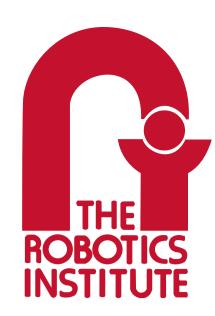


Expensive Multiobjective Optimization with a Robotics Application

Matthew Tesch, Jeff Schneider, and Howie Choset Robotics Institute, Carnegie Mellon University mtesch@cmu.edu



Multiobjective Optimization

- Multiple independent, often competing, objectives
- If there is no clear preference, goal is a *Pareto set* of unrankable solutions -- not a single optimal solution

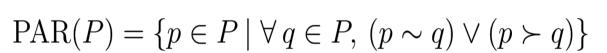
Pareto Optimality

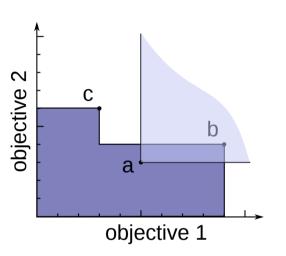
Pareto Dominance:

$$a, b \in \mathbb{R}^k$$

 $a \succ b \text{ iff } (\forall i \in 1 \dots k, a_i \geq b_i) \land (\exists j \in 1 \dots k \mid a_j > b_j)$
 $a \sim b \text{ iff } \neg (a \prec b) \land \neg (a \succ b)$

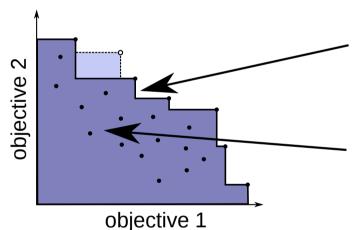
Pareto optimal subset of a set of points P:





$$a \prec b, a \sim c, b \sim c$$

Pareto Front Hypervolume



Pareto optimal subset forms **Pareto front** in objective space

Hypervolume of Pareto front: region in objective space dominated by points in the Pareto front

Existing Methods

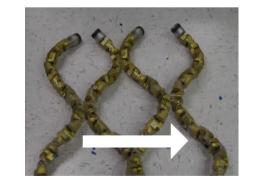
NISE [1]: fast approximate solutions; only for linear functions;

Simplex methods [2]: exact solutions, only for linear functions

NSGA-II [3]: Gold standard for nonlinear functions; GA based, takes thousands of samples

Applications

 Fast snake robot locomotion with a stable head camera view



- Animal Behavior modeling
- Engineering design
- Spacecraft trajectories

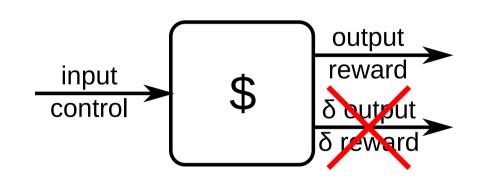
Expensive Multiobjective Optimization: Problem Definition

Goal: Given a budget of experiments (samplings of the objective functions), sequentially sample the objectives to obtain a set which has the highest hypervolume.

Parameter space: $X \subset \mathbb{R}^m$ Objectives: $\{f^1, f^2, \dots f^k\}, k \geq 2, f^i \colon X \to \mathbb{R}$ Sample locations: $\{x_1, x_2, \dots x_n \mid x_i \in X\}$ Objective evaluations at X: $Y = \{f^i(x_j)\}$

Goal: Choose x_i sequentially to maximize $\mathrm{HV}(\mathrm{PAR}(\tilde{Y}))$

Bayesian Approach to Expensive Black-Box Optimization

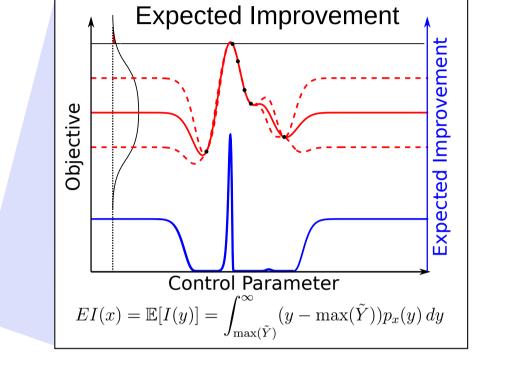


3) Use fit to select next sample4) Repeat steps 2 and 3

1) Initial objective samples

Surrogate Function Method:

2) Fit function (Gaussian process)



Prior Extensions to Multiple Objectives

Common: Aggregate objectives, and treat problem as a single objective

ParEGO [4]: Current state of the art; optimizes random aggregate each step

Keane [5]: Approximation to method described below

Multiobjective Optimization using Expected Improvement in Hypervolume

Work in objective space to focus on quantity we are maximizing -- hypervolume

Updated Algorithm Outline:

- 1) Initial objective samples
- 2) Fit functions (GPs)
- 3) Next sample: argmaxxEIHV(x)
- 4) Repeat steps 2 and 3

Define improvement as:

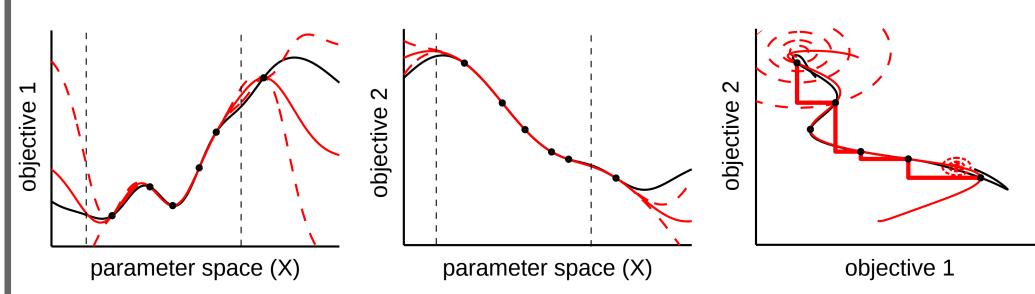
 $IHV(y) = HV(\tilde{Y} \cup y) - HV(\tilde{Y})$

Update selection metric (see [6]) to:

 $EIHV(x) = \mathbb{E}[IHV(y)] =$ $(IHV(y) = (y^1) \dots = (y^k) dy^1 \dots dy^k$

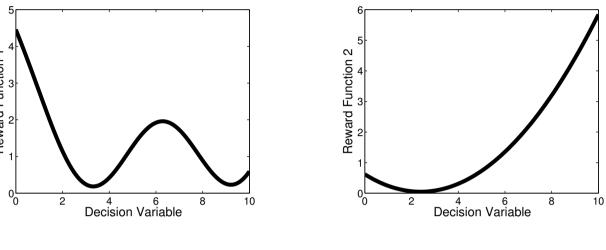
 $\int \cdots \int_{\mathbb{R}^k} \left(\mathrm{IHV}(y) \, p_x(y^1) \cdots p_x(y^k) \right) \, dy^1 \cdots dy^k$

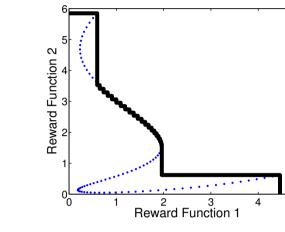
Projecting GP regression into objective space for EIHV calculation:

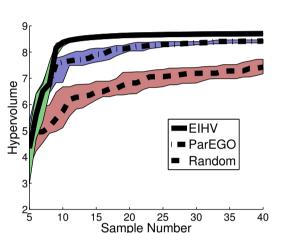


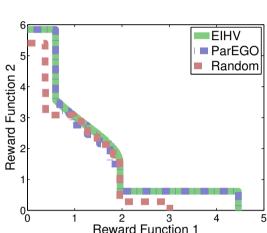
Results

1-D test problem

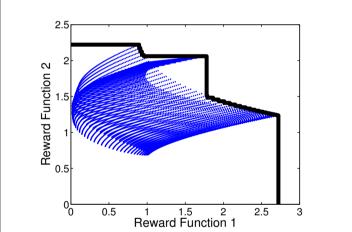


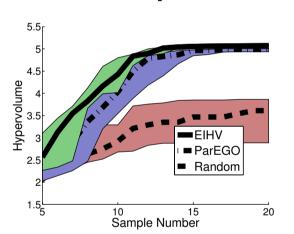


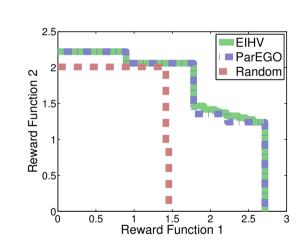




2-D test problem



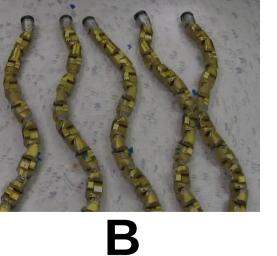




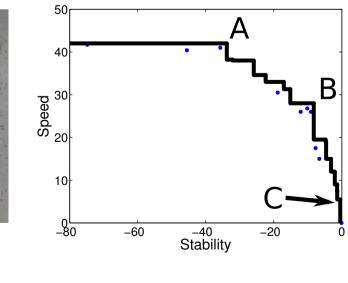
Each algorithm ran 20 times for each problem. Median and middle 50% of results shown.

Snake robot: speed vs. head stability

M. Zeleny, Linear Multiobjective Programming



evaluations



25 experiments; searched over head amplitude and offset parameters

Conclusions

- EIHV provides direct extension of EI to multiobjective problems
- Empirically produces better distribution over the Pareto front than ParEGO
- Demonstrated results on robotic snake
 - otic snake •
- Developing convergence guarantees and rates

Better handling of noisy function

- and ratesDiscover upper dimensionality bound

Future Work

[4] Knowles, J., ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobject
 [5] Keane. A.J., Statistical improvement criteria for use in multiobjective design optimization
 [6] Emmerich et. al., The computation of the expected improvement in dominated hypervolume of Pareto...