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Abstract

The rapid growth of the Internet in users and content has fu-
eled extensive efforts to improve the user’s overall Internet
experience. A growing number of providers deliver content
from multiple servers or proxies to reduce response time by
moving content closer to end users. An increasingly popular
mechanism to direct clients to the closest point of service is
DNS-based redirection, due to its transparency and general-
ity. This paper studies draws attention to two of the main
issues in using DNS: 1) the negative effects of reducing or
eliminating the cache lifetimes of DNS information, and 2)
the implicit assumption that client nameservers are indicative
of actual client location and performance. We quantify the
impact of reduced DNS TTL values on web access latency
and show that they can increase name resolution latency by
two orders of magnitude. Using HTTP and DNS server logs,
as well as a large number of dial-up ISP clients, we mea-
sure client-nameserver proximity and show that a significant
fraction are distant, more than8 hops apart. Finally, we sug-
gest protocol modifications to improve the accuracy of DNS-
based redirection schemes.

1 Introduction

An emerging focus of Internet infrastructure services and
products is to improve each user’s overall Web experience
by reducing the latency and response time in retrieving Web
objects. Numerous content distribution services claim im-
proved response time by placing servers closer to clients, at
the edges of the network, and transparently directing clients
to the “nearest” point of service, where near refers to low
round-trip delay, small number of hops, or least loaded
server.

An increasingly popular technique for directing clients to
the nearest server is to execute the server selection func-
tion during the name resolution phase of Web access, us-
ing the Domain Name System (DNS). The DNS provides
a service whose primary function is to map domain names
such aswww.service.com to the IP address(es) of cor-

responding machine(s). The transparent nature of name res-
olution can be exploited to redirect clients to an appropri-
ate server without requiring any modification to client soft-
ware, server protocols, or Web applications. The appeal of
DNS-based server selection lies in both its simplicity – it
requires no change to existing protocols, and its general-
ity – it works across any IP-based application regardless of
the transport-layer protocol being used. Other approaches
such as application-layer redirection (e.g., HTTP redirec-
tion), application-specific communication protocols, or rout-
ing protocol modifications, are often too complex or too lim-
ited in function.

Several commercial content distribution services (e.g.,
Akamai), currently use modified DNS servers to dynam-
ically redirect clients to the appropriate content server or
proxy. When the nameserver receives a name resolution
request, it determines the location of the client and returns
the address of a nearby server. In addition to these distribu-
tion services, several commercial products use DNS-based
techniques for wide-area load balancing for distributed Web
sites. Examples of such products include Cisco Distributed
Director, F5 3/DNS, and Alteon WebOS.

Given the increasing use of DNS for associating clients
with the right server, the question of whether DNS is the
right location for this function remains unexplored. This
paper investigates this question by considering two key is-
sues in DNS-based server selection. First, in order to remain
responsive to changing network or server conditions, DNS-
based schemes must avoid client-side caching of decisions,
which potentially limits the scalability of the DNS. Second,
inherent in the DNS-based approach is the assumption that
clients and their local nameservers are proximal. When this
assumption is violated it leads to poor decisions since server-
selection is typically based on the nameserver’s identity, not
the client’s.

The Domain Name System (DNS) is a distributed
database of records (e.g., name-to-address mappings) spread
across a semi-static hierarchy of servers [1, 2]. The sys-
tem scales by caching resource records at intermediate name
servers. Each resource record has a time-to-live (TTL) value
that determines how long it may be cached, with typical TTL
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values on the order of days [3]. When the DNS is used for
server selection it requires that caching of name resolution
results be disabled, by setting TTL values to zero (or very
small values). Small TTL values allow fine-grained load
balancing and rapid response to changes in server or net-
work load, but disabling caching requires that clients con-
tact the authoritative nameserver for every name resolution
request, increasing Web access latency. In addition, small
TTL values could significantly degrade the scalability of the
DNS, since many more requests would have to transmitted in
the network, rather than being served from local nameserver
caches.

Another, more subtle, issue with DNS-based redirection is
that it assumes that the client’s local nameserver is represen-
tative of the client with respect to location or network per-
formance. If the client and nameserver are distant from each
other, the client could be directed to an unsuitable server. It
is easy to imagine cases where clients and their nameservers
are not co-located, for example in large dial-up or broadband
ISPs where widely distributed clients share a nameserver.
Moreover, the local nameserver could easily be misconfig-
ured. On the other hand, when a client proxy or firewall
doubles as a nameserver, basing redirection decisions on the
nameserver location is likely to be quite accurate.

In this paper, we draw attention to these issues and quan-
tify their impact on DNS-based server selection schemes.
We use data from ISP proxies, popular Web sites, DNS and
Web server logs, and dial-up ISP clients to empirically study
the effects of small TTLs and client-nameserver proximity
mismatches. Our results show that without careful tuning
of TTL values, client latency can increase by up to two or-
ders of magnitude, especially as more embedded objects in
Web pages are served from content distribution services. Ad-
ditionally, many clients and their nameservers are topologi-
cally distant from each other. Our experiments show that typ-
ical client-nameserver distance is8 or more hops. Further-
more, we find that latency measurements from server sites to
nameservers are poor indicators of the corresponding client
latencies.

In the next section we give a brief overview of basic DNS
operation. Section 3 discusses and quantifies the effects of
using small TTL values on client-perceived Web access la-
tency. Section 4 presents a quantitative analysis of the dis-
tance between clients and their local nameservers using DNS
and HTTP logs from a commercial web site, as well as a
large number of dial-up ISP clients. Section 5 proposes a
modification to the DNS protocol to address the problem of
identifying clients during name resolution. Section 6 sum-
marizes some representative related work and we conclude
the paper in Section 7.

2 DNS: A Brief Overview

At its most basic level, the DNS provides a distributed
database of name-to-address mappings spread across a hi-
erarchy of nameservers. The namespace is partitioned into
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Figure 1: Basic DNS operation: This example shows the
basic steps required for a client to resolve the address of a
service atwww.service.com .

a hierarchy of domains and subdomains with each domain
administered independently by an authoritative nameserver.
Nameservers store the mapping of names to addresses in re-
source records, each having an associated TTL field that de-
termines how long the entry can be cached by other name-
servers in system. A large TTL value reduces the load on the
nameserver but limits how frequently updates to the database
propagate through the system. The different types of re-
source records and additional details about the DNS are de-
scribed in [1, 4]. The most widely used nameserver imple-
mentation in the DNS is the Berkeley Internet Name Domain
(BIND) [5].

Nameservers can implement iterative or recursive queries.
In an iterative query, the nameserver returns either an an-
swer to the query from its local database (perhaps cached
data), or a referral to another nameserver that may be able to
answer the query. In handling a recursive query, the name-
server returns a final answer, querying any other nameservers
necessary to resolve the name. Most nameservers within the
hierarchy are configured to send and accept only iterative
queries. Local nameservers that handle queries from clients
(i.e., end-hosts), however, typically perform recursive name
resolution.

Figure 1 illustrates how a client typically finds the ad-
dress of a service using DNS. The client application uses
a resolver, usually implemented as a set of operating sys-
tem library routines, to make a recursive query to its local
nameserver. The local nameserver may be configured stat-
ically (e.g., in a system file), or dynamically using proto-
cols like DHCP or PPP. After making the request, the client
waits as the local nameserver iteratively tries to resolve the
name (www.service.com in this example). The local
nameserver first sends an iterative query to the root to re-
solve the name (steps 1 and 2), but since the sub-domain
service.com has been delegated, the root server responds
with the address of the authoritative nameserver for the sub-
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domain, i.e.,ns.service.com (step 3)1. The client’s
nameserver then queriesns.service.com and receives
the IP address ofwww.service.com (steps 4 and 5). Fi-
nally the nameserver returns the address to the client (step 6)
and the client is able to connect to the server (step 7).

3 Impact of DNS TTL Values

The scalability of the DNS largely depends on the caching
of resource records across intermediate nameservers. The
caching is controlled by the TTL value, which in turn de-
pends on the frequency with which administrators expect
the data to change. For example, Internet RFC 1912 rec-
ommends minimum TTL values around 1–5 days [3]. Ear-
lier documentation had recommended 1 day as the minimum
TTL for most servers and around 4 days for top-level do-
mains [6]. These values are now considered too small. Once
a domain stabilizes, values on the order of three or more days
are recommended. A recent study shows, however, that a
majority of nameservers use a default TTL value of 86400
seconds (or 1 day) for their domain [7].

Apart from intermediate nameservers, name resolution re-
sults are also cached by Web browsers as a performance op-
timization. The resolver typically does not return the TTL
value with the query result, so browsers use their own poli-
cies for caching. For example, the default value used in re-
cent versions of Netscape Communicator is around15 min-
utes. Since client-side caching by browsers is often not con-
figurable, we only focus on caching effects at nameservers
in this section.

DNS-based server selection radically changes the mag-
nitude of TTL values and, correspondingly, the benefits of
caching at local nameservers. To achieve fine-grained load
balancing in these schemes, the TTL values returned by au-
thoritative nameservers are typically very small (e.g, 20 sec)
or set to zero. These small TTL values affect performance in
two ways: (i) they increase cache misses, thereby increasing
the number of queries sent to the authoritative nameserver
(along with the corresponding network traffic), and (ii) they
increase the client latency due to the extra name resolution
overhead for each URL access.

One might argue that an increase in request traffic to au-
thoritative DNS servers is not a major concern, given the
CPU power of modern servers. Clearly, in the case of Web
access, the number of name resolutions is bounded by the
number of URL accesses. Processing and servicing HTTP
GET requests is likely to incur much higher overhead than
handling name resolution requests, which require simple
lookups and single-packet responses. However, the increase
in network traffic due to additional UDP DNS requests is not
insignificant [8].

For client-observed latency, on the other hand, TTL values
have a much greater impact. To quantify this effect, we first
analyze the overhead of a single name resolution and com-

1Presumably, the client’s nameserver caches the address of the
ns.service.com to avoid repeatedly querying the root servers.

total HTTP requests 34868
unique hostnames 581

unique URLs 7632
duration of trace 6 hrs

(10am-1pm, 6pm-9pm)
trace date February 1999

Table 1: ISP proxy log statistics

Nameserver cache contentsMedian
latency

root and.com only (case i) 200 ms
domain nameserver (case ii) 60 ms

server address (case iii) 2.3 ms

Table 2: Name resolution latency

pare it to the total Web page download latency. Second, we
determine the distribution of embedded objects (e.g., images
and advertisements) in Web pages across multiple servers by
analyzing logs at an ISP proxy site as well as from the top-
level pages of the most popular Web sites. Based on this
data, we compute the fraction of time the client spends in the
name resolution phase for a typical Web page access when
the TTL values are small or0.

3.1 Name Resolution Overheads

To quantify name resolution overhead we analyzed the time
spent in the various phases of a typical Web page ac-
cess. A Web page download consists of the following ba-
sic steps: server name resolution, TCP connection establish-
ment, transmission of the HTTP request, reception of the
HTTP response, reception of data packets, and TCP connec-
tion termination. Using HTTP/1.0 results in repeating the
the above steps for each embedded object within a compos-
ite page. Note that when the embedded objects are stored
on another server (e.g., servers in a content distribution ser-
vice), having HTTP/1.1 support for persistent TCP connec-
tions across multiple HTTP requests does not eliminate the
first two steps.

To compute the DNS overheads we compiled a list of
server names from the proxy logs at a single POP loca-
tion of a medium-sized ISP. Table 1 shows the statistics for
the fraction of the trace analyzed. We ran a local name-
server (BIND version 8.2.1) at four different locations (Mas-
sachusetts, Michigan, California, and New York) and used it
to resolve the various server names found in the logs. We
measured the name lookup overhead by timing thegeth-
ostbyname() system call for each server hostname. The
measurements were for three levels of caching: (i) the lo-
cal nameserver cache had neither the server address nor the
address of the authoritative nameserver for that sub-domain,
(ii) the local nameserver cache had the authoritative name-
server’s address, and (iii) the local nameserver cache had the
server’s address in its cache.
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(a) Proxy logs (b) Popular sites

Figure 2:Name resolution overheads: The graph in (a) shows the distribution of name resolution latency for the sites from
ISP proxy logs when neither server nor authoritative DNS server addresses are cached locally. In (b) we show the overheads
for the most popular sites.

We initially configured the local nameserver to have the
addresses of the 13 root DNS servers in its cache. The cache
was then primed to contain the addresses of the.com do-
main nameservers. Together, this setup represents case (i)
discussed above where the local nameserver had neither the
server IP address nor the corresponding authoritative name-
server address in its cache. After each run of the experiment,
the local nameserver was restarted to flush the local cache
contents. For case (ii), the nameserver cache was primed to
contain the address of the authoritative nameserver for each
of the domains. Case (iii) measured the time for a cache hit,
i.e., when the server address was in the local cache. The me-
dian name resolution times for the three levels of caching,
measured from the New York site, are shown in Table 2. The
results show that caching reduces the median name resolu-
tion time by more than two orders of magnitude (from 200
ms to 2.3 ms). With TTL values set to 0 this extra overhead
adds to the client-observed latency.

To further validate these results, we obtained a list of pop-
ular Web sites compiled by an Internet measurement ser-
vice [9] and repeated the name lookup experiments. These
sites had a combined user population of 76 million. Fig-
ures 2(a) and (b) show the distribution of name resolution la-
tency for servers (case i) for both the proxy logs and the pop-
ular Web sites, respectively. The times were measured from
four different locations on the Internet. The results show that
25% of the name lookups (with no caching) add an overhead
of more than650 ms and more than 3 seconds, for the popu-
lar sites and ISP proxy log sites, respectively. It is interesting
to observe that nearly15% of the popular sites required more
than 5 seconds to contact the authoritative nameserver and
resolve the name. This is likely to be related to the 5-second
default request timeout in BIND-based resolvers [2].

3.2 Impact of Embedded Objects

Most Web pages accessed today contain a number of embed-
ded components. These components, including images and
advertisements, may be stored at the same Web server or pos-
sibly at a different server belonging to a content distribution
service. In cases where the embedded objects are not co-
located, each page access may result in multiple name res-
olutions, as the client resolves the address of other servers.
In this section we quantify the name resolution overhead per
embedded object, beginning with a determination of the dis-
tribution of embedded objects per Web page.

The logs we obtained from the ISP proxy (see Table 1)
were packet traces collected using theiptrace 2 tool avail-
able on AIX. The packet traces logged information about
the packet contents including IP and TCP headers, HTTP re-
quest and response headers and the list of embedded objects
within each request (i.e., all< img src ... > tags).
From these traces we extracted a list of embedded objects
within each composite page. To further substantiate the re-
sults, and also study more current data, we also analyzed the
top-level pages from the popular Web sites, determining the
number of embedded objects for each. The distribution of
the number of embedded objects in both data sets is shown
in Figure 3. The ISP logs show an average of 14 and a me-
dian of 5 embedded objects per page. The index pages of the
popular sites have much higher values, an average of 35 and
a median of 25 objects per page. These results are similar to
those observed in [10].

For the index pages of the popular Web sites we deter-
mined the download time for each embedded object along
with the composite page, and compared it to the name reso-
lution latency. We use a tool calledPage Detailer[11] that
measures the individual components contributing to Web

2iptrace is similar in function totcpdump .
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Figure 3:Embedded object distribution: This graph shows
the distribution of the number of embedded objects per Web
page from the ISP proxy sites and the most popular Web
sites.

page access latency, including the download time for each
embedded object. We primed the local nameserver cache
and the browser cache to contain all the server addresses (of
the popular sites) such that the measured time consisted only
of the page download time and had no name resolution over-
head. The average page download times and the object sizes
are shown in Table 3.

The results show that if all the embedded components
were stored on the same server, such that only one name
resolution was required for the entire composite page (e.g.,
with HTTP/1.1 or when the TTL returned by the nameserver
is non-zero), the name resolution overheads are quite small.
When neither the nameserver nor the server address is in the
cache (case i), however, the overhead grows to around3%
(200 ms for the name resolution vs. about 6 seconds for the
entire page download).

The name lookup overhead becomes an order of magni-
tude higher when each embedded component requires an
additional name lookup. This might occur, for example,
when objects are served from different servers belonging to a
content distribution service. From our experimental results,
performing a name lookup for each embedded object adds
an overhead of48% (around 200 ms for the name lookup
and around 400 ms for the embedded object download) on
a cache miss. The large name resolution overhead sug-
gests several considerations: additional DNS queries should
be amortized over large page downloads, and embedded
components should be co-located to avoid excessive DNS
queries.

The DNS TTL value needs to balance the tradeoff be-
tween responsiveness of DNS-based server selection, client-
perceived latency, and overall scalability of the system. It is
important for site administrators to understand these trade-
offs before selecting small TTL values. The problem of
selecting TTLs arises from the basic limitation of having

avg. complete page download time 6:3 sec
avg. total page size 30:9 KB

avg. embedded object size 1:22 KB
avg. embedded object download time0:415 sec

Table 3: Page download statistics

no mechanism to flush cached name-to-address mappings
in client-side nameserver caches. One simple solution is to
use larger TTL values to provide only coarse-grained load
balancing at the DNS level. Another approach avoids over-
loading basic DNS functionality, but instead relies on new
services or protocols for load-balancing and server selec-
tion. For example, Web servers can direct clients to the best
proxy or alternate server by creating dynamic HTML pages
with embedded links pointing to the best server, or by using
HTTP redirection. These approaches are not without draw-
backs, however. Dynamic pages with rewritten hyperlinks
cannot be cached and HTTP redirection suffers from addi-
tional TCP connection establishment latency.

4 Client-Nameserver Proximity

DNS-based server selection schemes typically assume that
clients and their primary nameservers share network perfor-
mance characteristics by virtue of being located close to each
other. When handling a name resolution request, the DNS
server performing the server selection typically sees only the
client nameserver as the originator. It has no way of know-
ing who the actual client is, or how far the client is from
its nameserver. The conventional solution to this problem is
simply to assume that the client and nameserver are located
nearby each other. In this section we evaluate the validity
of this assumption empirically using two approaches, first
based on data traces and then on experiments with several
ISPs.

Proximity could be measured directly between the client
and nameserver, in terms of network hops, intradomain rout-
ing metrics, or round-trip time. But for the purposes of
DNS-based server selection, the direct client-to-nameserver
distance is less relevant. The accuracy of server selection
decisions is more directly influenced by whether clients and
nameservers appear nearby when observed externally, for ex-
ample from server sites. Hence, in this section we focus on
proximity metrics that are measured from arbitrary sites in
the Internet.

Our initial approach is to collect traces of HTTP and DNS
requests from a production web site and use them to match
clients to their nameservers. We then determine the distance
between these clients and their nameservers, as seen from
a probe site in the network. In Section 4.4 we use dial-up
ISP accounts to conduct experiments to determine client-
nameserver proximity as seen from multiple probe sites.
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Clients Client nameservers

unique IP addresses 32; 919 3807

common IP addresses 497
unique AS numbers 886 805

HTTP requests DNS requests

no. of requests 1; 455; 199 288; 581

duration of trace 48 hrs 39:5 hrs
avg. request rate 8:42 req/s 2:03 req/s

Table 4: DNS and HTTP log statistics

4.1 DNS and HTTP Data

We obtained DNS and HTTP server logs from a commercial
web site hosted by IBM Global Services. The site is con-
figured with a group of several servers that provide access
to a Web-based service. Incoming connections from clients
are directed to one of the servers by a load-balancing layer-
4 switch which accepts requests on virtual IP address(es).
The authoritative DNS server for the subdomain, co-located
at the site, handles name resolution requests, and returns an-
swers with a TTL0. The logs, collected over 2 days, contain
DNS requests and the client HTTP requests on the corre-
sponding web servers. The DNS logs contain the IP address
of the requesting nameserver, the name being resolved, the
IP address returned, and the timestamp. The HTTP logs con-
tain only the client IP address and the timestamp. Table 4
shows some basic statistics about both sets of logs.

We use information in the global Internet Routing Reg-
istry (IRR) to determine autonomous system (AS) numbers
for each IP address. The IRR is a collection of routing pol-
icy databases that includes servers operated by several ISPs
along with several other networking organizations [12, 13].
We constructed a local copy of the available IRR databases
and used it to lookup AS numbers. ISPs voluntarily publish
policy and route information in the IRR, thus its contents are
incomplete. In our traces we could not identify the AS num-
bers for6% of client IP addresses and5% of nameserver IP
addresses using the routing registry.

4.2 Matching Clients and Nameservers

Before we can characterize client-nameserver proximity we
use the logs to match clients with their configured name-
servers. We rely primarily on timestamps for the correlation
of DNS requests with HTTP requests. Since the authoritative
DNS server returns addresses with a zero TTL, we expected
each HTTP request to have a corresponding DNS request.
Several factors complicated this process, however:

� clock skew: The DNS server and HTTP servers run on
separate machines which are not synchronized. More-
over, the clock skew of the DNS machine relative to
each HTTP server machine may be different.

� client caching: Although the DNS server at this site
is configured to return answers with a zero TTL, client
browsers typically cache the result of name resolutions.

Some informal experiments usingPage Detailersug-
gest that Netscape Communicator 4.72 on the Microsoft
Windows platform, caches name resolutions for ap-
proximately 15-20 minutes.So despite the zero TTL, a
request in the HTTP server log may not have a corre-
sponding request in the DNS server log.

� mishandling of TTLs: Some older BIND nameservers
are known to enforce a minimum TTL on received DNS
information, even if the TTL is zero [6]. Thus, some
HTTP requests may not have corresponding DNS re-
quests even after accounting for client-side caching.

The process of matching clients and their nameservers is
subject to inaccuracy (due to the factors above); hence, we
develop a multi-step algorithm to remove as much uncer-
tainty as possible.

Since we rely on timestamps to perform the matching, we
first try to identify the relative clock skew between the DNS
server and each of the web server machines using IP ad-
dresses that are common to both the DNS and HTTP logs.
We assume that these addresses are proxies or firewalls that
perform both HTTP and DNS requests on behalf of clients,
and consider such cases to be certain matches. Using these
certain matches we determine the mean clock skew and use it
in the subsequent steps. What we refer to here as clock skew
also includes the delay between the name resolution request
and corresponding HTTP request.

In the first pass we consider each HTTP request in turn
and construct a list of candidate nameservers with a nearby
timestamp3, subject to the skew and the expected browser
caching (which we assume is approximately 15 minutes). On
subsequent sightings of the same client in the HTTP log, we
refine the list of candidate nameservers by intersecting the
existing list with the new list generated by the new sighting.
At the end of this process we have a variable-length list of
candidate nameserver addresses for each client IP address.

Since this first pass did not always narrow the list suffi-
ciently to find a single nameserver for each client, we in-
troduced a second pass that performs a similar process in
reverse. We consider each nameserver address sighting in
the DNS logs and construct a list of likely clients served by
the nameserver, according to the timestamp and the name
being queried (again, taking the measured clock skew into
account). This results in a second list of candidate clients
served by each nameserver. These lists are naturally much
longer than the candidate nameserver lists.

Finally we combine the two sets of candidate lists to iden-
tify client-nameserver pairs that appear in both lists. Using
this process we were able to find candidate lists for2394
clients (approximately10% of all clients). Each final candi-
date list had an average length of1:6. Figure 4(a) shows the
CDF of the length of the nameserver candidate lists. More
than60% of these clients matched to one nameserver, though
we were not always able to take advantage of this (as dis-
cussed below). Note that these candidate lists are based on
matching clients and nameservers using only timestamps.

3We use a window of 4-10 seconds.
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Figure 4: Candidate lists and matching heuristics: The graph in (a) shows the cumulative distribution of the length of
the nameserver candidate lists. This distribution is taken across each of the2394 clients for which we were able to find
matches. In (b) we tabulate the percentage of client-nameserver pairs that match according to various heuristics.

At this point we must decide how to finally pick one name-
server when a client has more than one possible candidate.
We adopt a conservative approach that applies some simple
heuristics based on AS number and domain name to decide
if a client and nameserver do in fact belong together. Ba-
sically, when presented with several candidate nameservers,
we pick the nameserver that has either the same AS number
or domain name as the client. We further rank the matches so
that matching domains are ranked higher than matching AS,
since AS grouping is relatively broader. Of course a match
on both criteria is ranked highest. When the AS or domain
name is unavailable (no IRR entry or no PTR record in the
DNS), we assume a mismatch for that criteria. In the case
of ties between candidates we use random choice as the fi-
nal tie-breaker. According to these heuristics, we were able
to find 324 clients-nameserver pairs (14% of the clients for
which a candidate list was found using timestamps) . The
table in Figure 4(b) shows the percentage of these pairs that
matched according to the combinations of these heuristics.

When none of the candidate nameservers for a particu-
lar client match according to these heuristics, we consider
it a mismatch, even if the candidate list consists of only
one nameserver. This, in effect, removes most of the cases
in which a client may not be using the correct or assigned
nameserver. While these cases are of particular interest,
we believe from inspection that timestamp-based correlation
alone may be inaccurate, thus requiring a conservative ap-
proach using additional heuristics.

4.3 Log-Based Proximity Evaluation

After determining the set of client-nameserver pairs from the
DNS and HTTP logs, the next step is to determine the prox-

Proximity measure % matches

matching AS 31 (3% n/a)
matching domain 16 (23% n/a)

matching AS and domain 53 (26% n/a)
matching IP prefix 1 octet 2 octets 3 octets

37 19 10

Table 5: Client and nameserver proximity measures

imity of clients to their nameservers. Some simple metrics
of proximity include relatively static parameters such as AS
number, domain name, and IP address prefix.

In Table 5 we show the percentage of client-nameserver
pairs that are “nearby” according to these metrics. In paren-
theses are the percentage of pairs for which the correspond-
ing metric could not be determined. Since we use domain
names and AS numbers as heuristics todeterminematching
pairs, these metrics are somewhat misleading. For example,
Table 5 indicates that31% of the client-nameserver pairs had
the same AS number but this really means that69% of the
pairs had either matching domain names only or matching
AS and domain name. We found that only about half of the
client-nameserver pairs had matching domain namesandAS
number.

Table 5 also shows the percentage of client-nameserver
pairs that share the same prefix in their IP addresses when
prefix lengths are assumed to be one, two, or three octets. It
should be noted, however, that although nearly50% of actual
Internet address prefixes are24 bits, there are a large number
that are between16 and24 bits [14]. Therefore, the numbers
in Table 5 may underestimate the actual matches if the real
prefix length is not8, 16, or 24 bits.
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(a) Clustering clients and nameservers (b) Distribution of cluster sizes

Figure 5:Client and nameserver clustering (router hops): In (a) we illustrate how clients and nameservers are clustered
within x number of hops using path information gathered from the probe site. The graph in (b) shows the distribution of the
cluster sizes.

A better metric for determining client-nameserver prox-
imity is network hops which we measure from a probing site
in the network. We use thetraceroute tool to learn the
network path from the probing site to the client and name-
server. Then we find the maximum hopcount until a common
ancestor appears in the paths to determine the “cluster” size
of the client-nameserver pair. This process is illustrated in
Figure 5(a). RouterC is the first common ancestor on the
two paths from the probe site. SinceC is 4 hops away from
the client and3 hops away from the nameserver, we say that
this pair belongs to amax(3; 4) = 4-hop cluster. If both
paths were the same except for the last hop (i.e., client and
nameserver both connected to routerH), then the client and
nameserver belong to a1-hop cluster.

Figure 5(b) shows the distribution of cluster sizes for the
client-nameserver pairs we identified. Notice that only about
15% of the pairs are in 1-hop clusters. The median cluster
size is5 and more than30% of the pairs are in 8-hop clusters,
indicating that a large fraction of clients are topologically
distant from their nameservers when measured from an arbi-
trary point in the network. Furthermore, since the matching
process removed misconfigured client-nameserver pairs, the
actual number of clients that are topologically distant from
their nameservers is likely to be higher.

4.4 ISP Proximity Experiments

To further evaluate client-nameserver proximity, we con-
ducted experiments with ISP clients that connect using dial-
up PPP connections. In most cases, dial-up ISPs provide
primary and secondary nameserver IP addresses along with
the local (dynamic) IP address during the PPP network-layer
protocol configuration [15, 16]. This allows us to know
with certainty the nameserver addresses for the client, thus
overcoming the major challenge of matching clients to their

ISP accounts 11
POPs dialed 27–54, avg:45:8

unique client addresses 498

unique nameserver addresses 54
nameserver addresses per ISP2–15, avg:7:4

Table 6: ISP address statistics

nameservers using only DNS and HTTP request timestamps
in logs.

We obtained dial-up accounts from9 National retail
ISPs [17] and two “free” ISPs. For each ISP, we dialed into
approximately 50 POPs across the U.S. Our dataset includes
1090 distinct client-nameserver pairs. Table 6 summarizes
the ISP data. Note that we limited our study to those ISPs
that use standard link-layer and authentication protocols to
simplify the process of automating the experiments.

From two probe points in the Internet (located in New
York and Michigan) we collected path and latency measure-
ments to the dial-up client and each of its nameservers using
the traceroute andping tools. In addition we deter-
mined the path and network latency from the client to its
nameservers.

4.5 ISP Proximity Evaluation

In our evaluation of ISP client-nameserver proximity we
focus on path and latency measurements from the prob-
ing points rather than other proximity heuristics such as
AS number or domain name. In most cases the AS num-
bers and domain names of clients and nameservers matched,
though some dial-up ISPs employ nameservers from third-
party providers. It is interesting to note that some larger net-
work providers that provide DNS services for dial-up ISPs
appear to use network-layer anycast for their DNS server ad-
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Figure 6: ISP client-nameserver paths: In (a) we show the distribution of cluster sizes as viewed from both probe sites.
The graph in (b) shows the distribution of the ratio between the common and disjoint portions of client-nameserver paths.

dresses. We found several cases, for example, where the path
to the advertised DNS server address consistently ended at a
different address from both probe sites. In the case of one
ISP, the nameserver ultimately contacted depended on the
POP location, or where thetraceroute was taken.

We first measured the size of client-nameserver clusters
as viewed from the two probing points, using the same tech-
nique shown in Figure 5(a). The graph in Figure 6(a) shows
similar clustering to the log-based results in Section 4.3.
Again, nearly 30% of client-nameserver pairs fall in clus-
ters that are 8 or more hops. The median cluster sizes are
larger than in the earlier results, 8 and 7 hops from probe
sites 1 (New York) and 2 (Michigan), respectively. The re-
sults from both probe sites are generally equivalent, though
the clusters are slightly smaller when viewed from probe site
2.

We compared these results with the direct client-
nameserver topological distance and found that that the av-
erage distance over all pairs was7:6 hops, with a median
of 8. Some clients were as far as15 hops from their name-
servers. The average client-to-nameserver round-trip latency
was234 ms, though this was dominated by the average first-
hop latency which was188 ms. These results show that even
when considering direct distances, clients and nameservers
are often topologically quite far apart.

Another indicator of how performance from the client and
its nameserver may differ is the length of the common ver-
sus disjoint portions of the paths. Suppose the path from
a Web server to a client and its nameserver is common for
many hops, and then diverges near the ends. Then it might
be expected that the client and nameserver share similar net-
work performance characteristics to the server, more than if
the paths diverged nearer to the server. To measure this, we
compute the ratio of the length of the common portion of the
paths to the disjoint portion. For example, in Figure 5(a), the
common path isA-B-C with length2 and the (maximum)

disjoint portion isC-F -G-H with length3, resulting in a ra-
tio of 2=3 = 0:66. A smaller ratio implies that a smaller
portion of the paths to the client and nameserver is shared,
suggesting that similar network performance to the client and
nameserver is less likely.

Figure 6(b) shows the distribution of path length ratios
from both probe sites. As expected, the path ratios depend
heavily on the probe site location. For probe site 1, around
35% of client-nameserver paths have disjoint paths that are
twice as long as the common paths (i.e., ratio 0.5). For probe
site 2, however, only5% of the client-nameserver pairs have
a 0.5 ratio and nearly50% have ratio 1.0. For both probe
sites, though, no more than10% of the client-nameserver
paths had a ratio greater than 2.0. Thus, in most of the cases,
the disjoint portion of the path is significantly long, relative
to the common portion. One interpretation of these results
is that the nameserver and client paths are sufficiently diver-
gent, such that similar network performance is unlikely.

We also examined the network latency to clients and
nameservers to determine if measurements to nameservers
are in general indicative of the relative performance from
the corresponding clients. For example, several DNS-based
server selection products collect measurements from each
server site to the requesting nameserver, and direct the client
to the site reporting the smallest round-trip latency. For
each client-nameserver pair, we obtain a round-trip latency
measurement (usingtraceroute ) to the client and name-
server from each of the probe sites4. We denote the mea-
sured latency from probe site 1 to the client and nameserver
ast1

c
andt1

d
, respectively (similarly for probe site 2). If we

suppose that the probe sites represent Web server sites, an
interesting question is: doest1

d
< t2

d
imply thatt1

c
< t2

c
? In

our experiments, this relationship was violated in21% of the

4The client latency is measured to the last hop router rather than the
client itself, to remove the effect of the large delay introduced by the dial-
up link
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Figure 7: DNS protocol modifications: The general DNS
message format is shown in (a), and (b) shows the proposed
CA resource record carried in the additional records section.

cases. We also consider the case when two probe sites look
roughly equivalent with respect to nameserver latency, i.e.
jt1
d
�t2

d
j � w, wherew is, say,10ms. In this case we wish to

determine if the corresponding client latency is also roughly
the same, subject to the same value ofw. We found that this
was true in only about12% of the cases, suggesting that a
random choice among two equivalent-looking server sites,
when measurements are relative to the nameserver, may be
misguided. In general, the correlation between nameserver
latency and actual client latency was quite low. Specifically,
we computed the correlation coefficient betweena = t1

d
� t2

d

andb = t1c � t2c , and found that� = 0:32. Thus,a andb are
positively correlated, but only weakly so.

5 DNS Protocol Modifications

As stated at the outset, DNS-based server selection schemes
assume that clients and their primary nameservers are lo-
cated near each other, such that they would experience simi-
lar performance when accessing a server. As shown in Sec-
tion 4, however, clients and nameservers are often topologi-
cally quite distant from each other, casting doubt on the va-
lidity of this assumption.

One way to address this problem is to modify the DNS
protocol to carry additional information to identify the ac-
tual client making the request. In this section we propose
a simple scheme that carries the IP address of the client re-
questing name resolution in the DNS query message. A DNS
server performing load balancing or server selection can use
the client IP address to decide more accurately which address
to return in the answer. This is of course only applicable
in the common case where client resolvers make recursive
queries to the local nameserver, which then operates itera-
tively to find the answer.

As shown in Figure 7(a), the standard DNS message for-
mat consists of five sections:header , question , an-
swer , authority , andadditional [4]. This scheme
could be implemented by modifying the format of the
question section in DNS messages, but a more backward
compatible approach is to define a new DNS resource record

with typeCA(client address) to accompany the query in the
additional records section of the message. Figure 7(b)
illustrates the format of the new resource record. The type
field is set toCA and the data section of the record simply
contains the client IP address. The TTL is zero since the
record applies only to the current transaction and should not
be cached. Note that this extension can be incrementally
deployed, similar to other experimental resource records.
Nameservers that do not understand the new type will sim-
ply ignore it. This is a slightly unusual use of a new resource
record since it pertains to a specific query instead of pro-
viding additional information in the database about a host,
nameserver, or network.

6 Related Work

There are several areas of research and standardization ef-
forts relating to DNS-based server selection. In this section
we summarize some representative work.

The general problem of determining distance between In-
ternet hosts or networks has received a great deal of recent
attention. For example, the IDMaps architecture attempts to
provide a service in whichtraceroute measurements are
distributed over the Internet using IP multicast [18]. Clients
of the service use the raw measurements to compute distance
estimates. The SONAR service provides an interface be-
tween applications and proximity estimation services [19].
SONAR defines a query/response protocol that clients can
use to find the distance between a nearby SONAR server and
a set of IP addresses. SONAR does not specify a means for
estimating proximity, depending instead on services such as
IDMaps for distance information.

Related to the issues of how to measure proximity and
make information available to clients is the question of
which metrics provide the best indication of actual latency
when selecting among multiple servers. Recent work has
considered metrics such as network hops, AS hops, and RTT,
along with various means of collecting them including active
probing usingtraceroute , ping , or HTTP, and passive
participation in BGP peering sessions [20–22].

Several modifications to DNS have been proposed, both
to provide additional location information about hosts, and
specifically to facilitate server selection. The LOC resource
record allows geographic location information to be ex-
pressed in the DNS as latitude and longitude [23]. Simi-
larly, the GL resource record encodes location information
in terms of hierarchical locator (country code, postal code)
and an textual address [24]. NetGeo is a related tool that per-
formswhois queries on a variety of databases to return all
available geographic information about an IP address, do-
main name, or AS number [25]. The SRV DNS resource
record is a proposed standard which specifies the identity of
servers that provide a specific service (e.g., LDAP) using a
specified protocol (e.g., TCP), in a specified domain (e.g.,
service.com ) [26]. SRV records allow clients to iden-
tify the servers providing the specified service but does not
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give any indication of their actual location beyond what is
discernible from the server’s name or IP address.

In [27], the authors describe a scheme in which client DNS
servers directly query gateway routers for routing metric in-
formation about paths to different content servers. Using
these metrics the DNS server selects an appropriate server.
The Location Data System (LDS) defines an extension to the
DNS for resource records that map URLs to lists of servers
holding the specified object [28]. LDS also uses the dynamic
update facility in DNS to learn about changes in the location
of objects from object servers (e.g., web caches).

Finally, some recent work has proposed new mechanisms
to reduce client latency related to name resolution. One
approach is to pre-resolve server names by considering the
user’s access history along with the links appearing on the
Web page being viewed [29]. Other work proposes proactive
cache management in which cached name resolution results
are refreshed automatically, without waiting for a query from
the client [7]. This work further affirms that DNS caching
plays a crucial role in determining client-perceived latency.

7 Conclusion

This paper explored two important issues related to DNS-
based server selection. The DNS-based schemes typically
disable client-side caching of name resolution results, rais-
ing the question of what impact this policy has on client-
perceived Web access latency. Our experiments show that
without caching, name resolution overhead can grow up to
two orders of magnitude. Furthermore, as the number of
embedded objects served from multiple sources increases,
name lookup overheads can grow nearly50%. DNS-based
server selection also relies on clients and their local name-
servers being in close proximity, since redirection is based
on the nameserver originating the request rather than the
client. Our experiments show that this assumption is often
violated, with clients typically8 or more hops from their
nameservers. Also, our ISP experiments showed that latency
measurements to local nameservers are generally weak pre-
dictors of latency to the actual clients.

A growing number of content and service providers are
turning to DNS-based schemes, and associated commercial
products, for distributed server selection and load balanc-
ing. This study draws attention to the pitfalls associated with
this approach. Our results suggest that careful considera-
tion is necessary when choosing DNS TTL values to bal-
ance responsiveness against extra client latency. Also, addi-
tional mechanisms may be necessary to ensure the accuracy
of server selection decisions when client proximity is a de-
ciding factor. In this paper, we propose one such mechanism
in the form of a new, simple DNS resource record that iden-
tifies the client originating a name resolution request.
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