦ Encourage a sparse linear term  
  w

Sparse Regularization
✦ Model adaptive capacity control by sparse regularization
✦ Encourage a sparse linear term  
 

Vi = 0 if wi = 0

w

w

V

✦ Need sparse V too:
✦ Structured sparsity on V

✦ A simpler solution

Statistic Model
Distributed Optimization

Evaluation

Distributed by Parameter Server (Li et al, ’14)

Training data

Distributed by Parameter Server (Li et al, ’14)

Training data Worker machines

Distributed by Parameter Server (Li et al, ’14)

Training data Worker machines

Model

Distributed by Parameter Server (Li et al, ’14)

Training data Worker machines

Server machinesModel

Distributed by Parameter Server (Li et al, ’14)

Training data

push  
gradients

Worker machines

Server machinesModel

Distributed by Parameter Server (Li et al, ’14)

Training data

push  
gradients

Worker machines

Server machines

pull
weight

Model

Distributed Asynchronous SGD

Worker machines

Server machines

Distributed Asynchronous SGD

Workers run independently

✦ For each iteration
✦ read a new minibatch
✦ pull weights from the servers
✦ compute gradients
✦ push gradients into the servers

Worker machines

Server machines

Distributed Asynchronous SGD

Workers run independently

✦ For each iteration
✦ read a new minibatch
✦ pull weights from the servers
✦ compute gradients
✦ push gradients into the servers

Servers update weights:

✦ Update V by adagrad
✦ Update w by FTRL

Worker machines

Server machines

Distributed Asynchronous SGD

Workers run independently

✦ For each iteration
✦ read a new minibatch
✦ pull weights from the servers
✦ compute gradients
✦ push gradients into the servers

Servers update weights:

✦ Update V by adagrad
✦ Update w by FTRL

Scheduler node:
✦ manages load balanced
✦ achieves fault tolerance

Worker machines

Server machines Scheduler

Data consistency
✦ Async SGD trade-off data consistency for system performance

Data consistency
✦ Async SGD trade-off data consistency for system performance

pull weight

t = 0

Data consistency
✦ Async SGD trade-off data consistency for system performance

pull weight

t = 0

t = 0

pull weight

Data consistency
✦ Async SGD trade-off data consistency for system performance

pull weight

t = 0

push gradient (delay = 0)

t = 1

t = 0

pull weight

Data consistency
✦ Async SGD trade-off data consistency for system performance

pull weight

t = 0

push gradient (delay = 0)

t = 1

t = 0

pull weight

t = 1

pull weight

Data consistency
✦ Async SGD trade-off data consistency for system performance

pull weight

t = 0

push gradient (delay = 0)

t = 1

t = 0

pull weight

t = 1

pull weight

t = 2

push gradient (delay = 1)

Data consistency
✦ Async SGD trade-off data consistency for system performance

pull weight

t = 0

push gradient (delay = 0)

t = 1

t = 0

pull weight

t = 1

pull weight

t = 2

push gradient (delay = 1)

t = 3

push gradient (delay = 1)

Theoretical Analysis

Theoretical Analysis
✦ Key assumptions

✦ maximal delay is upper-bonded by !
✦ stochastic gradient is L-Lipschitz, and variance is bounded by ! 2

Theoretical Analysis
✦ Key assumptions

✦ maximal delay is upper-bonded by !
✦ stochastic gradient is L-Lipschitz, and variance is bounded by ! 2

✦ If choose a constant step-size  
then for every  
 
 

✦ LHS is an intuitive measure of distance from stationary point
✦ Delay may slow convergence
✦ We can use a large learning rate for large minibatch size or sparse

dataset

1
T

T!

t =1

E!" f (xt)! 2 # 4

"
CL
T

!

T ! 4LC (! + 1) 2/"

! =
!

C
L!" 2

Statistic Model
Distributed Optimization

Evaluation

Adaptive Memory
✦ Criteo dataset: 1.5B examples, 360M features
✦ Run on 10 AWS EC2 machines

100 101 102
106

108

1010

1012

dimesion (k)

m
od

el
 s

iz
e

baseline

dimension k

Adaptive Memory
✦ Criteo dataset: 1.5B examples, 360M features
✦ Run on 10 AWS EC2 machines

100 101 102
106

108

1010

1012

dimesion (k)

m
od

el
 s

iz
e

baseline frequency constraint

~100x

dimension k

Adaptive Memory
✦ Criteo dataset: 1.5B examples, 360M features
✦ Run on 10 AWS EC2 machines

100 101 102
106

108

1010

1012

dimesion (k)

m
od

el
 s

iz
e

baseline frequency constraint
frequency constraint  

 + sparse regularization

~100x

~50x

dimension k

Adaptive Memory
✦ Criteo dataset: 1.5B examples, 360M features
✦ Run on 10 AWS EC2 machines

100 101 102
106

108

1010

1012

dimesion (k)

m
od

el
 s

iz
e

baseline frequency constraint
frequency constraint  

 + sparse regularization

~100x

~50x

dimension k
100 101 102

3

2.5

2

1.5

1

0.5

0

dimesion (k)

re
la

tiv
e

lo
gl

os
s

(%
)

dimension k

-3% test LogLoss
comparing to
linear model

linear model

Adaptive Memory
✦ Criteo dataset: 1.5B examples, 360M features
✦ Run on 10 AWS EC2 machines

100 101 102
106

108

1010

1012

dimesion (k)

m
od

el
 s

iz
e

baseline frequency constraint
frequency constraint  

 + sparse regularization

~100x

~50x

only 2x more computation cost  
for FM with k=100 comparing to linear model

dimension k
100 101 102

3

2.5

2

1.5

1

0.5

0

dimesion (k)

re
la

tiv
e

lo
gl

os
s

(%
)

dimension k

-3% test LogLoss
comparing to
linear model

linear model

Compare to LibFM
✦ LibFM is a widely used library for FM (Rendle et al)

101 102 103 104
100.348

100.345

100.342

100.339

time (sec)

te
st

 lo
gl

os
s

Sampled Criteo

LibFM

Compare to LibFM
✦ LibFM is a widely used library for FM (Rendle et al)

101 102 103 104
100.348

100.345

100.342

100.339

time (sec)

te
st

 lo
gl

os
s

Sampled Criteo

LibFM DiFacto, 1 thread

Compare to LibFM
✦ LibFM is a widely used library for FM (Rendle et al)

101 102 103 104
100.348

100.345

100.342

100.339

time (sec)

te
st

 lo
gl

os
s

Sampled Criteo

LibFM DiFacto, 1 thread DiFacto, 10 threads

10x

Fixed-point Compression
✦ Quantize float into n-bytes integer with randomized

rounding during communication

Fixed-point Compression
✦ Quantize float into n-bytes integer with randomized

rounding during communication

1 2 3 4
0

100

200

300

400

500

#byte per entry

G
ig

ab
yt

e

Fixed-point Compression
✦ Quantize float into n-bytes integer with randomized

rounding during communication

1 2 3 4
0

100

200

300

400

500

#byte per entry

G
ig

ab
yt

e

>4x

Fixed-point Compression
✦ Quantize float into n-bytes integer with randomized

rounding during communication

1 2 3 4
0

100

200

300

400

500

#byte per entry

G
ig

ab
yt

e

>4x

1 2 3 42

0

2

4

6

#byte per entry

re
la

tiv
e

lo
gl

os
s

(%
)

Fixed-point Compression
✦ Quantize float into n-bytes integer with randomized

rounding during communication

1 2 3 4
0

100

200

300

400

500

#byte per entry

G
ig

ab
yt

e

>4x

1 2 3 42

0

2

4

6

#byte per entry

re
la

tiv
e

lo
gl

os
s

(%
)

even improves
accuracy!

Scalability
✦ Scaling from 1 machine to 16 machines

0 5 10 15 20
0

2

4

6

8

10

of machines

sp
ee

du
p

(x
)

Conclusion
✦ Goal: scale factorization machine into large-scale datasets
✦ Solution 1: Data and model adaptive regularizations to

reduce model capacity on unimportant features
✦ Solution 2: Efficient distributed training by asynchronous

SGD using the parameter server framework
✦ Results: FM with a 100-dimension embedding provides

significant accuracy improvement over linear model, with
only ~2x more computation and storage cost

✦ Codes are publicly available at the DMLC project

https://github.com/dmlc/difacto

https://github.com/dmlc/difacto

