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Abstract

The emergence of the global Internet has dramat-
ically broadened and changed the computing land-
scape. In particular, much of the value in contem-
porary computing systems derives from networked
applications. Prominent examples include e-mail,
Usenet news, the World Wide Web, and the many
varieties of peer-to-peer networks.

However, the number of successful, large-scale, truly
distributed, applications is exceedingly small. We
argue that a major reason for this is that tools
and other facilities available to aid the developers
of these applications are inadequate. We propose a
life-cycle for these applications, identify challenges
that must be met to make the model viable, and
detail our initial work towards meeting these chal-
lenges.

1 Introduction

The Internet is not living up to its potential. While
the Web has been a tremendous success, provid-
ing millions of non-technical users with convenient
access to information and the ability to perform
transactions on-line, the number of truly distributed
applications that have succeeded on the Internet
is shockingly small. Even those few applications
that support interaction among clients, such as chat
rooms, auctions, and file-sharing services, require all
operations to pass through a common server. As the
success of content distribution networks (CDNs) and
peer-to-peer (P2P) applications have shown, there is
clearly a great demand for large-scale distributed ap-
plications. The major barrier to supporting these,
and even richer, applications on the Internet is the
difficulty of designing, building, testing, and main-
taining distributed applications using the tools that
comprise the state-of-the-art today.

We can draw a parallel between the complex task
of product development and computer application
development. In general, manufacturers explicitly
manage the life-cycle of their products. Moreover,

they typically have specific tools to support differ-
ent life-cycle phases, e.g., monitoring tools and sta-
tistical packages for quality control, and specialized
CAD tools for product design. We believe that the
analogous life-cycle for an application would have
five stages: the design stage, the implementation
stage, the testing stage, the deployment and opera-
tion stage, and the maintenance and evolution stage.
While good tools exist for the life-cycle stages of
traditional non-networked applications (e.g., debug-
gers, profilers and logging tools), no such tools exist
for distributed applications. The goal of our work
is to provide a tool chain that supports each of the
stages in the life-cycle of Internet applications.

Supporting the life-cycle stages of applications in
traditional distributed environments has received a
great deal of attention in the past. For example, a
wide variety of tools are available for traditional dis-
tributed systems. These range from simple commu-
nication libraries such as MPI (for scientific comput-
ing) to comprehensive environments such as Corba
(for enterprise applications). However, these tools
target smaller scale, mostly closed environments,
which are fundamentally different from the Internet.

Recent efforts have begun to address these same
challenges in the Internet context. For example, ef-
forts in DHTs [1] and self-organized overlays [3] are
developing a collection of building blocks that help in
the implementation of large P2P applications. Simi-
larly, simulation tools like ns-2 [6] and open testbeds
like Emulab [10] and Planetlab [7] have provided
excellent platforms for the comparison of different
designs choices. However, the research community
has largely overlooked the later stages of the life-
cycle — specifically, testing, deployment and evolu-
tion of these applications. In this paper, we describe
some of the challenges in addressing the needs of dis-
tributed applications in these later life-cycle stages.

Our initial work in supporting distributed applica-
tions has concentrated on the problem of mainte-
nance and evolution — specifically the problem of
upgrading a distributed application and possibly
rolling back an upgrade. We describe the challenges



in addressing this problem as well as some of our ini-
tial solutions in Section[2. In Section[3, we discuss
some of the issues in our next area of focus — testing
and debugging deployments of distributed applica-
tions. We summarize our observations and conclude
in Section [4.

2 Maintenance and Evolution Stage:
Software Upgrade/Rollback

An important capability that our distributed appli-
cation life-cycle requires is the ability to upgrade to
new software versions, and when necessary, to revert
to previous software rapidly and easily. We refer to
this as the software upgrade/rollback problem. In
this section, we explore the challenges in addressing
this problem and describe part of the design space
of possible solutions.

Broadly, upgrades can be classified as synchronous
or asynchronous. A synchronous upgrade is one
in which the software on all nodes must be up-
graded near-simultaneously. An asynchronous up-
grade, in contrast, does not require coordination
amongst nodes of the distributed application. Syn-
chronous upgrades make more demands on the up-
grade/rollback system than asynchronous upgrades.

An example of a distributed application that might
use asynchronous upgrades is a web server cluster.
The prototypical architecture for a web server clus-
ter might consist of a load-balancer, a number of
identical web servers, and a back-end database. Be-
cause the web servers are, in some sense, replicas,
the unavailability of a single web server node does
not greatly impact the overall service. Also, the web
servers do not need to run the same software release
in order to maintain the correctness of the overall
service. Accordingly, upgrade and rollback need not
be coordinated amongst the web server nodes and
can be done asynchronously.

Routing applications are examples of distributed ap-
plications that may require synchronous upgrades.
In contrast to the web server cluster, the nodes are
not replicas, so the unavailability of a single node
will force the unavailability of any resources unique
to that node. In addition, the operation of the rout-
ing nodes is not independent. They must cooperate
in order to provide service to their clients. Thus, we
must either design upgrades to be backwards com-
patible, or we must coordinate upgrade (and roll-
back) amongst the routing nodes.

2.1 Related Work

There are two pieces of related work on upgrad-
ing large scale distributed systems that are worth
noting: the work on upgrading the Internet routing
infrastructure [9] and work on upgrading classes in
object-oriented databases [5].

The Internet routing infrastructure can be viewed
as a large distributed application. As many net-
working researchers have bemoaned, the difficulty
of upgrading or incorporating new functionality into
the Internet infrastructure has significantly limited
the deployment of new techniques. This difficulty is
the result of both a design that does not accommo-
date automatic deployment of new functionality and
the distributed ownership of the Internet (making it
difficult to reach consensus about upgrades). The
Active Network [9] community spent many years at-
tempting to address these shortcomings with unfor-
tunately little success. However, we believe some of
the important lessons from this work and the deploy-
ment of new protocols in the Internet do carry over
to the area of upgrading distributed applications.

Liskov et al.’s work [5] focuses on upgrading classes
in object oriented databases, where it is essential to
preserve object state across upgrades. Note that our
problem differs significantly from the problem con-
sidered by this effort. In our problem, we assume
that the distributed application does not require per-
sistent state. Under this assumption, which we be-
lieve will hold for many distributed applications, up-
grade and rollback can be handled with significantly
less developer effort.

2.2 Challenges/Requirements for Up-
grade/Rollback

Based on the discussion above, a solution to the up-
grade/rollback problem requires specific capabilities:

1. An upgrade/rollback solution should not re-
quire excessive change from existing processes
for the distribution and installation of software.

2. A solution must enable software rollback with
minimal operator intervention. Ideally, when
an operator initiates the rollback procedure, the
system automatically reverts all necessary state,
such as program files, configuration files, etc.

3. The upgrade and rollback procedures should op-
erate quickly.

4. The solution should minimize the down time
due to upgrades and rollbacks. Note that this



requirement can be relaxed for applications such
as a web server cluster, because the application
architecture itself can compensate for the un-
availability of individual service nodes.

Note that the third and fourth requirements are not
equivalent. It might be possible, for example, to
minimize down time by running the upgrade proce-
dure “in the background”. But this might conflict
with the goal of upgrading the software quickly.

2.3 Solutions to Upgrade/Rollback

We now consider approaches to addressing the chal-
lenges of upgrade/rollback. We consider the asyn-
chronous case first, and the synchronous case next.

2.3.1 Asynchronous Upgrade and Rollback

In the asynchronous case, no coordination between
nodes is required to effect a successful upgrade. Ac-
cordingly, assuming that the application architec-
ture can compensate for the unavailability of indi-
vidual service nodes, techniques used for upgrade of
single nodes can be reused. We briefly discuss two
of these techniques.

Packages Given that software is often distributed
as packages, and managed by package management
systems, such as the Redhat Package Manager, a
natural approach is to leverage these systems to
manage software updates and rollbacks. Our up-
grade procedure might be as follows: shut down
the service, copy system configuration files, upgrade
the software (taking care to log the prior version of
the upgraded software), and then restart the ser-
vice. The rollback procedure would be to shut down
the service, remove the upgraded software, reinstall
prior versions, restore configuration files, and then
restart the service.

This approach well achieves the first and second
goals of Section [2.2. Depending on the number of
packages involved in an upgrade, and the complex-
ity of their installation scripts, however, the corre-
sponding rollback operation may take some time to
complete. Thus the approach may not achieve the
third goal.

File System Checkpoints An alternative ap-
proach, that addresses the speed concern (while
maintaining the other goals), is to use file system
checkpoints. To upgrade the software, we shut down
service on a node, checkpoint the filesystem, and
then restart service. To roll back the software, we

shut down service, roll back the filesystem, and then
restart service. Because this approach avoids the
need to execute uninstallation and installation code,
it may better meet the speed goal.

2.3.2 Synchronous Upgrade and Rollback

We now consider the problem of synchronous up-
grades. We consider the specific problem of an up-
grade which is both synchronous, and not backwards
compatible. An example of such an upgrade would
be switching an application’s routing protocol from
distance vector to link state.

In designing a solution, we draw inspiration from
how Internet routing has been upgraded. In moving
from IPv4 to IPv6, the Internet has allowed both
protocols to operate simultaneously on nodes. Sim-
ilarly, in our approach, the upgrade process begins
with simultaneous execution of old and new versions
on the application nodes. The simultaneous execu-
tion provides an opportunity to to bootstrap the new
application instance, and thus, minimize unavailabil-
ity due to the upgrade. After the new version is
ready to run, we terminate the old instance.

To support simultaneous execution, we employ vir-
tual machines (VMs). VMs provide the illusion of an
independent computing machine while running as a
process on some other machine. In this context, the
VM is referred to as a guest, and the other machine
is called the host.

For our VM, we choose User Mode Linux (UML)[4],
which provides a virtual Linux machine running as
a process on a Linux host. Two features of UML
are required for our purpose. First, it provides the
ability to route network packets between the host
and guest. Second, it supports copy-on-write filesys-
tem images. To use the copy-on-write facility, the
user specifies a base filesystem image, and a copy-
on-write file. Both files are stored in the host filesys-
tem. The base filesystem is treated as read-only, and
any changes to the guest file system are written to
the copy-on-write file.

To employ UML for upgrade/rollback, the dis-
tributed application is installed in a UML VM. Be-
fore a software upgrade, we duplicate the copy-on-
write file and create a snapshot of the running vir-
tual machine process. These files are saved in case
a rollback is later required.

Additional copies of the process snapshot and copy-
on-write file are then made for the VM that will run
the upgraded application. We initialize this VM,
using the copied files and the same base filesystem



image as the original VM. Next, we perform the soft-
ware upgrade inside the second VM. Because the two
VMs use different copy-on-write files, changes to the
filesystem by either VM are not seen in the other
VM.

At this point, the system is ready to begin simul-
taneous execution. If, however, both versions of the
application listen on the same network port, we must
arbitrate access to that port. With some assistance
from the application developer, we can construct vi-
able approaches for both datagram communication
(UDP) and byte-stream communication (TCP).

For UDP, we require that the application have a way
of identifying and dropping messages from incom-
patible versions. The application might, for exam-
ple, include a version number in each message. We
then have the host kernel deliver all datagrams for
the application to both VMs.

For TCP communication, we cannot simply deliver
packets to both VMs. Spurious packets would be
processed by the VM’s TCP stack, possibly con-
fusing it. Thus the filtering must be done on the
host machine. To support this filtering, the appli-
cation developer provides the host machine with fil-
ters that the host machine can use to route appli-
cation requests to the appropriate application in-
stance. To handle connection establishment, con-
nection requests (SYN packets) are answered by the
host machine. After the first request packet from
the remote end is received, the application version
is identified. The host machine then spoofs a connec-
tion request from the remote end to the appropriate
VM, discards the VM’s response, and forwards the
request packet to the VM.

Once the upgrade is complete, we terminate the VM
running the older software. How, though, do we de-
termine that an upgrade is complete? Our present
approach is to consider the message rate of the old
application. As new application nodes enter the sys-
tem, they choose to run the new application version.
Concurrently, old nodes exit the system, decreasing
the rate of messages for the old application version.
Thus, over time, the message rate for the new version
increases, and the message rate for the old version
decreases. When the message rate for the old ap-
plication version at a node drops below a threshold,
the node terminates the old application version.

In order to ascertain the viability of a VM approach
to simultaneous execution, we have conducted some
preliminary experiments on the costs of snapshot-
ting and resuming. Because support for resuming

Process Size (in MB)

32 64] 128

Snapshot | 0.89 | 1.78 | 10.42
Resume < 0.01

Table 1: Time (in sec) to Snapshot and Resume Pro-
cesses

UML is not yet complete, we present results based
on a process of similar size (in terms of virtual mem-
ory image) as a UML VM. Table 1/presents the time
to snapshot and resume processes of varying sizes.
Experiments were run on a 766 MHz Pentium III
with 256 MB of RAM. Snapshot times are short
enough that network connections are unlikely to be
disrupted. Note that resume times are consistently
low, and independent of process size, because resum-
ing only maps the process’ data into memory. The
data will be faulted in later as needed.

Based on these results, we believe that a virtual
machine based approach is appropriate for provid-
ing upgrade/rollback facilities for synchronous up-
grades. Note that it may be possible to improve the
snapshotting time for large processes by perform-
ing lazy snapshots. For example, we could mark
the pages of the virtual machine process as copy-
on-write, and then save the snapshot data in the
background.

2.4 Open Issues

Open issues remain for both asynchronous and syn-
chronous upgrades. One open question is how to
handle side effects of buggy software upgrades. For
example, in an e-commerce application, the web ser-
vice software might be responsible for computing
the tax on a purchase. While we can revert a soft-
ware upgrade that has a bug in its tax computation
code, we can not automatically correct its tax cal-
culations. Although such corrections are clearly ap-
plication specific, incorporating an undo facility [2]
may ease the application developer’s burden.

Several issues specific to synchronous upgrades re-
main as well. First, it is not clear that reverting
to the prior process state on a rollback is always
the right choice. Routing table data, for example,
is often transient. Thus, if a large period of time
elapses between the upgrade and the initiation of
the rollback, it may make more sense to restart the
old software with a clean state (an empty routing
table). Also, if the new application version needs
to reflect the volatile state of the earlier application,
we may need to log and replay messages delivered
between the time that the snapshot is taken, and



the time that the new software is ready to handle
messages.

3 Testing Stage

In the previous section, we described our current
efforts for supporting the evolution life-stage of dis-
tributed applications. Here, we briefly discuss our
future plans for supporting the testing life-stage.

3.1 Test Queries

We envision two basic capabilities to support the
testing of distributed applications. One is the abil-
ity to inject test queries into the application, and
the other is the ability to capture the data that will
enable us to verify the correctness and performance
of the upgrade. We call the components responsible
for these abilities the injection component and the
validation component respectively, and consider the
requirements for each component.

The injection component is responsible for delivering
test cases into the distributed application for execu-
tion. A complication in the implementation of an
injection component is that the behavior of a dis-
tributed application may depend on who originated
a request, or where in the network a request orig-
inated. The injection component must reproduce
these attributes of the test cases in order to accu-
rately test the deployed distributed application. In
particular, this means that the injection component
is itself distributed, as test requests may be injected
at different nodes of the application.

A possible design for a simple injection component
is to require every node to support proxy or relay
functionality. This would allow remote developers
to masquerade as any node in the system. For ex-
ample, if a test case requires that a message be sent
from node A, then the node running the test simply
sends/receives messages to a proxy at node A, which
forwards them to the distributed applications (and
returns messages from the distributed application to
the tester). Messages that need to be sent by a par-
ticular user are handled in a similar manner. The
ability to impersonate a user or machine naturally
raises security issues that must be addressed. In ad-
dition, while this allows a developer to route via an-
other node, it may not perfectly recreate the tested
node’s view of the system. For example, the timing
of messages might be affected which in turn may af-
fect the behavior of the system. A richer scripting
mechanism to control nodes may provide a more ac-
curate remote view of the system but may be much
more complicated to implement.

The validation component is responsible for facilitat-
ing the checking of the application on the injected
test cases. Note that it does not perform the check
itself — the responsibility for determining the cor-
rectness of application behavior necessarily requires
application specific knowledge. The duty of the vali-
dation component is to provide the data that enables
validation of application behavior. The data gather-
ing must be lightweight in terms of communications
cost. The component must also minimize the effort
required by the application developer to specify the
data to be captured. At the same time, however,
it must provide flexibility in the kind of data to be
captured.

An important tool to help validation is support for
a rich logging system. A developer should be able
to specify a set of triggers, a set of data types, and
a callback for each data type. Incoming messages
at a node can be matched against the set of triggers
and the callbacks are invoked to capture data when
a message matches a trigger. The triggers can be
checked before or after the message is processed by
the application. Some key open challenges are the
scalable distribution of these triggers and callbacks
to the application nodes and the scalable collection
of the resulting logs for analysis. It is likely that not
all nodes in the system will be involved in the vali-
dation, thereby simplifying the task of distribution
and collection.

3.2 Debugging Support

When developers of traditional applications need to
understand application behavior, they often employ
source-level debuggers. A debugger provides a de-
veloper the ability to study program behavior at a
microscopic level. Specific abilities of common de-
buggers include single-stepping through program ex-
ecution, live inspection of complete program state,
including memory and registers, and post-mortem
analysis of program state via core files.

How might we provide similar capabilities to devel-
opers of networked applications? As a first, naive,
approach, consider building a debugging system for
distributed applications using traditional debuggers
and a remote invocation facility such as ssh. In this
approach, the remote invocation facility is used to
attach a debugger process to each process of the dis-
tributed application. Unfortunately, this approach
approach does not work well. To illustrate, we con-
sider how such a system deals with single-stepping.

How do we implement single-stepping in this sys-
tem? This is, perhaps, a trick question. While



single-stepping is well-defined for a single process,
there is no clear analogue for an application with
multiple processes. There is no obvious order in
which we could instruct the processes to execute
their next steps, because concurrent execution is rife
with the potential for race conditions. Hence, it does
not matter which implementation we choose: single-
stepping is inherently an inappropriate debugging
primitive for distributed applications. One impor-
tant challenge, then, is to find a set of primitives
that provide meaningful and useful semantics for dis-
tributed applications.

One possibility is to support a less demanding form
of application debugging. For example, instead of
using traditional debuggers at each node, message
logging may provide a useful first approximation to
single stepping. Clearly, capturing all the messages
generated at all nodes could be very expensive for
some applications. Instead, we may limit the log to
those messages associated with certain requests, re-
stricted either by message type, or by node using the
techniques described for validation in Section 3.1.
Sahai et al. [8] propose a method of capturing all the
messages associated with a request that may be use-
ful for this approach. Either synchronized clocks or
Lamport clocks could be used to timestamp events
in these logs. Developers could perform real-time
visualization of the logs to observe their application
in operation. Alternatively, if all messages are col-
lected it might be possible to diagnose problems by
replaying the logs within a simulator, where tradi-
tional debugging would be possible.

4 Conclusions

It is clear that distributed applications are a sig-
nificant part of the computing landscape. But to
fully realize the potential of networked computing,
we will need richer development environments that
lessen the burden on application developers. We be-
lieve that the development of distributed applica-
tions can be improved by an appropriate life-cycle
model, and tools that support that model.

We have proposed a life-cycle that consists of de-
sign, implementation, testing, deployment and oper-
ation, and maintenance and evolution stages. Tools
to support the first two stages already exist, or are
now emerging. For the maintenance and evolution
phase, initial work indicates that approaches based
on versioning/snapshot filesystems and virtual ma-
chines will be appropriate for many distributed ap-
plications. To support the testing phase, we propose
the message injection and data capture primitives.

We also find that traditional approaches to debug-
ging do not map well to distributed applications, and
that new primitives will be needed. As a start, we
propose rich forms of message logging as an approx-
imation of single-stepping. Finally, while we have
not addressed the issue of the remaining life-stages
in this paper, we hope to eventually develop a tool
chain that helps developers in all stages.
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