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Abstract — Snake robots have enormous potential to thread
through tightly packed spaces and relay knowledge to search and
rescue workers which is currently unattainable during the first hours
of rescue operations. However, the existing approaches to snake robot
locomotion in three dimensions is primarily limited to cyclic gaits,
which lose effectiveness as the ratio of obstacle size to robot size
or the irregularity of the environment increase. To this end, this
work investigates a kinesthetic input approach to developing joint
angle trajectories for overcoming these obstacles for which gaits are
inadequate. The second contribution of this paper is the presentation
and validation of a method to simplify these trajectories so that
they can be easily stored, parameterized, and adjusted. Finally, we
demonstrate that a simple sensor deviation filtering and thresholding
approach can be used to quickly detect failure when overcoming an
obstacle.
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parameterized trajectories, failure detection

I. INTRODUCTION

In urban search and rescue applications, it is important to
locate potential victims, and to do so without undue danger
to rescue workers. In particular, this may require searching
through unstable collapsed buildings, damaged infrastructure,
and rubble. Robotic systems have the potential to be useful in
such applications, because they can enter sooner (they need
not wait until buildings have been declared safe enough for
rescue workers) and they are smaller (enabling them to enter
spaces where rescue workers and animals cannot fit).

In particular, the snake robots developed by Choset et. al [1]
have notable benefits over other robotic systems. In particular,
they have a very small cross-sectional diameter (just over 5
cm), theoretically enabling them to enter small crevices and
void spaces in a collapse. In addition, they can articulate
their long body to give an operator different vantage points
of the scene, or to move over obstacles taller than the robot’s
diameter.

However, these robots (and to the authors’ knowledge, other
snake robots of the same form factor, such as [2], [3]) have as
of yet had difficulty in overcoming such obstacles. Previously,
the primary developments in the science of locomotion for
these and other snake robots have been in gaits, or cyclic
joint inputs that locomote the robots over fairly steady state
terrain [4], [5]. The existing work on obstacle-aided snake
locomotion [6], [7] involves two-dimensional setups which
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Fig. 1: In the kinesthetic control approach, a user moves an input snake (often
termed the “master” or a “dolly”), and the controlled “slave” robot moves
accordingly. We have found this to be an effective way to locomote the snake
in challenging situations, and in this paper discuss how this information can
be represented so as to most easily be reused and generalized to other tasks.

do not extend easily into three dimensions, and often require
motion capture setups that are impractical for use outside of
a laboratory setup. Other approaches for locomotion over ob-
stacles have focused on different robot form factors ([8], [9]);
these systems have different size, complexity, and mobility
tradeoffs not addressed in this work.

In this paper, we present a real-time master-slave “kines-
thetic” control system for snake robots (see Figure 1), inspired
by this idea for other robotic systems, such as large treaded
articulated robots [10] or remote welding equipment [11].
This novel approach to overcoming obstacles with a snake
robot allows us to learn open loop, acyclic commanded angle
trajectories (non-gait motions) which move the robot over
these obstacles and can later be replayed when these obstacles
are encountered in the field.

In addition to extending the locomotive capabilities of these
mechanisms, we also present a novel framework for analyzing
and parameterizing these trajectories to enable (a) easier
storage and implementation, (b) more intuitive understanding
(and therefore tuning) of the trajectories, (c¢) learning methods
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(a) 4x4 Beam (3.5x3.5 inches)

Fig. 2: The two obstacles used for demonstration of the kinesthetic input
methods and subsequent trajectory simplification. Both of these represent
obstacles that we have encountered during tests at TEEX Disaster City®,
and were unable to overcome with the existing gait-based control methods.
Also shown in these images are the starting positions used for the trials. The
goals were to (a) move the robot completely over the 4x4 and (b) to move
the robot so it is only supported by the ledge, without touching the ground.

to optimize these trajectories for robustness, and (d) general-
ization of these trajectories to a range of similar obstacles.

Finally, we show that through simple methods we can detect
failure to overcome the obstacle, even before the replay of the
trajectory is complete. This could be used to stop the playback
and take corrective action or alert the operator.

The authors believe that the capabilities demonstrated here
are only the first step to unlocking the full potential of snake
robot control using kinesthetic input methods. We envision
that the techniques we present can be used along with opti-
mization algorithms to generate robust, adaptive, failure-aware
controllers to improve one of the critical weaknesses of using
snake robots for search and rescue — the ability to overcome
obstacles. However, we believe even in their present form,
these methods can increase the usefulness of these robots for
searching damaged buildings and infrastructure.

II. COLLECTING DATA THROUGH KINESTHETIC INPUT

The kinesthetic input approach to data collection allows for
dynamic collection of data through direct input and playback.
This is enabled by the controllable motor current limits on our
snake robots. When these limits are turned to zero, the snake
is easily backdriveable. Because the modules are still on, the
magnetic encoder continues to provide feedback.

This mode of input can be simultaneous - using one snake
as a master, sending commanded angles to a slave snake - or
pre-recorded - using one snake as both master and slave by
recording a motion, resetting the snake to the original position
of input, and playing back the most recent recording. An
example of the simultaneous approach is shown in Figure 1,
where an operator is steering the robot over an obstacle by
moving a different robot through the desired shapes. When
the recorded motions are played back on the snake, the
commanded angles and sensor feedback values are stored in
a log file which can later be analyzed in MATLAB.
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(a) Module 7, “Head to Tail” approach to a 4x4

Fig. 3: The reference trajectory for a single module in one trial is shown
as the solid black line; the dotted red lines show the joint angle feedback
captured when playing back this reference trajectory on a robot attempting
to move over an obstacle. This illustrates typical deviation from commanded
angle trajectories.

We chose two obstacles for this study, a 4x4' solid wooden
beam, illustrated in Figure 2a, and a 15.24 cm (6 inch) tall
ledge, illustrated in Figure 2b, each of which represented
a unique challenge. We had previously encountered both of
these obstacles in some form during disaster response practice
scenarios at TEEX Disaster City®. We were unable to make
progress over these obstacles using our existing controllers in
the field, but later had success using kinesthetic approaches in
the lab to move over them.

To generate a corpus of data for this paper, we created five
different approaches for climbing each of these two obstacles.
Using the kinesthetic input approach, we saved a reference
trajectory of the joint angles for each approach on each
obstacle. The robot then attempted 25 trials on each obstacle,
replaying each recorded reference trajectory five times to
generate unique outputs. A typical example of the consistency
of replaying the reference trajectory is shown in Figure 3.

At each obstacle the robot started in a common position,
illustrated in Figure 2. A trial was considered a success if
the robot moved completely over the beam or into a position
where it was only supported by the ledge.

It should be noted that although these replays were run at
real time for the purpose of this data collection, we are able
to replay these faster; a speedup factor of 10x was attempted
a number of times and presented no issues.

The data was recorded in a table, consisting of the type of
obstacle, the method to overcome the obstacle, the trial number
for the snake, the success of the trial and any notes concerning
the trial. A summary of this data is shown in Table 1.

'A 4x4 is a standard US dimensional lumber size measuring 3.5 x 3.5
inches in cross section.



TABLE I: Results of Replaying Recorded Trajectories

Obstacle Approach Successes/Trials
Flop 4/5
Roll 4/4
4x4 Head to Tail Progression 5/5
Tail to Head Progression 5/5
Pinch 515
Flop 5/5
Roll 4/5
15 cm Ledge | Head to Tail Progression 4/5
Tail to Head Progression 5/5
Pinch 5/5

The basic approaches taken were the following:

« Flop: Lift the snake’s head up high, and then flop it down
onto the obstacle.

e Roll: Roll the snake onto the obstacle. Main method of
movement is rolling.

o Head to Tail: Progress a kink through the snake from
the head to the tail to get over the obstacle.

o Tail to Head: Progress a kink through the snake from
the head to the tail to get over the obstacle.

o Pinch: Lift up the middle first then the sides.

III. Low DIMENSIONAL PARAMETERIZATION OF DATA

The data collection methods in the previous section have
proved useful, enabling repeatable locomotion of the snake
over the two selected obstacles. However, in real search and
rescue scenarios there will be variation in the terrain and
obstacles, leading to the need to extend and improve the
trajectories that are recorded using kinesthetic input. We seek
to increase their robustness (percentage of successful trials) in
the presence of noise and small variations. We also hope to
generalize these joint angle trajectories so that they can adapt
to a wider range of obstacles — ledges at different heights, for
example.

One difficulty with optimizing the controllers for robustness
or identifying parameters that enable adaptation to different
size obstacles is the large number of variables required to
represent the controller. The recorded inputs from the slave
snake in these trials is simply a list of joint angles, received at
around 20Hz over a period of 60 to 180 seconds. This leads
to a matrix of size k x n, where k is the number of joints (16
for the tests conducted here), and n is the number of timesteps
(usually 2000 to 3000).

We seek to condense this large number of data points to a
smaller representation that is also more understandable. This
process does not have to enable a perfect reconstruction of
the input, but should capture the intent of the original so
that the simplified trajectory can still be used, without loss
of effectiveness, to move the robot over an obstacle. Ideally,
this processing would also remove unneccessary noise and
jitter introduced while recording the input, potentially even
improving the effectiveness of the paths. Furthermore, having
a simpler parameterized description of the trajectories enables
them to be more easily stored, used, and compared.

A. Method

We propose the following method to produce such a param-
eterized reduction of the joint angle trajectories generated in
the previous section. First, we define the form of the reduction
as ordered endpoints for a piecewise linear function, one set
for each joint on the robot. When obtaining this reduction,
we wish to minimize the number of endpoints needed, while
maintaining some notion of representational error below a
given threshold (ensuring we maintain a reasonable level of
representational fidelity to the original data).

To find the parameters of the reduction for a given joint,
we initially sample points that densely interpolate that joint’s
trajectory and use these as the endpoints for the piecewise
linear function. Incrementally points are removed, selecting at
each step to remove the point resulting in the smallest increase
in error. This is repeated until a specified error threshold has
been reached.

Optionally, the fidelity of the resulting piecewise linear
function is improved by a secondary optimization step. Each
remaining point is allowed to vary in time and angle, relaxing
the initial assumption that these points exactly interpolate the
data. Our implementation involved a simple gradient descent
on the representational error. This optimization is done one
point at a time, but cycles through all points until convergence
is reached. Figure 4 shows the result of both the reduction
and the optional optimization step for three different joint
trajectories, using a threshold of .004 rad® for each.

More formally, let the original input trajectory be defined
by a vector of timestamps T = [ty,t,...t,]7, and the joint
angles corresponding to these timestamps as
o1 ... oF
o= .

oL ... oF
We use the convention of subscripts for timestep index, and
superscripts for joint number index.

Our lower dimensional reduced trajectory can be defined as
O = {(#,0%) |1 <i < k}. i’ is a column vector of the times
for the endpoints of the piecewise segments for joint 7, and 6
is a column vector with the corresponding joint angle at each
of these times.

A slight overloading of notation allows us to use O as
a function as well; in this case, é)(t,i) returns the angle
produced by this reduced trajectory for time ¢ and joint <.
This can be computed via linear interpolation between the
surrounding points.

Given this notation, we can define the mean-squared error
of our the reduced representation as the normalized sum of
squared distances from the original input, or

k n

error = % 3 (@(T(t),i) - @(t,i))2 G)

i=1 t=1

where parenthesis are overloaded to index into the matrices T’
and © in row-major order. Given the more rigorous definition
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Fig. 4: These plots show the fidelity of a piecewise linear approximation to the original kinesthetic input for three randomly selected joint angle trajectories.
The original trajectory is shown by the solid black line. Simply reducing from a dense interpolation of the input (here, the mean-squared error threshold

was 0.004rad?) gives a fair approximation to the input; the circular markers

indicate the linear segment endpoints and the dotted blue line indicates the

deviation of this approximation from the original (right axis scale). The secondary gradient descent optimization over the linear segment endpoints provides a
noticable improvement (triangular segment endpoints and red solid line for deviation). Note that by moving to a piecewise linear parameterization, the amount
of information that needs to be stored for these trajectories reduce from 2774, 3652, and 2636 points in R? to 14, 13, and 10, respectively.

of the error function, the reduction and tuning/optimization
step can now be completed as described above.

B. Summary

Overall, this reduction was run on each of the 10 recorded
trajectories (five approaches each to overcoming two obsta-
cles), and has resulted in typical reductions from initial 7" of
around 3000 points, and © that are 3000 x 16, to O reductions
that are typically defined by around 10 — 14 time/angle pairs
for each of the 16 modules. This amounts to a typical reduction
factor around 120, resulting in around 360 parameters (around
24 per joint).

While typical reductions of 3000 x 16 = 48000 values to
around 360 is significant, this obviously still results in a fairly
high dimensional space. However, in many cases the actual
values that one might modify for optimization would be much
lower. One might assume timestamps to be fixed, reducing to
180 parameters. If only certain modules are of interest, then
this might further reduce to 45. Additionally, one can couple
keyframes across multiple modules, tolerate increased error,
use wavelet decomposition, form a grammar from common
symbols, or apply other analysis with expert knowledge to
decrease the number of parameters for optimization into a
reasonable range (10 — 30), depending on the exact task.

The exact processes which this further reduction would
involve are likely to be highly task dependent. We leave
this as an area of future work, but remain convinced that
the reductions demonstrated here are a necessary first step
in generalizing and best using the kinesthetic input that has
recently proved so effective.

IV. TESTING REDUCED TRAJECTORIES

To validate the usefulness of the reduction methods de-
scribed above, we must test the resulting joint trajectories to
verify that they can actually accomplish the task with a similar
rate of success as compared to the originals.

TABLE II: Results of Simple Parameterized Trajectory Controllers

Obstacle Approach Successes/Trials
Original | Reduced | Optimized
4x4 Flop 4/5 515 5/5
15 cm Ledge Roll 4/5 5/5 5/5
15 cm Ledge | Head to Tail 4/5 4/5 4/5

For a optimization threshold of 0.004 radg, Table II shows
the performance of the reductions as compared to the original
commanded trajectories for three selected obstacle/approach
combinations. In no case is there a decrease in rate of success;
in fact the rate of success increases for two obstacles. We
hypothesize that this increase is due to a reduction in the
high frequency signal (mostly noise during the original data
collection), resulting in more repeatable motions.

Interestingly, these results do not show a noticable improve-
ment between the simple reduction and the extra optimization
step. However, while running the tests there was indication
that this optimization significantly increased the faithfulness
of the representation. In Figure 5, the ending position for the
“Head to Tail” approach to moving onto a ledge is compared
for the original trajectory, the reduction, and the optimized
reduction. In both the original and optimized reduction, there
is very little of the robot hanging over the ledge, whereas the
simple reduction leaves considerable more of the robot over
the ledge.

Although more conclusive tests will be done in future
work, these results give strong supporting evidence that the
given reduction and parameterization methods result in simple,
effective controllers for overcoming obstacles. In particular,
these results indicate that there is no noticable degredation in
performance between replaying the original trajectories and
the piecewise linear optimized reductions.



(a) Original Controller

(b) Initial Reduction
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Fig. 5: The ending position for the “Head to Tail” approach to climbing on top of a six inch ledge. The optimized reduction is noticably more faithful to the
original controller, as indicated by the fewer modules overhanging the ledge resulting in a more stable ending configuration.

V. DETECTING CONTROLLER FAILURE

When operating the robots in a true rescue or response
scenario, it is critical to reduce the workload of the operator.
To this end, it is important that the operator can issue a high-
level command, such as “move forward over this obstacle”,
and the robot will take care of the execution without requiring
human supervision. This split autonomy requires the ability to
detect and respond to failures in the controllers.

A simple approach to this failure detection is to compare
the sensor data feedback from the robot to expected sensor
data output. In this section, we demonstrate the effectiveness
of such an approach.

In Figure 6, we have compared the z, y, and 2z accelerometer
data from a single module on the robot for a successful versus
an unsuccessful trial, as well as from two successful trials.
At one point (around 90 seconds) in the unsuccessful trial a
marked deviation from the reference occurs.

Noting this occurance, a simple detection scheme can be
invoked. The acceleration signal for an active trial is con-
tinually monitored, and passed through a simple 5 timestep
averaging window. The resulting vector in R? is subtracted
from the expected acceleration vector at that timestep for a
recorded, low-pass filtered successful trial. The magnitude of
this difference gives an error reading. Whenever this error
reading surpasses a set threshold, failure has been detected and
appropriate responsive action can be taken. Figure 7 shows this
error for two pairs of failed and successful trials encountered
in the initial data collection.

Of course, this simple method leaves room for improvement,
but demonstrates the efficacy of such an approach. In partic-
ular, sensor data from more modules can be used to detect
deviation more quickly and robustly.

In addition, once failure has been detected the system must
appropriately respond to this event. This response is outside
the scope of this paper, but is an area of active research to
increase the readiness of these robots for the purpose of actual

rescue deployments. Note that other sensors, such as tactile
sensors, could be used similarly if available.

VI. CONCLUSION AND FUTURE WORK

The methods described in this paper have demonstrated a
path forward for improving snake robot locomotive perfor-
mance in the presence of obstacles. This involved using a
master-slave kinesthetic setup to generate desired joint angle
trajectories, a reduction/parameterization step to simplify these
trajectories, and a failure detection scheme. In addition to
developing these tools, we have increased the capabilities
of our robot by creating a set of robust approaches for
overcoming two different obstacles.

Given the success of these preliminary findings, our future
work is focused on extending them so that they can readily
be used in a fieldable system. In particular, we will (1) extend
the simplification to further reduce the parameterization via
methods such as wavelet analysis, (2) use this reduction to
compare and generalize trajectories of the same approach
over a parameterized family of obstacles, (3) optimize over
this parameter space to improve robustness of the trajectories
(especially with respect to initial position relative to the obsta-
cle), and (4) extend the failure detection scheme to close the
loop and apply corrective action in real-time. Other obstacles
we will investigate include those commonly found in USAR
scenarios, such as gaps, narrow conduits, pipe junctions, etc.

Finally, the driving goal of this work is to create a system
which can be used to help rescue workers extend their reach.
In the future we hope to integrate these solutions into an easy-
to-use semi-autonomous system which reduces the mental
workload of the operator, while effectively locomoting over
difficult terrain.
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Fig. 6: Three-axis accelerometer data from the first module in the snake robot
while attempting to climb onto a 15 cm ledge using the “roll” method. On
the top, we compare our baseline trial (number 2 of 5) to the failed trial on
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80-90 seconds into the trial. On the bottom, the baseline is compared to a
succesful trial (4 of 5). This results in a much better match.
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