Multiobjective Optimization

® Multiple independent, often competing, objectives

e If there is no clear preference, goal is a Pareto set of unrankable
solutions -- not a single optimal solution

Pareto Optimality

Pareto Dominance:
a,b e R"
a=biff (Viel...kya;>b)N(Fjel.. . k|a; >0,
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objective 2

Pareto optimal subset of a set of points P: objective 1

PAR(P)={p€e P|VYqeP, (p~qVip=q)} a<ba~cb~c
Pareto Front Hypervolume

Pareto optimal subset forms Pareto front
In objective space

objective 2

Hypervolume of Pareto front: region in
objective space dominated by points in the
objective 1 Pareto front

Existing Methods Applications

® Fast snake robot locomotion

_ _ with a stable head camera view
NISE [1]: fast approximate solutions;

only for linear functions;

Simplex methods [2]: exact solutions,
only for linear functions

NSGA-II [3]: Gold standard for
nonlinear functions; GA based, takes
thousands of samples

® Animal Behavior modeling
® Engineering design
® Spacecraft trajectories

Expensive Multiobjective Optimization:
Problem Definition

Goal: Given a budget of experiments (samplings of the objective functions), sequentially
sample the objectives to obtain a set which has the highest hypervolume.

Parameter space: X C R™ '

Objectives: {f', f%,... ffYLE>2 X =R Goal: Choose ; sequentially to
Sample locations:  {x1, T2, .. . T, |x; S X} maximize HV(PAR(Y))
Objective evaluations at X: Y ={f"(z;)}
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Bayesian Approach to Expensive
Black-Box Optimization
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Surrogate Function Method:
1) Initial objective samples

Objective

Expected Improvement

2) Fit function (Gaussian process)
3) Use fit to select next sample
4) Repeat steps 2 and 3
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Prior Extensions to Multiple Objectives

Common: Aggregate objectives, and treat problem as a single objective

ParEGO [4]: Current state of the art; optimizes random aggregate each step

Keane [5]: Approximation to method described below

Multiobjective Optimization using

Expected Improvement in Hypervolume

Work in objective space to focus on quantity we are maximizing -- hypervolume

Updated Algorithm Outline: Define improvement as:

1) Initial objective samples

2) Fit functions (GPs) [HV(y) = HV(Y Uy) — HV(Y)

3) Next sample: argmaxxEIHV(X)
4) Repeat steps 2 and 3

EIHV(z) = E[IHV(y)] =

/- - /Rk (IHV (y) po(y") - - - 2o (y")) dy* - - - dy*

Projecting GP regression into objective space for EIHV calculation:

objective 1
objective 2

parameter space (X) parameter space (X)

objective 2

Update selection metric (see [6]) to:

objective 1
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Results
1-D test problem
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2-D test problem
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Each algorithm ran 20 times for each problem.
Median and middle 50% of results shown.

Snake robot: speed vs. head stability
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25 experiments; searched over head amplitude and offset parameters
Conclusions Future Work
® EIHV provides direct extension of El ® Better handling of noisy function
to multiobjective problems evaluations
® Empirically produces better distribution ® Developing convergence guarantees
over the Pareto front than ParEGO and rates
® Demonstrated results on robotic snake ® Discover upper dimensionality bound
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