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Abstract—This paper presents an approach to accurate and scal-
able multiple-model (MM) state estimation for hybrid systems with
intermittent, cyclical, multimodal dynamics. The approach consists
of using discrete-state estimation to identify a system’s dynami-
cal and behavioral contexts and determine which motion models
appropriately represent current dynamics and which individual
and MM filters are appropriate for state estimation. Furthermore,
the heirarchical structure of the dynamics is explicitly encoded,
which enables detection not only of rapid transitions between mo-
tion models but of higher level behavioral transitions as well. This
improves the accuracy and scalability of conventional MM state es-
timation, which is demonstrated experimentally on a mobile robot
that exhibits fast-switching, multimodal dynamics.

Index Terms—Hidden Markov models, hybrid estimation,
multiple-model (MM) filtering, timed automata.

I. INTRODUCTION

CCURATE and scalable state estimation for hybrid sys-
A tems with cyclical intermittent dynamics is a key-enabling
technology for reactive control and system health monitoring.
A motivating example of such a system is a legged mobile robot
that exhibits different behaviors, such as walking and jogging,
and requires robust state estimation for successful control.

In order to accurately estimate the state of these systems,
this paper presents a novel, hierarchical approach that combines
classification with discrete and continuous state-estimation tech-
niques. This approach is directed at hybrid systems with fast-
switching multimodal dynamics and excels in situations where
conventional continuous-only approaches fail. This paper also
introduces the concept of explicitly tying motion models to the
dynamics they represent and demonstrates in experiment that
this concept achieves significant accuracy and scalability gains
for multiple-model (MM) filtering systems.

Conventional state-estimation approaches consist of repre-
senting multimodal dynamics with a collection of motion mod-
els and performing state estimation with MM filters [22], [24].
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The MM approach associates multiple Kalman filters (KFs) with
each mode and runs all filters simultaneously. It averages the in-
dividual filters’ output weighted by their relative likelihood and
generates a consolidated state estimate.

Unfortunately, the conventional MM approach has three main
problems when applied to hybrid systems, such as mobile robots.
First, this approach requires the activation of the entire set of
filters, which can become computationally intractable for robots
with a large number of modes. Second, MM filters can produce
inaccurate state estimates when sudden changes in the dynam-
ics lead to sharp and recurrent variations in model accuracy, as
individual filters may not converge at the same rate at which
the dynamics change. Third, MM filters can generate inaccurate
state estimates in the presence of dynamics that are not appro-
priately represented by any of the available models; in realistic
settings, these unmodeled dynamics, such as disturbances and
transients, can dominate locomotion dynamics.

This research addresses these shortcomings by leveraging the
state-estimation designer’s a priori knowledge of the discrete
structure of the dynamics to help MM filters select appropri-
ate motion models. The approach consists of representing the
dynamics with a hierarchical structure, identifying the current
structure by recognizing patterns in sensor data that correspond
to specific dynamics, and inferring from the structure which
models, if any, are appropriate for estimation. This approach
constitutes a framework in which information about the discrete
component of hybrid dynamics is combined with information
about the continuous component to improve the overall estima-
tion accuracy and scalability.

Such a hybrid discrete-continuous approach has been adopted
by others, such as Hofbaur and Williams [9] and Verma [31],
but their work does not exploit the discrete hierarchy inherent
to cyclical intermittent dynamics. This research focuses on sys-
tems, which exhibit behaviors, such as walking and jogging,
that introduce cyclic temporal structure to their dynamics. This
structure is identified and then used to improve the accuracy of
estimation and enable the rapid convergence of filters during
frequent discrete state transitions.

The following sections describe the problem addressed by
this research, provide a brief overview of related research in
continuous-, discrete-, and hybrid-state estimation, describe the
context-based estimation framework, provide empirical exam-
ples of the limitations of conventional estimation, and demon-
strate in experiment that context-based estimation improves the
accuracy and scalability of MM estimation systems.

1552-3098/$26.00 © 2010 IEEE
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Fig. 1. Dynamics are represented with a hierarchy of dynamical and behav-
ioral contexts. (a) Two-mode sensor output profile. (b) Two-mode MM system.
To prevent exponential increases in the number of filters, the hypotheses are
collapsed during each iteration (GPB2).

II. PROBLEM STATEMENT

The problem and its solution are described in more detail
with the help of a generic hybrid system whose sensor output
profile is described by Fig. 1(a). The assumption is that available
models appropriately represent the system’s dynamic modes D1
and D2, which, e.g., might be free flight and ground stance. The
state can be estimated with the MM filters based on D1 and D2
models [see Fig. 1(b)] under two conditions. First, the system
should primarily exhibit the dynamics described by D1 and
D2, and second, the weights of individual filters should shift
appropriately with each transition between D1 and D2.

The first condition is only fulfilled between the vertical dashed
lines in Fig. 1(a), where the system operates in steady state. Be-
fore and after that region, startup and stopping dynamics dom-
inate and would cause the divergence of the D1-D2 estimator.
It is therefore necessary to verify that current dynamics are ap-
propriately represented by available models prior to using these
models for estimation.

The second condition is only fulfilled if transitions between
D1 and D2 are slow enough to allow the individual filters to con-
verge and compute correct weights. If individual filters compute
incorrect weights, then inaccurate estimates are combined with
accurate estimates, which reduces overall accuracy. This moti-
vates the development of a system that assigns correct weights
even if they are incorrectly computed by individual filters.

These problems are addressed with an estimation framework
that first identifies the dynamics and then determines which
filters to use. The approach introduces the notion of context
and represents the dynamics with a hierarchy of contexts as
follows: dynamical contexts represent the dynamics that are de-
scribed by one model and behavioral contexts represent specific
sequences and frequencies of transition among dynamical con-
texts. This definition explicitly ties dynamics to the models that

represent them, and therefore, identifying a robot’s dynamical
or behavioral context determines which model or set of models
are appropriate for estimation.

For dynamical contexts, identification is achieved through
the classification of sensor measurements into sets of previous
measurements that correspond to different dynamic modes. The
underlying principle is that locomotion dynamics strongly affect
the signal of onboard sensors, therefore analyzing that signal
provides information about the dynamics themselves. Assuming
that distinct dynamics produce distinct sensor measurements,
comparisons with previous measurements generated by known
dynamics enables the identification of current dynamics and
dynamical contexts.

For behavioral contexts, the identification approach is based
on the observation that hybrid locomotion dynamics induce spa-
tial and temporal structure in the signal generated by onboard
sensors. Recognizing these structures leads to the identification
of the dynamics and their associated behavioral contexts. This
is a pattern recognition problem solved by using hidden Markov
models (HMMs) and timed automata to recognize spatial and
temporal structures, thereby identifying the behavioral context.

Context identification addresses the shortcomings of MM ap-
proaches for mobile-robot estimation. The scalability is im-
proved by first identifying the behavioral context, which de-
creases the number of applicable MM estimators [see Fig. 2(a)],
and, second, identifying the dynamical context, which decreases
the number of individual filters activated within a single MM
estimator [see Fig. 2(b)].

The accuracy is improved by identifying dynamical contexts
at a bandwidth comparable with the sensors’ update rate to
capture abrupt transitions in the dynamics. Behavioral context
identification further improves accuracy by preventing the use
of inappropriate MM filters in situations where none of the
available models accurately represent the dynamics (see Fig. 3).

III. RELATED WORK

Context-based state estimation enables accurate and scalable
state estimation by combining discrete- and continuous-state
estimation tools. This section provides an overview of these
tools, analyzes the accuracy and scalability limitations of MM
filters and compares the context-based estimation framework
with other hybrid-estimation techniques.

A. Multiple-Model Estimation

Estimating the state of systems with multiple modes of oper-
ation typically involves associating hypotheses to mode transi-
tions and evaluating the most likely hypothesis at every sampling
step. Each hypothesis consists of a transition from a particular
mode at the previous sampling step to a particular mode at the
current step. A filter based on the model of the current mode
is associated to each hypothesis, and its prior is the previous
output of the filter based on the model of the preceding mode.
The relative likelihoods of all filter outputs are computed at each
sampling step, and the highest likelihood output is adopted as
the system’s state estimate.
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Fig. 2. Behavioral context identification also increases estimation scalability
by replacing large-scale MM systems with a collection of small-scale systems.
(a) By identifying the dynamical context, the estimation system activates only
appropriate filters, which reduces computational cost. (b). (a) Improved scal-
ability from behavioral context identification. (b) Improved scalability from
dynamic context identification.
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Fig. 3. Identification of a system’s behavioral context enables the deployment
of MM filters only when appropriate, which increases estimation accuracy.

Unfortunately, the number of hypotheses increases exponen-
tially with the number of steps, which has motivated extensive
research in seeking methods to reduce the number of hypothe-
ses. The most accurate of these techniques is the generalized
pseudo-Bayesian 2 (GPB2) algorithm [6], [17], [21] expressed
in the KF framework, which collapses the hypotheses at each
sampling step into a set whose cardinality is equal to the number
of modes. This way, the number of hypotheses is maintained
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Algorithm 1 Steps of a GPB2 update [6]

(i3, Pij] = filter; (z;) 1
1 1 _ S
Dij = g 5. exp <—§7”¢,j5i7jl7'g? j> (Likelihood)
T;; = Prob(i]ji—1) (Transition Probability) )
i, 15, Prob; e 1
Prob;; = W (Probability (j:—1]i¢)) (3)
T, = in7jProbi,j (Mode State) @
J
Pi = ) Prob (Rj + (25 — @) (T3 — 931)T>
J
22, PiiTi i Prob;
Prob; o (Probability (3,))  (5)
>i 225 pijTijProb; Y (@)
z = Y x;Prob; (Consolidated State) (6)
P = Z Prob; (R + (2 — ) (x; — a:)T>

constant from one sample step to the next, which improves
tractability.

The GPB2 estimation starts with evaluating hypotheses about
the system being in one of its NV dynamic modes at the previous
sampling step and transitioning into one of the same N modes
at the current step. An individual KF based on the model of the
current mode is associated with each hypothesis, and therefore,
the total number of active filters (and of hypotheses) is N2,
which is a permutation among the N modes.

Described more formally, each GPB2 iteration starts with the
assumption that any mode could have been in effect at time
t — 1, and any mode could be in effect at time ¢. For a system
with N modes, a bank of N? filters is updated and the output of
all filters is consolidated. Algorithm 1 details the steps involved
in a cycle. Here, filter; is based on the model of mode 7; i,
represents the hypothesis that mode ¢ is in effect at time ¢; x; ;
is the state estimated by filter; and whose prior is the output
of filter;; r is the residual (innovation); and S and P are the
innovation and process covariances, respectively.

A two-model GPB2 cycle is shown schematically in Fig. 1(b).
The two initial hypotheses, which are represented with the first
column of white and black circles, spawn four hypotheses and
as many KFs (1) and (3), which are represented by the middle
column of four circles.To prevent the exponential growth of the
number of hypotheses, the four hypotheses are collapsed back
to the original two [see the last column of two circles and (4) and
(5)][17]. Atevery iteration, a best state estimate can be extracted
from the GPB2 by summing the output of all individual filters
weighted by each filter’s likelihood (6) [6].

The quadratic relationship between the number of modes and
the number of filters, which is compounded with the computa-
tional overhead of Kalman filtering, limits the scalability of the
GPB2. This makes the algorithm impractical for systems with
a large number of modes and motivates the development of the
context-based approach.
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B. Hybrid State Estimation

Hybrid state estimation is an extension of MM estimation,
where the discrete and continuous modes of the dynamics are
simultaneously estimated. Since a separate model is typically
associated with each discrete mode, this approach reduces the
number of active filters when a discrete mode is identified or
excluded.

Current approaches have a double limitation. First, they do
not detect situations where the entire model set is inadequate to
represent current dynamics and, therefore, can generate wrong
estimates by mistakenly relying on inaccurate models. Second,
convergence of the discrete estimators may be slower than the
sensors’ update rate, which limits their applicability to fast-
switching dynamics.

Hofbaur and Williams [9] present a hybrid probabilistic ap-
proach, where a bank of KFs is used to estimate continuous
state, and a probabilistic automata is used to estimate discrete
state. This automata associates probabilities to the transitions
between discrete modes, which captures some a priori knowl-
edge to improve the performance of the algorithm. They also
include an algorithm that dynamically selects certain hypothe-
ses to prevent the exponential increase of hypotheses. However,
any hierarchical dynamic structure is not explicitly encoded,
and their techniques are not adapted for fast detection of rapidly
switching discrete states.

A hierarchical hybrid approach is proposed by Verma [31]
in the field of fault diagnosis, where continuous dynamics are
used for robust detection of discrete states of failure. Verma’s
approach is based on particle filter estimation, where algorithms
use hierarchical techniques to ensure that unlikely but important
hypotheses are not pruned away. One algorithm considers the
risk to ignore a hypothesis in addition to the probability that it
is correct, while another approach uses a priori knowledge to
segment the continuous state space at a variable resolution so
that unlikely hypotheses represent samples in coarser regions.
However, Verma’s hierarchy tackles a reverse problem; rather
than identifying discrete states to robustly estimate the continu-
ous state, which uses continuous state estimation to inform the
detection of certain discrete states.

Another approach to hybrid estimation applied to legged
robots was proposed by Singh and Waldron [28] concurrently to
this work [29]. They combine readings from multiple sensors to
compute the Froud number, which is then used as criterion for
mode selection. This approach benefits from the ability to de-
tect sharp mode transitions and, therefore, switch modes at high
bandwidth to enable accurate estimation for a quadruped robot.
However, unlike the context-based framework, their technique
does not detect situations where none of the available models
are appropriate for estimation. Furthermore, the use of the Froud
number as unique criterion for mode switching seems to limit
the scope of their approach to quadruped locomotion.

Outside of robotics, the target-tracking community has made
extensive contributions to MM estimation in general (e.g., [3],
[11], [23], [24]) and hybrid estimation in particular [18]—-[20].
Of direct relevance is the work on variable-structure MM state
estimation [20], where Li et al. group models in mode-specific

model sets and propose techniques to activate and deactivate
variable structure interacting MM (VSIMM) filters specific to
each model set. Their approach organizes models in a hierarchy
of modes to improve the scalability of MM estimation, which
is similar to the context-based approach proposed here. It is
worth noting that the VSIMM method to deactivate filters could
serve to extend the context-based approach to situations where
dynamical contexts do overlap.

However, the VSIMM technique is limited in two ways. First,
model predictions and transition probabilities are used to decide
when to activate new MM filters. This supposes that the exist-
ing models can represent all the dynamics, and therefore, it is
not possible to identify situations where the dynamics cannot
be represented by any of the available models. Such situations
arise frequently for mobile robots, where unpredictable tran-
sients can dominate locomotion dynamics. Second, the limited
sensor information available for target-tracking (such as aircraft
position) constrains estimators to rely on model estimation alone
to identify mode switching.

C. Classification

Statistical classification is a deterministic discrete-state es-
timation technique used in this research to efficiently identify
dynamical contexts. Classification consists of grouping individ-
ual data points in classes based on training sets of previously
labeled data points. Applied to robotics, classification is used
to infer a robot’s discrete state from the analysis of data gener-
ated by onboard sensors. An example is Lenser’s nonparamet-
ric time-series approach, which consists of learning statistical
correlations between pairs of consecutive sensor data points
and a given environmental feature (e.g., type of terrain), and
using these statistical models to classify current pairs of data
points [16].

The advantage of classification is that the discrete state is es-
timated at the rate at which sensor information is made available
to the system. In other words, state estimation can be performed
at a bandwidth similar to that of the sensors update rate, which
provides for timely identification of dynamical contexts. The
disadvantage is that building classes can be complex and time
consuming, which requires large training sets for accurate clas-
sification.

D. Hidden Markov Models

Behavioral context identification is performed in part by the
HMMs and is used to recognize patterns in sensor data that
correspond to specific contexts.

An HMM is a probabilistic graphical model that undergoes
transitions among its IV states and generates discrete observa-
tions! (see Fig. 4). State estimation is used for an HMM is
preformed by computing a probability distribution oy () over
its states ¢ with the forward algorithm [25], which expresses the

'"HMMs are generative models, as they describe processes that generates
observations. These are the observations that the models predict and which,
when compared with actual measured observation, allow the computation of a
probability distribution over the HMMs’ discrete states.
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Fig. 4.  Generic representation of HMMs that transition among discrete states
(X) and generate discrete observations (O).

probability of the HMM process being in a state ¢ at step k as
[Ef; ak,l(i)aij} bj (Ok)
S {[ZL ak,l(i)aij] b (Ok)}

g (j) =

Z (i) =1 (M

where the transition probabilities a;; express the probability
of transitioning from state ¢ at step £ — 1 to state j at step k,
and the observation probabilities b, (O}, ) express the probability
that observation symbol Oy, is generated by state j at step k.
Equation (7) is initialized with «; (i) = m;b;(O1), where ; is
the initial probability of state ¢ and Zfi . m; = 1. Transition and
observation probabilities can be tuned manually or learned from
labeled data using algorithms such as Baum—Welch [25].

The probabilistic expression of HMMs provides robustness to
sensor noise, as current probability distributions mix observation
probabilities b; (O ) with model predictions S | a1 (i)ay;.
This property is used for robust recognition of a signal’s spatial
structure, as shown in the next sections, but not of its temporal
structure, because HMMs do not explicitly model dwelling time
in a state and cannot track a history of transitions among states.
Capturing time could be performed by semi-Markov processes
(SMPs), but SMPs have a high computational cost and are im-
practical for estimation [5], [32]. An alternative solution is to
use timed automata.

The HMMs are extensively used in the robotics literature,
including in humanoid robotics where robot programming by
demonstration shares similarities with the approaches taken
here. Lee et al. explore the use of multiple layers of HMMs to
recognize human behavior and correspondingly modify a robot
control trajectory for appropriate interactions [14]. Kuli¢ ef al.
use an extension of HMMs, i.e., factorial HMMs, and focus on
the clustering and recognition of demonstrated motion primi-
tives and dynamically sizing the number of HMM states [13].
Perhaps, the most similar work is that of Aarno and Kragic,
who take an explicit hierarchical, layered HMM approach to
gesture recognition [1]. However, in all of these approaches,
the HMMs are designed to recognize discrete gestures and are
not to improve the choice among and speed of filters for low-
level continuous state estimation. Furthermore, these systems
do not explicitly use their hierarchy to improve the accuracy
and scalability of state estimation for cyclical dynamics.

E. Finite-State Automata

A finite-state automaton (FSA) is a deterministic graphi-
cal model that undergoes input-triggered transitions among its

IEEE TRANSACTIONS ON ROBOTICS, VOL. 27, NO. 1, FEBRUARY 2011

states and generates discrete observations [12]. The context-
based framework uses automata as a complement to the HMMs,
tracking transitions among HMM states and capturing in-state
dwelling time. The automaton’s estimation mechanism will be
made clear in the example of Section VL.

This brief overview of related research highlights the accuracy
and scalability limitations of MM filtering and presents discrete-
state estimation techniques used to overcome these limitations.

IV. CONTRIBUTIONS

This research’s main contribution is to enable accurate and
scalable hybrid state estimation through hierarchical represen-
tation and classification of cyclical intermittent dynamics. Con-
ventionally, classification and HMMs are used for speech recog-
nition [15] and visual object identification [30], and MM es-
timation is used for aircraft fault detection and radar track-
ing [4], [24]. The context-based framework applies these tech-
niques to robotic systems with intermittent and cyclical dynam-
ics.

The framework uses statistical classification to identify a
robot’s dynamical context at high bandwidth. As a proof of
concept, this research implements a simplified form of classifi-
cation, where classes are defined manually from clusters of sen-
sor data that correspond to dynamical contexts. This enables the
explicit encoding of designer knowledge of the dynamics into
the classification, as will become apparent in Section V, which
reduces the need for large training sets. Experimental results
demonstrate that classification enables the successful identifica-
tion of dynamical contexts even when hybrid systems abruptly
switch from one to another. These classification techniques also
provide a framework to exploit rich sets of information from
onboard sensors to identify mode switching. This complements
model estimation as a switching criteria and, crucially for mo-
bile robotics, enables high-bandwidth mode identification.

The approach for behavioral context identification combines
HMMs and timed automata to capture both the spatial and tem-
poral structure of patterns in sensor data. Experiments also show
that this approach enables accurate identification of behavioral
contexts.

The context-based approach extends existing hybrid esti-
mation work by explicitly encoding the hierarchical structure
of cyclical dynamics, thereby capturing not only single-mode
transitions but higher level behavioral transitions as well. For in-
stance, the context-based approach differentiates between walk-
ing and running (high-level behavioral contexts) by analyzing
flight and stance dynamics (low-level dynamical contexts), as
well as the patterns of transitions between them. This enables
the activation of a reduced number of concurrent filters and the
detection of situations, where neither walking nor running are
occurring. Furthermore, unlike automata-only discrete-state es-
timation, the classification approach adopted for dynamical con-
text identification provides for fast detection of discrete states.
Such combination of fast convergence and hierarchical estima-
tion is necessary for accurate and scalable state estimation for
systems with fast-switching cyclical dynamics.
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V. DYNAMICAL CONTEXTS

Classification enables the identification of dynamical contexts
at a bandwidth close to the sensors’ update rate. The approach
calls to construct statistical models that map sensor measure-
ments to the dynamics that induced these measurements and
hence to their corresponding model. Such statistical models
consist of sets in the sensor space,” each formed by clustering
measurements generated while the system operates in one of its
dynamical contexts. Clustering can be performed by operating
that system in a controlled environment, where the dynamics
are steady and can be appropriately represented by their corre-
sponding motion models. Measurements generated by onboard
sensors are then clustered into sets labeled after the different
dynamical contexts. This way, each set of measurements corre-
sponds to a unique dynamical context whose dynamics are ap-
propriately represented by an available model. With this setup,
dynamical contexts are identified whenever measurements can
be classified in one of the sets. Constructing the classes is done
offline and may require some effort, but the classification itself
is computationally inexpensive and can be performed in real
time.

The strategy is clarified with the help of the generic system
presented in Section II. Fig. 1(a) shows that dynamical context 1
corresponds to force measurements that oscillate between 1 and
3N, and context 2 measurements oscillate between —1.5 and
—3 N. This observation suggests that the system’s dynamical
contexts can be identified by classifying current measurements
in one of these sets; e.g., a single measurement of force equal to
2 N enables the immediate identification of context 1. In addition
to the two contexts, the figure illustrates an intermediary tran-
sition context, which expresses the lack of appropriate motion
models to represent the transient dynamics.

A. Impact on MM Accuracy and Scalability

Dynamical context identification helps MM filters assign ap-
propriate weights to individual estimates even when the weights
are computed incorrectly by the KFs. This improves the ac-
curacy of the consolidated state estimate and can improve the
scalability of MM systems by only activating appropriate KFs.

Assigning appropriate weights to individual filters can be
done by modifying the parameters of the MM algorithm on-
line. For the GPB2 described in Algorithm 1, (5) shows that
the weights Prob; ; are a function of the transition probabili-
ties T; ;, the output likelihoods p; ;, and the previous weights
Prob;. Of these terms, only 7 ; is a parameter set by the de-
signer; it can, therefore, be modified to affect the desired changes
in Prob; ;. If the system operation is classified as being in con-
text ¢, then model ¢ and its corresponding filter are known to be
appropriate and the other filters inappropriate, as different mod-
els are assumed to describe distinct dynamics. Thus, assigning
nonzero weights to the other filters incorporates knowingly in-
accurate estimates to the consolidated output, which decreases
its accuracy. The problem is avoided by setting the transition
probabilities from any filter to filter < equal to one and to all

2 A sensor space is the space of all possible measurements.

Algorithm 2 GPB2 Modifications. T and F stand for true and
false, respectively.

1. for i €{D1,D2}, j =17 { 17. for i €{D1,D2}, j = i{
2. if (identified mode = 1) { 18. if(flag;){
3 TL‘J‘ = T'z,z =1 19. update f’ilt@m (CIZ‘L)
4, T;i=T;;=0 20.  if(flag;){
5 T =X = Ty 21. update filter; (z;)
6 flagi =T, flag; =F }

} }

} 22, if(flag;){
7. if(no mode identified){ 23.  update filter; (z;)
8. foric{D1,D2}, j =i{ 24, if(flag){
9. if{flag; = F}{ 25. update filter; (z;)
10. T; = Zyj }
1. P =P }

¥ ¥

}
12. flagpi = flagp: =T Execute Algorithm 1
13. if(z < 0){i = D2;j = D1} Iterate
14. else{i = D1;j = D2}
15. T,;, =0.7; T;;, =03
16. Ti,i = 1, Tj,i =0

}

other filters equal to zero. This leads to the maximal weight of
one being assigned to the output of filter 7, and exactly zero to
all other filters. Thus, by modifying T; ; based on which dy-
namical context is identified, the GPB2 is essentially reduced to
a single-filter system, where the filter corresponds to the current
dynamical context.

More formally, dynamical context information is incorpo-
rated into the GPB2 by changing the transition probabilities
(T;,;) in Algorithm 1 as a function of the mode. If mode i cor-
responds to the identified context and mode j represents all
other modes, thensetT; ; = T; ; = 1land T} ; = T} ; = 0. This
means that transitioning into the identified mode and staying in
it has a probability of one, and transitioning into a wrong mode
and staying in it has a probability of zero. As expected, this
produces Prob; = 1 and Prob; = 0.

As a consequence of this strategy, the best state estimate
generated by the GPB2 is equal to the state estimate of the
accurate individual filter, i.e., = z; = x; ;. This formalizes
the observation that once the system is in the identified mode, it
is expected to remain in it until a change of context is detected. In
other words, the only valid hypothesisis (i;, i;,—1 ), and the output
of the filter corresponding to mode ¢ constitutes the sole output
of the GPB2. By ignoring the contribution of inaccurate mode
states, the accuracy of the consolidated state is not decreased
unnecessarily.

Significantly, ignored filters do not have to be activated as
they no longer impact state estimates. This effectively reduces
MM filters to a single-model filter. Without dynamical context
identification, MM filters need to run the entire bank of filters in
order to generate combined estimates. Here, when the dynam-
ics change, the contexts switch accordingly, which triggers the
activation of a new filter and deactivation of an old one. This
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reduces the computational overhead of MM filters and enhances
their scalability.

In situations where the dynamical context cannot be identi-
fied, such as during transitions between dynamical contexts, the
transition probabilities are restored to their nominal value, all
filters are reactivated, and the GPB2 resumes normal operation.

Algorithm 2 gives a step-by-step description of the procedure
for the D1-D2 system. Line 2 of the algorithm corresponds to
situations where the dynamical context and, hence, the mode, is
identified. Transitions to that mode are set to one, and transitions
out of the mode to zero. The GPB2 output is now strictly the
output x;; of the individual filter; (z;) corresponding to the
identified mode.

Line 7 corresponds to the situation where the dynamical mode
cannot be identified. The individual filter variables (states and
covariances) are reset to the last estimates to properly initialize
the nominal operation of the GPB2. As for transition proba-
bilities, they are now a function of the state of the system to
express the knowledge that during transitions, the system in D1
is more likely to switch to D2 than to stay in D1, and vice versa.
Setting transition probabilities as a function of state improves
the accuracy of the GPB2, as it encodes information about the
dynamics that the GPB2 algorithm would be unable to capture
from its model set.

Lines 17 through 25 are the statements that perform the se-
lective activation of the appropriate filters.

VI. BEHAVIORAL CONTEXTS

Context-based state estimation applies principally to hybrid
systems with cyclical dynamics, as the repetitive nature of such
dynamics induce spatial and temporal structure in sensor signal,
which can be exploited to identify the behavioral context. The
spatial and temporal components are defined as follows: Spatial
structure is the sequence of transition among salient points, or
symbols, in a data stream, and temporal structure is the rate
of transition among these symbols. The underlying assumption
here is that different dynamics induce distinct structures, so
recognizing these structures uniquely identifies the dynamics
and the behavioral context.

The description of the identification approach is carried step-
by-step in the following sections with the help of the generic
hybrid system introduced earlier.

A. Hidden Markov Models

Consider the sensor output profile of Fig. 3(a), and recall
that the behavioral context B corresponds to the steady-state
region, where D1-D?2 filters are appropriate for estimation. The
first step to identify this context is to discretize the continuous
force measurements into symbols that appear recurrently when
the system is in behavioral context B. As shown in the figure,
sensor symbols can be Oy, Os, and Os, roughly corresponding
to the top, middle, and bottom regions of the sensor output
profile, respectively.

The second step is to build a Markov chain model of a pro-
cess that could generate these sensor symbols. A first model may
contain the states H, M1, L, and M2, which generates the sym-
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Fig. 5. HMM describing discrete process of a simple system. Self-transitions
are omitted here for clarity but are discussed in more detail in Section VII-C.

bols O1, O, O3, and Os, respectively [see Fig. 5(a)]. H and L
correspond to high and low forces, M1 corresponds to medium
forces that result from transitioning from high to low forces,
and M2 corresponds to low-to-high transitions. Obviously, the
same symbol O is now generated by two different states M1
and M2, but the two states can be disambiguated by tracking the
sequence of sensor symbols over time. If O appears after O,
then the system is in M1, and if it appears after Os, then it is in
M2.

The third step is to specify HMM parameters as per
Section III-D, with the transition and observation probabilities
a;; and b; (Oy,) designed to predict observation symbols in the
expected sequence. For example, ayro; = 1, apro)j = 0 V) #
L, b]\,jl(OQ) = bMQ(Og) = 1/2, and bH(OQ) = bL(OQ) =0.
This enables the HMM to run the forward algorithm (7), pro-
cesses the symbols O, extracted from data discretization, and
infers the probability distribution « over the states.

When the system is operating in steady state, the observed
symbol sequence is expected to match the sequence predicted
by the model. Likewise, the sequence of the HMM states® is
expected to match the state transitions described by the model.
When the dynamics vary from steady state, the sequence of
symbols also varies from the predictions and leads to out-of-
order state sequences. Therefore, verifying the order-of-state
sequences helps recognize the behavioral context.

In order to enable the explicit detection of out-of-order tran-
sitions, the HMM model is augmented with an error state E, as
shown in Fig. 5(b). The error state has low-probability two-way
transitions to all states and all observations have a uniform distri-
bution over it, i.e., the error state is equally likely to generate all
sensor symbols. The observation probabilities are designed such
that the probability to observe a symbol conditioned on a state
that should not generate it is lower than the symbol’s probability
conditioned on the error state. This means that the likelihood
to generate a specific symbol by the error state is greater than
the probability to generate that same symbol by a state that
should not generate it. For example, by (O3) > by (O3), and
more generally, bp (Oy) > b; (Oy) if Oy, is different from the
symbol generated by state j, where j is an index among the
states.

This property ensures that if the wrong sequence of sensor
symbols are observed, then the HMM would transition to the
error state. For example, assume the model predicted that the

3In this paper, the sequence of the HMM states is defined as the sequence
of most likely states estimates by (7). At each step, the most likely state is

argmax, _;_ y (o).
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Fig.6. HMM output (top) such as H, M1, L, and M2 serve as input (rectangles)
that trigger transitions between the FSA states (circles). The structure of the FSA
(bottom) is organized in p layers in order track input sequences over p steps. The
output flag “B” indicates that behavioral context B is identified. Reset transitions
back to S are omitted for clarity. (a) HMM output states serve as FSA input.

system would transition to state j, but the observed symbol
cannot be generated by j. This is an indication that the state
sequence is out of order, and therefore, the observation proba-
bilities ensure that o > «;. In other words, the HMM assigns
the highest likelihood to the error state £ when the sequence of
states is out of order. Thus, whenever the system is in E, it is not
expected to be in the behavioral context that corresponds to the
HMM model (context B in this case).

B. Finite-State Automata

Detecting a single out-of-order transition is sufficient to rec-
ognize that the system is not operating in the expected behavioral
context. However, contexts cannot be positively identified from
observing a single in-order transition; a minimum number of
transitions is necessary to avoid false positives.

Unfortunately, the HMM cannot track a sequence of tran-
sitions for longer than one time step because of the Markov
assumption (the current state contains all the information about
a system, and therefore, the future only depends on this single
time step). This motivates the use of FSA to perform book-
keeping. Here, HMM states are treated as inputs that trigger
transitions among FSA states (see Fig. 6). The FSA state struc-
ture is organized in p layers, which is designed to recognize
a correct sequence of inputs over p steps. Layers are defined
as follows: The first layer contains the starting state; the final
layer contains all the states reached after p numbers of correct
transitions; and intermediate layers contain states reached after
n correct transitions, with n < p.

To see how this FSA can identify p successful transitions,
assume that the initial input event transitions the automaton
from the starting state S to a target state in the first intermediate
layer. Consecutive occurrences of the same input cause self-
transitions, but new in-order inputs induce transitions to the
next layer. After p correct transitions, the automaton reaches
the final layer and outputs a success flag, which identifies the
behavioral context (“B”in this case), and new in-order inputs
maintain the automaton in the final layer. At any time, out-of-

order inputs reset the automaton, and the behavioral context is
no longer identified. In summary, success flags indicate that the
signal’s spatial structure is recognized.

C. Timed Automata

The FSA model designed to recognize the spatial structure of
the signal can also be used to recognize the temporal structure.
The temporal analysis mechanism turns the FSA into a timed
automaton that measures delays separating consecutive inputs.
Delays are measured by a clock reset each time the automaton
enters a new state. Since HMM states correspond to automaton
inputs, the automaton simultaneously measures its own state
duration as well as the HMM’s.

Temporal information can be used as a timeout that triggers
a transition out of a state if the duration exceeds a predefined
bound. It also enables time-sensitive transitions, whereby the
target state is selected as a function of both the input and the
duration in the previous state.

VII. CONTEXT IDENTIFICATION EXPERIMENTS

Validation experiments are conducted on RHex [26], i.e., a
six-legged dynamic robot able to walk and jog, among other
behaviors. These experiments demonstrate that the classification
and the HMM-timed automaton approaches are successful to
identify dynamical and behavioral contexts and that contextual
information improves the accuracy and scalability of the MM
estimators.

The task at hand is to automatically identify RHex’s behavior
and to estimate the robot’s height while jogging on a horizontal
surface using low-cost onboard accelerometers. The hierarchi-
cal description of the dynamics in the previous sections leads
to the natural segmentation of RHex’s dynamics into behavioral
contexts (walking, jogging, or neither) and dynamical contexts
(flight phase of a jog, stance phase, or neither). This segmenta-
tion applies to a class of dynamic robots, as represented in Fig. 7,
and provides a two-tier improvement of accuracy and scalabil-
ity. First, behavioral context identification reduces the size of
individual MM systems and ensures that such systems are only
used when appropriate. Second, dynamical context identifica-
tion activates only the individual filters that are appropriate for
the current dynamics and assigns correct weights even when
individual filters compute them incorrectly.

A. Dynamical Analysis of RHex’s Jogging Behavior

RHex’s height is estimated from acceleration measurements
generated while jogging, using GPB2 filters and jogging motion
models.

When jogging, RHex synchronizes its legs three by three
to generate a stable alternating tripod gait. The jogging be-
havior alternates flight and stance phases akin animal running,
which leads to oscillate accelerations, as shown in Fig. 8 (steady
dynamics). Flight dynamics are those of a ballistic projectile,
where only gravity acts on the body, and are responsible for
the negative accelerations close to g (—9.8 m/s?). Positive ac-
celerations are due to the stance dynamics, where the body is
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Fig.7. Context-based estimation applies to systems such as mobile robots that
have recurrent and rapidly switching dynamics. Examples of recurrent dynamics
are hyper-redundant robots, which are also known as snake robots [7], [8], [27].
Examples of rapidly switching dynamics span a spectrum of legged robots, such
as Sprawl [10], which is a small-scale robot for horizontal running; RHex [26],
which is a medium-scale robot for horizontal locomotion; Big Dog, which is
a large-scale robot also for horizontal locomotion; and RiSE [2], which is a
medium-scale robot for vertical locomotion. For all these systems, identifying
the behavioral context specifies which small-scale MM system to activate, and
identifying the dynamical context determines which filter within the small-scale
MM to activate.

< Startup > < Steady Dynamics >< Stopping >
15f
«, 10f
=
% 0 A l\ I v\
=
o
AL
<
-10F
0.5 1 1.5 2 25 3 3.5 4

Time (s)

Fig. 8.
behavior.

Output of vertical accelerometer while RHex executes jogging

subject to the ground’s reaction force. The motion models used
for the flight and stance phases are the ballistic projectile and
the mass-spring system, respectively, as shown in Fig. 9.

At the end of the experiment, the motors stop and the robot
bounces on all six legs until it comes to rest. This induces
damped oscillations of the stopping dynamics referred to as the
stand phase, which are represented with a mass-spring-damper
model. In summary, the jogging behavior can be modeled with
a collection of three models:

—g,  flight
Z= K. (z—2)) /M —g, stance
—2K. (z—2z0) /M —g— (D/M)Z, stand

where z is the state that represents the height of the robot; K,
is the virtual spring constant of the mass-spring system; z is
the robot’s height at rest; M is the robot mass; D is a viscous
damping parameter; and ¢ is a gravity.
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Fig.9. RHex’s vertical motion can be modeled as a virtual mass-spring system.
During stance, the spring compresses and causes the mass to rebound. In flight,
the virtual spring detaches from the ground, and the mass describes a ballistic
trajectory.
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Fig. 10.  Output of leg strain gauges (circles, diamonds, and stars) is overlaid
on the vertical oscillatory accelerometer data. The output of strain gauges is
used to define classes that correspond to dynamical contexts.

These models enable the estimation of RHex’s height us-
ing a three-mode GPB2 system. However, since the dynamics
change rapidly, each of the model is only appropriate over a
limited period of time. Therefore, the GPB2 needs to determine
precisely when each of the models is appropriate to generate cor-
rect height estimates. This is achieved through the identification
of the robot’s dynamical context.

B. Dynamical Context Identification

RHex’s jogging behavior has three dynamical contexts: flight,
stance, and stand. These contexts can be identified by construct-
ing sets of acceleration measurements that correspond to each
of the dynamic modes. These sets are labeled as flight, stance,
or stand, depending on whether the data points were generated
while in the flight, stance, or stand contexts. This can be done in
alaboratory setting where the context can be identified with spe-
cialized sensors used to label sets of accelerometer data points.
In this case, the specialized sensors consist of strain gauges at-
tached to the legs to measure their deflection; three compressed
legs indicate stance (tripod configuration), extended legs in-
dicate flight, and six compressed legs indicate stand. Fig. 10
overlays the output of these strain gauges on the acceleration
plot. A visual inspection of the steady-state portion of the plot
shows that, as expected, and with few exceptions, the flight con-
text is detected when the acceleration approaches gravity, and
the stance context is detected when the acceleration is positive.

Since classification consists essentially of a straightforward
comparison between current data and previously constructed
classes, the robot’s dynamical context can be identified at the
rate at which the data are made available by the sensors.
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Fig. 11. Jogging hexapod robot alternates flight and stance dynamical con-
texts. The contexts are identified by classification of leg compression and body-
acceleration measurements.

It is possible to simplify the estimation problem by con-
sidering only steady-state dynamics, which is made possible
by the use of behavioral contexts, as demonstrated in the next
section. This reduces the system to a two-mode GPB2 based
on the flight and stance models. The simplified setup enables
dynamical context identification through the classification of
acceleration measurements alone, with no need for specialized
sensing.

For instance, inspection of Fig. 10 shows that the flight and
stance dynamical contexts can be defined as follows:

1) flight context: < —6m/s?;

2) stance context: Z > 0;
where the vertical acceleration Z is measured by onboard ac-
celerometers. This approach is captured pictorially in Fig. 11.

Thus, accelerometer output can be immediately classified into
one of the two dynamical contexts, and consequently a corre-
sponding two-mode MM system that estimates RHex’s height
can selectively activate the flight or stance filters. This is in
contrast with conventional MM systems that run all filters si-
multaneously and assign probabilistic weights to their output.
In this example, accelerations between —6 and 0 m/s? indicate
that the robot is transitioning between flight and stance, and
therefore, the context cannot be determined with certainty. In
these situations, the MM system activates all filters based on
both models and resumes conventional operation.

It is worth noting that the strain gauge setup is complex and
onerous to install on robots, and its use is generally restricted to
the laboratory. Therefore, strain gauges can be used to establish
the classes, but not to identify the dynamical context when the
robot is deployed in the field.

This approach to dynamical context identification suffers
from two shortcomings. First, classification is susceptible to
sensor noise, which can force a data point to fail to identify a
context and be classified in the transition region. Fortunately,
the consequence is simply that all MM filters get activated, thus
reverting back to the nominal operation of the MM system. This
leads to suboptimal estimates but still constitutes an acceptable
solution over short periods of time.

The second limitation is that this approach requires differ-
ent dynamics to be represented by distinct classes, which is not
always the case. One approach to disambiguate potentially over-
lapping classes is to perform the classification task over a history
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Fig. 12.  Output of lateral accelerometer. The jogging gait induces positive

and negative amplitudes during left- and right-tripod stances and periods of
near-zero accelerations during flight.
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Fig. 13.  Markov-chain model of the process that generates jogging symbols.
The error state is added to capture out-of-order state transitions.

of measurements rather than just with current data points. This
is precisely the technique used to identify behavioral contexts;
therefore, behavioral context identification can also be used to
recognize dynamical contexts.

C. Behavioral Context Identification

RHex’s lateral acceleration while jogging is shown in Fig. 12.
Auvailable jogging motion models are only appropriate over the
steady-state region indicated in the figure; therefore, the task is
to identify the robot’s jogging behavioral context in order to use
jogging filters only when appropriate.

To this end, the acceleration data are first discretized, as
shown in the figure. The observation symbols are positive (PA),
negative (NA), and zero (ZA) accelerations and positive (PP)
and negative (NP) peaks. The PA corresponds to accelerations
larger than 1m/s?, NA corresponds to accelerations smaller
than —1m/s?, and ZA spans the range in between.

A Markov chain model of the process that generates these
symbols is presented in Fig. 13. To accurately identify the jog-
ging behavioral context, it is important to verify that jogging
accelerations reach the expected amplitude; therefore, the right
and left tripods are represented by three states: The first state
(R1 or L1) corresponds to the ascending acceleration, the sec-
ond state (R2 or L2) corresponds to the peak acceleration, and
the third state (R3 or L3) corresponds to the descending accel-
eration. Thus, R1, R2, and R3 (or L1, L2, and L3) generate the
symbols PA, PP, and PA (or NA, NP, and NA), respectively.
LF corresponds to the flight phase during transitions from left
to right tripods, and RF corresponds to the flight phase during
transitions from right to left, and E is the error state.

Transition probabilities are determined as follows. Self-
transitions a;; to state ¢ are computed by counting the number
5 of symbols that occur when the system is in each state. The
expected number of observations in a state, conditioned on start-

o0

ing in that state, is 5 = )~ ; sp(s), where p is the probability
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Fig. 14. Behavioral contexts identified along multiple dimensions and over
multiple behaviors. (a) Lateral jogging behavioral context. (b) Vertical jogging
behavioral context. (¢) Jogging and walking behavioral contexts.

to undergo s self-transitions to the same state. This equation
can be rewritten as 3 = d(a;;)? 1 (1 — a;;) = 1/(1 — a;;) [25];
therefore, a;; = 1 — 1/3. For example, R2 generates on average
22 PP symbols; therefore, GR2|R2 = 1—1/22 =0.9432.

The transition probability from one state to the next is
set equal to the transition probability from the same state
to E to ensure that the HMM detects out-of-order transi-
tions. The probabilities for E are set as ag|p = 0.999, and
agy = (1 — aE|E) /N, where N = 8, the number of states ex-
cluding E, and 7 € N. The observation are set following the
example of Section VI-A, and the probability distribution « is
computed recursively with (7).

A timed automaton similar to Fig. 6 tracks the sequence of
most likely HMM states over three layers, measures the in-
state dwelling time, and outputs jogging flags when the jogging
behavioral context is identified. The results of Fig. 14(a) show
that the approach successfully recognizes the steady-state region
over which jogging models can be used for estimation.

Identifying behavioral contexts along different dimensions is
necessary when distinct motion models are used along each di-
mension. In this case, the same HMM-automaton technique suc-
cessfully identifies behavioral contexts from acceleration mea-
surements along RHex’s vertical axis, as shown in Fig. 14(b).
The technique is shown in Fig. 14(c) to also enable accurate
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Fig. 15. GPB2 based on ballistic flight and mass-spring stance models gen-
erates accurate state estimates. Over 12 experiments, rms errors have a mean
1.85 cm and a variance of 0.37 cm.

behavioral context identification for RHex’s walking behavior,
as well as for other behaviors that transition between walking
and jogging. The variety of dynamical situations in which the
technique is successfully applied provide empirical evidence of
the approach’s robustness for context identification.

VIII. CONTEXT-BASED STATE ESTIMATION

Successful identification of dynamical and behavioral con-
texts enable accurate and scalable MM estimation. The follow-
ing set of experiments use the results of the previous section to
demonstrate that context information provides significant per-
formance gains to estimate the state of RHex.

A. Height Estimation in Steady State

The first experiment demonstrates that using the simple mod-
els of Section VII-A under steady-state conditions produces
accurate height estimated for RHex when it jogs.

Given that the steady-state portion of the jogging dynamics
can be described by the flight and stance models, RHex’s height
is estimated using a two-mode GPB2 (see Algorithm 1). Each
iteration of the GPB2 starts with the hypothesis of the robot
being in the flight or in the stance modes at the end of the
previous iteration. Each hypothesis then transitions into one of
the two modes at the current iteration, which leads to a total of
four hypotheses and four KFs.

Each of the KFs outputs individual estimates of height z; ;
and likelihoods p; ;. Next, a probability for each hypothesis is
computed and used to scale the individual estimates z; ; and
consolidate them into the intermediary mode-specific estimates
z;. This step is commonly referred to as hypothesis collapsing,
as it reduces the number of hypotheses back to the original
number of two.

As the GPB2 is running through the cycle of expanding and
collapsing hypotheses, it is possible to extract a unique state
estimate at any time. This is simply done by consolidating the
intermediate mode-specific estimates z; weighted by their hy-
pothesis probability into the system’s best estimate z.

This approach leads to satisfactory results, with height
estimates closely matching ground-truth measurements,* as
can be visually verified in Fig. 15. The mean and standard

4The ground-truth measurement system consists of high-speed cameras that
register the position of LEDs placed on the robot body. The cameras cover a
limited surface area, which explains the short experimental runs (about 4 s for
jogging). Nevertheless, these results are useful because the available space is



SKAFF et al.: CONTEXT IDENTIFICATION FOR EFFICIENT MULTIPLE-MODEL STATE ESTIMATION OF SYSTEMS 25

Stance Phase Flight Phase \
] e e e T \ (---
U
j , [i:
>08f ¢ Startst
g 06f O Stop FF Switch
o Modes™ |
o 0.4f O StartFF 4
0.2f { Stop St !
1 g
ok L L 'O L Ln
1.45 1.5 1.55 1.6 1.65
Time (s)
Fig. 16. Plots of Prob; for RHex while jogging using the modified GPB2

algorithm. When the dynamical context is identified, only the accurate filter is
activated, which reduces the computational cost.

deviation of the rms difference between the estimated height
and the ground-truth measurement over 12 experiments is 1.85
and 0.37 cm, respectively. The mass-spring parameters of the
stance model are set to the actual mass of the robot (8.5 Kg),
and the spring constant that yields acceptable state estimates is
found to be 6800 N-m, which is a value close to the physical
spring constant estimated at 6600 N-m.

B. Dynamical Context Identification Reduces the Number of
Active Filters

This experiment shows that identifying the dynamical context
improves the scalability of MM filtering. The dynamical con-
texts identified in Section VII-B are used to modify the GPB2
of the previous experiment such that only appropriate filters are
activated.

Algorithm 2 describes how the GPB2 algorithm is modified
to incorporate contextual information. For RHex, the transition
probabilities are set as a function of the state of the robot as
follows. If RHex’s velocity is negative, the descending robot
is expected to touch down; therefore, the transition probabil-
ities are biased toward transitioning into stance.’ Conversely,
positive velocities bias transitions to flight. Setting transition
probabilities as a function of state improves the accuracy of the
GPB2, as it encodes information about the dynamics that the
GPB2 algorithm is unable to capture from its model set.

The identification of the dynamical context is performed using
strain gauges. When the robot is determined to be in flight or in
stance, the modified GPB2 only activates the flight or the stance
filter. However, when RHex is about to touch down or lift off,
the strain gauges are unable to identify the mode; therefore, all
filters are activated, and the GPB2 resumes nominal operation.

Since the conventional GPB2 algorithm is able to accurately
estimate the height of RHex while jogging at steady state, the
modified algorithm does not noticeably increase its accuracy.
However, the results of the modified algorithm indicate improve-
ment in scalability, as evidenced by Fig. 16. The plot of mode
probabilities shows that when the dynamical context is iden-
tified, only the accurate filter is activated. Conversely, during

large enough to allow the robot to achieve steady-state motion before exiting
the cameras’ field of view.

SThe specific values of 7;; =0.7 and 7;; = 0.3 are determined
empirically.
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Fig. 17. Identification of the dynamical context enables the selective deploy-
ment of a jogging GPB2 and of a walking KF. The resulting height estimates
over the combination of jogging and running behaviors have a similar accuracy
as when the two behaviors are executed separately. (a) Context-based height
estimates.

transitions from one dynamical context to another, the nominal
GPB?2 is operated with all filters active.

An interesting exercise is to try to identify RHex’s dynamical
context with acceleration measurements alone. State estimates
obtained with this contextual classification are virtually indis-
tinguishable from the previous results. The mean and standard
deviation of the rms error over 12 experiments are 2.09 and
0.39 cm, respectively, which compare favorably with the values
obtained with the help of strain gauges.

C. Behavioral Context Identification Allows Reduced-Scale
MM Systems

Behavioral context are shown to improve the estimation scal-
ability of multiple-behavior systems. Here, the task consists of
estimating RHex’s height as it jogs and walks.

The acceleration profile for this two-behavior experiment is
shown in Fig. 14(c); accelerations up to 3.5 s are induced by
jogging dynamics and by walking dynamics thereafter.

If behavioral information were not available, the experiment
would require a three-model conventional MM system; two
models for jogging, as described in the previous sections, and
one for walking. An appropriate walking model is defined as
follows:

2-tripod

5 —K272 (Z—Z&g)/M—(Dg/M)Z—g,
1-tripod

_Kz,l (Z — 20,1) /M — (D]/M)Z -9,

where K. 1, Dy, 2,1 and K 2, D, 2 o are the virtual spring
constant, damping coefficients, and rest lengths for one tripod in
stance and two tripods in stance, respectively. Unlike the jogging
behavior, walking uses a single KF, whose model is modified
by changing its parameters, depending on the tripod.

Information about the behavioral context is available, and the
results of Section VII-C can be directly used here; when the
jogging context is identified, then the flight—stance GPB2 of the
jogging behavior is used; when walking is identified, the single
KF of the walking behavior is used.

The result of this context-based state estimation are shown
in Fig. 17. The accuracy of the estimates and the computa-
tional complexity of the filtering system are consistent with
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Fig. 18. Conventional GPB2 estimation fails when individual filters do not

have enough time to converge. Although the limited workspace did not allow
measurements after 2.5 s, the motors stop at 3 s, and the robot should rest at a
height of 0.17 m. (a) Height estimates. (b) Oscillation periods. (¢) GPB2 mode
probabilities.

single-behavior results, even though they are conducted on a
multiple-behavior system. The maximum number of filters used
whenever the behavioral context is identified is four, which is not
higher than when the robot executes jogging as a sole behavior.

D. Identification of Dynamical Context Enables Accurate
Estimation

The estimation results obtained for jogging under steady-
state conditions are extended to the entire run, which include
starting and stopping dynamics. A conventional three-model,
nine-filter GPB2 system is built, and its state estimates are plot-
ted in Fig. 18(a). The plot shows that height estimates closely
match ground-truth measurements over the steady-state region,
but diverge rapidly thereafter. Efforts to tune GPB2 and model
parameters such as D could not improve the results reported.
The cause of the divergence can be found in Fig. 18(b), which
plots the acceleration before and after the motors stop at 3 s. The
plot reveals that the acceleration’s period of oscillation shortens
after stopping, which is explained by the robot that contacts
the ground with all six legs and, therefore, behaving as a stiffer
system. The new periods prove too short for individual KFs
to converge, which causes the filters to output incorrect likeli-
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Fig. 19.  Strain gauges identify the dynamical context and enable fast conver-
gence of height estimates.
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Fig. 20. Behavioral context information enables the selective activation of the
jogging GPB2 and the stopping spring-damper model and leads to accurate and
scalable estimation.

hoods and the GPB2 to assign incorrect weights to individual
estimates. Fig. 18(c) shows that after the motors stop, the GPB2
assigns the highest weight to the flight mode instead of the
stand mode, which justifies the downward slope of the height
estimates.

The problem of slow convergence can be resolved by identi-
fying the flight—stance—stand dynamical contexts from the leg-
strain gauges, as per Fig. 10. When the strain gauges identify the
context, the three-model GPB2 is reduced to a one-model filter
(the filter corresponding to the identified context) that outputs
accurate estimates. Thus, by incorporating contextual informa-
tion, the mode probabilities are correctly and rapidly specified,
which enables the successful estimation of the height throughout
the experiment.

The results are reported in Fig. 19, which shows that the height
estimates follow an oscillatory dissipative motion that ends at
the robot’s rest height of z). The ground-truth measurement
system’s limited workspace does not allow the quantitative val-
idation of the estimate’s accuracy, but the fact that the estimates
have the same frequency as the measured acceleration and that
they converge to the rest height as expected, is an indication of
validity.

E. Identification of Behavioral Context Prevents Divergence

The same estimation task is performed but without the use of
strain gauges. For this, assume that the robot is either jogging or
coming to rest and that motor state is unavailable. The strategy
is to use a flight—stance GPB2 when the jogging behavioral
context is identified and a stance model when the robot is no
longer jogging. In other words, the behavioral context would
identify the steady-state portions of the behavior, where the
two-model GPB2 can be used with satisfactory accuracy.

Information about the behavioral context is provided by
Fig. 14(b), and the estimation results are shown in Fig. 20.
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The plot shows that even though height estimates are not as ac-
curate as when using the strain gauges, they still converge back
to the rest height.

The difference in accuracy is due to the fact that the behavioral
contexts provide higher level information about the dynamics
than do the dynamical contexts, but the results are still substan-
tially better than when neither context is used.

Incorporating behavioral context information also reduces
computational requirements, as it enables the deployment of
a two-model instead of the three-model GPB2, thus reducing
the number of filters from nine to four and improving overall
scalability.

IX. CONCLUSION

Context-based estimation combines the conventionally sepa-
rate fields of filter design and pattern recognition to enable ac-
curate and scalable state estimation for systems with hybrid dy-
namics. Implementation examples provided in this paper show
that simple approaches to pattern recognition (using HMMs) and
to filtering (using KFs) lead to accurate estimates, which suggest
that the designer does not need to acquire in-depth knowledge
of each technique to generate satisfactory results.

Contexts are robustly and efficiently identified through
discrete-state estimation using data generated by onboard sen-
sors. The identification of the dynamical context determines
which model is appropriate for estimation at a bandwidth com-
parable with sensors’ update rate. This information is used to
correctly set individual weights and improve estimation accu-
racy for fast-switching systems.

Information about the dynamical context also improves the
scalability of the MM filters by enabling the selective activa-
tion of some filters and deactivation of others. Since dynamical
contexts determine which model appropriately represents cur-
rent dynamics, only individual filters based on the appropriate
model are activated. This reduces the computational cost of con-
ventional MM systems that run all filters at all times, thereby
improving scalability.

Behavioral contexts are an abstracted description of a robot’s
behavior, which provides high-level understanding of the robot’s
health (is the robot jogging as commanded?) and allows for
closed-loop behavioral control. The identification of the be-
havioral context also determines which collection of models
appropriately represent the current switching dynamics. This
prevents using inappropriate MM filters in the presence of un-
modeled dynamics, which further reduces the risk of estimation
failure and improving accuracy.

The additional advantage of knowing a system’s behavioral
context is that the MM estimators no longer need to activate all
available filters but only the filters that correspond to the current
context. This allows the deployment of small-scale estimators,
which further increases the scalability of the estimation system.

Extensions will further improve the accuracy of discrete mod-
els by constructing HMMs that span multiple behaviors. In this
configuration, the probability distribution o over HMM states
becomes a measure of confidence in each state, as well as by
extension in the contexts themselves. As such, « can be inter-

preted as a distance metric among behavioral contexts, which
measures “how far” a robot’s operation is from specific contexts.
The distance metric can be used to close the loop on behavioral
controllers, where a controller adjusts its parameters in ways that
reduce distance to a target context, thereby improving control
quality.

Another extension to this study is to apply these estimation
techniques to a wider variety of systems, such as wall-climbing
robots or snake-like robots. Our group has extensive experience
in developing controllers for snake robots, but outside the low-
level PID loop, we have done nothing to close the loop. Our goal
is to close the loop at the behavioral level, which naturally would
require an MM approach. However, the results in this paper, by
themselves, are not sufficient for snake robots. These systems
have many similar dynamic modes, which are not clearly delin-
eated by simple sensor signatures; therefore, the classification
of dynamic modes must employ a more complex feature vector
than currently has been used.
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