Expensive Multiobjective Optimization for Robotics

Matthew Tesch, Jeff Schneider, and Howie Choset

{mtesch, schneide, choset} @cs.cmu.edu

Abstract— Many practical optimization problems in robotics
involve multiple competing objectives — from design trade-offs
to performance metrics of the physical system such as speed
and energy efficiency. Proper treatment of these objective
functions, while commonplace in fields such as economics, is
often overlooked in robotics. Additionally, optimization of the
performance of robotic systems can be restricted due to the
expensive nature of testing control parameters on a physical sys-
tem. This paper presents a multi-objective optimization (MOO)
algorithm for expensive-to-evaluate functions that generates a
Pareto set of solutions. This algorithm is compared against
another leading MOO algorithm, and then used to optimize
the speed and head stability of the sidewinding gait for a snake
robot.

I. INTRODUCTION

Many problems in robotics inherently require optimization
of multiple conflicting criteria, such as the speed of a system
and its energy efficiency. Often, it is tempting to simply con-
sider a scalar combination of these criteria, e.g., to optimize
a linear combination of speed and efficiency. Unfortunately,
such combinations limit the solution to a single point based
on preferences implied by the aggregate function. In the
multi-objective optimization (MOO) community, these mul-
tiple objectives are treated explicitly as independent unless
the user has a clear preference between them. Instead of a
single optimum, this gives rise to a set of Pareto optimal
solutions, termed the Pareto set (see Figure 1(a)).

This full set of solutions is useful in real-world situ-
ations. For example, our group as well as several others
have shown impressive locomotive capabilities with snake
robots (c.f. [1]). Often, these systems are equipped with
an on-board camera to allow an operator to teleoperate the
robot out of direct line-of-sight. This camera is fixed to
the undulating body (often the head) of the robot, which
causes difficulty in maintaining situational awareness during
locomotion (Figure 1(b)). To mitigate this effect, one can
control the robot through small-amplitude low-frequency
motions to stabilize the camera. However, such motions
also reduce the speed of the system, creating a scenario
with two conflicting notions of good performance. In this
case, speed may be important when the robot is teleoperated
through a wide, easy to comprehend space, but as the robot
enters a more complex passage, the stability of the head
camera may become paramount. This clearly demonstrates
how the relative importance of objectives can change during
operation, and hence the need for the full Pareto set of
solutions.

Another important consideration when optimizing the
performance of a robotic system is that the system can
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Fig. 1: (a) The set of Pareto optimal solutions are those that are not
Pareto dominated by any other points in the full set of solutions. The Pareto
optimal points in this figure are those which are on the stair-stepped line.
The hypervolume of such a set is the volume which is dominated by the
Pareto set, shown as the dark shaded region; this is a popular measure
of the quality of a multi-objective solution set. The light shaded region is
the potential improvement to the hypervolume if the point indicated by the
circle were added to the set. (b) One problem when teleoperating our snake
robots is that the large movement of the head, which houses the camera,
can cause operators to become disorientated. We demonstrate the multi-
objective optimization methods in this paper to help solve this problem,
simultaneously optimizing for the conflicting objectives of head stability
and speed.

be expensive to run — where expense can be measured in
terms such as time, financial cost, or use of computational
resources. This means that when attempting to optimize the
performance of such a system, its use must be budgeted. In
this work we consider an experiment to be a single objective
function evaluation of a set of parameters on the robot itself.
In the expensive MOO case, the goal is to reduce the number
of experiments needed to find the Pareto set of solutions.

The expensive nature of objective evaluations requires
specialized optimization methods. Methods such as gradient
descent or evolutionary algorithms are not designed to limit
the number of objective evaluations, but instead to find the
optimum quickly assuming nearly free objective evaluations.
Whereas most optimization algorithms must choose a next
experiment quickly — often milliseconds — the optimization
of expensive functions permits algorithms to take more time
(usually several seconds) to select an experiment, carefully
taking all previous data into consideration.

In this paper we seek to bring the benefits of viewing
optimization problems in a MOO framework to the robotic
locomotion community. We describe two algorithms for
obtaining a Pareto optimal set of solutions while budgeting
the number of tests on the robot. Finally, we provide a
concrete real world MOO example on the snake robot.

This paper also contains a brief background on successful
single-objective optimization methods for expensive system
and describes extensions of one of these methods to the



multi-objective case. We compare two MOO algorithms on a
set of test functions, and finally, we seek to improve the head
stability of our snake robot during execution of a sidewinding
gait while simultaneously maximizing speed. The novel
contributions in this work include description, demonstration,
and validation of an MOO algorithm based on the expected
improvement in hypervolume [2], the first known application
of MOO techniques to the robotics domain, and optimization
of the combined locomotive speed and head stability of our
snake robot system.

II. RELATED WORK
A. Expensive Black-Box Optimization

Expensive functions, or those for which evaluations take
significant resources (time, money, computation, etc.), often
also fall in the category of black-box functions (those which
provide no gradient or derivative information when sampled).
Furthermore, these functions need not have guarantees of
convexity or linearity; one must search for a global optimum
over a function which is in all likelihood nonlinear and
non-convex. Optimization of such functions by many stan-
dard techniques is ineffective; for example, gradient-ascent
approaches would require a number of samples around a
sampled point to find a (potentially unstable) approximation
to the gradient. For expensive function evaluations this is
impractical (especially in higher dimensions) for a single
point/gradient sample.

This has motivated the development of a class of “gra-
dient free” optimization techniques; these include local ap-
proaches, such as a Nelder-Mead simplex search (c.f. [3]),
and global approaches such as genetic algorithms [4] or sim-
ulated annealing [5]. Naturally, a globally optimal solution
is preferred to a locally optimal one, but unfortunately most
methods which search for such global optima require a large
number of function evaluations. Again, this is prohibitive if
these evaluations are expensive.

To address the particular challenges of expensive black-
box optimization, a group of techniques is based on the
idea of predicting the entire unknown expensive function
from limited sampled data. These surrogate function-based
sequential experiment selection methods rely on a function
regression method, usually a Gaussian process [6], to es-
timate the true objective function after each subsequent ex-
pensive function evaluation. The information provided by the
surrogate is then used to intelligently select parameters for
future experiments. These regression methods often provide
a measure of the uncertainty of their estimate which can
be used in conjunction with the estimated objective function
value to make more informed decisions. An excellent survey
on this subject is given by Jones [7], and more recent work
such as [8] continues to demonstrate new applications.

In our previous work [9], we have used these expensive
global optimization methods (in particular efficient global
optimization, or EGO [10]) to optimize the performance of
the snake robots discussed in this paper. To this point only
single-objective optimization problems have been consid-
ered. Locomotion with snake robots serves as an exemplary

application of surrogate function optimization techniques
because each “experiment” with the snake robot can take
several minutes, and provides no gradient information (fitting
the “black box™ description).

B. Multi-Objective Optimization

The notion of optimality that is embraced in the field
of multi-objective optimization is that of a set of Pareto
optimal solutions. This set, named after economist Vilfredo
Pareto, includes all solutions which cannot be improved in
one objective without a corresponding decrease in another. In
particular, a point in objective space a is said to dominate b,
written @ > b or b < a, if a is at least as good in every
objective, and better in at least one. The Pareto optimal
subset of a collection of points P is {p € P|Vqe P, (p ~
q)V (p = q)}. For detailed coverage of these ideas, see [11].

This notion of Pareto optimality allows us to define the
best set of parameters given no particular relative importance
of the objectives. Once knowledge of this optimal set is
obtained, it is straightforward to select the best parameters
for any given objective trade-offs or constraints. Finding
such optimal sets has been important for a number of
real world applications, including modeling grasshopper
foraging behavior [12], rehabilitation of water distribution
networks [13], design of airfoils [14], and optimization of
spacecraft trajectories [15].

However, finding these sets of optimal points requires
specialized optimization methods. For cases where the ob-
jective functions are linear, the NISE method [16] has been
developed to converge quickly on a good approximation of
the Pareto set, even in problems of very high dimensions.
Multiobjective simplex methods such as [17], which extend
the single-objective linear constrained optimization simplex
method' developed in 1947 [18], provide exact solutions for
the Pareto optimal set for linear objective functions.

For nonlinear cases there are also a number of methods;
perhaps the most popular is the Non-dominated Sorting Ge-
netic Algorithm II (NSGA-II) [19]. This empirically has been
shown to produce good results which are well distributed
over the Pareto front — the Pareto optimal set given in
objective space coordinates.

C. Expensive MOO

In the case of expensive optimization for multiple ob-
jectives, there is significantly less literature on identifying
the Pareto set; the evolutionary methods used in standard
MOO are most appropriate when samples are cheap and
parameter and objective spaces are very high dimensional.
Most expensive MOO approaches attempt to extend suc-
cessful single objective expensive optimization techniques.
One set of techniques create a single aggregate objective
function at each step, and choose to optimize this function;
this approach is taken by ParEGO [20], where the aggregate
is a weighted combination of individual objectives as terms in

Note that this simple method differs from the Nelder Mead constrained
nonlinear optimization method.



an augmented Tchebycheff function, and the single objective
optimization method used is Jones’ EGO algorithm.

Other approaches attempt to work in the full objective
space rather than simplifying the problem to one objective.
For example, Keane [21] attempts to directly measure the
multivariate expected improvement of a point — how much
the hypervolume of the Pareto front increases (Figure 1(a)).
The expression Keane presents is a simplification of the
true quantity and only measures improvement as an increase
from a single point on the Pareto front; Emmerich et al. [2]
redefine this improvement more rigorously (yet are still able
to find a closed-form expression) using Lebesgue integration
on a partition of the objective space.

D. Snake Robots

This work was motivated by the goal of improving the
locomotive capabilities of snake robots, especially those of
the latest generation in our lab [22]. These robots have
demonstrated impressive locomotive capabilities, and with
their small diameter of 10 cm they can fit into small channels
and spaces too confined for other mechanisms. Much like
their biological counterparts they use cyclic control trajec-
tories called gaits to move across relatively regular terrain,
such as a flat expanse of grass, a roughly uniform diameter
pole, or a regular grid of poles.

Although the space of cyclic controls is infinite, Choset’s
robots are usually controlled by motions within a finite
dimensional constrained control trajectory subspace (the gait
model described in [1]). This model, defined by

ﬁeven + Ae'uen Sin(a), n = even,

t) = 1
olm?) Bodd + Aodasin(f + 0),n = odd, M
do do
0 = (dnn + dtt) , 2)

is general enough to command the snake to slither, sidewind,
roll in an arc, wrap around a tree or pole in a helix and
climb, turn in place, and traverse via many other motions.
Similar controllers have been used by other researchers (c.f.
[23], [24]). In this paper, we consider the optimization of
an augmented sidewinding gait, based this equation with
restrictions on the set of free parameters (5, A, etc.).

One difficulty with optimizing an objective like the stabil-
ity of the head module during a gait is that there is no simple,
accurate motion model for these robots due to their frequent
collisions with the ground and multiple simultaneous sliding
contacts. This requires one to actually run experiments on
a physical system to reliably sample such an objective,
which motivates the use of expensive optimization techniques
described above.

III. OPTIMIZATION METHOD OVERVIEW

We first describe the single-objective precursors to the
MOO algorithms that are the focus of the paper. Although
an algorithm based on the optimization of Emmerich et al.’s
expression for the expected hypervolume improvement is
described below, we also implement the ParEGO aggregate
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Fig. 2: (a): A surrogate function (dark line) interpolates sampled points of
an unknown underlying function (dotted red line). The surrogate quantifies
uncertainty in its prediction, as shown by the shaded region.(b): Experi-
ment selection metrics such as probability of improvement and expected
improvement consider the predictive distribution at a potential sample point
x (vertical line), compared to the best previous sample (horizontal line).

function optimization method for purposes of comparison
and verification. We note before continuing that we use
the convention of maximizing a reward function rather than
minimizing; this differs from much of the optimization
literature referenced, but aligns with our goal of improving
robot performance.

A. Expensive Single Objective Optimization

The expensive single optimization methods that underly
this work are global, constrained methods. Formally, given
a parameter space X C R"™ and a objective function f: X —
R, they search for argmax,cyx f(x). As it is expensive to
obtain samples of f(z), there is a limit to the number of
times f can be sampled.

As described above, a common and successful approach to
expensive optimization task involves the use of a nonlinear
surrogate function fit to the sampled data points, as shown in
Figure 2(a). Such algorithms are summarized in the following
steps:

1) Sample a set of initial points (often randomly or with
a Latin hypercube experimental design)

2) Fit a surrogate to the sampled points

3) Select the next sample location by optimizing a metric

4) Repeat steps 2-3 until convergence

The central challenge is the determination of the fitness
metric which is optimized in step 3 to select subsequent
sample locations. This metric must balance exploration
(sampling in unknown regions) and exploitation (sampling
in known good regions) during the optimization. Neither
extreme (choosing the current maximum of the surrogate
or sampling purely based on uncertainty, such as [25])
result in methods which converge to the optimum efficiently.
To improve the quality of search, the uncertainty of the
estimated function value should be used in conjunction with
that estimated value.

To this end, simple approaches may select subsequent
samples based on a weighted sum of the estimated function
and its error (c.f. IEMAX [26]). Another approach that incor-
porates a natural trade-off is to maximize the probability of
improvement [27], [28]. For a given test point, the probability
of improvement is the integral of the tail of the predictive
distribution above the maximum value of the objective found



so far (Figure 2(b)). To be successful, these methods require
tuning parameters that explicitly balance exploration and
exploitation.

We choose to use a more principled method to address
this trade-off: the idea of expected improvement (EI) [29]
popularized by Jones et al.’s efficient global optimization
(EGO) algorithm [10]. Given a set of sampled values }7,
the improvement I(y*) of a new sample at x with the value
y* is the increase in the maximum value of this set with
the addition of y*. The expectation of this quantity over
the surrogate function’s predictive distribution at x, p.(y),
is given as

El(z) = E[(y)] 3)
= / C(y— max(f/))px(y) dy, €]
max(Y)

and captures the intuitive idea of selecting the next sample
as the point which you expect to most improve your current
solution (Figure 2(b)). This statistical measure automatically
balances the trade-off between exploration and exploitation
without requiring a tuning parameter.

B. Multiple Objective Extensions

As the expected improvement metric has been a success in
expensive single-objective optimization, the natural question
is whether it can be applied to the MOO case. In order to
extend the EI metric, one must first define the notion of
‘improvement’. In the single objective case, improvement
has a natural definition, because there is already a single
objective f which is being optimized. The improvement of
a sampled value of y* over the set of sampled points Y is
simply the increase in the maximum value of the resulting
set, or

I(y*) = max(y* — max(Y),0) )

In multi-objective optimization there is more than one
objective, and the solution is not just a single point, but
an entire Pareto set of points. To measure improvement
in such a set, a valid metric must be devised to measure
the quality of such a set. One such metric is the set’s
hypervolume [30]. This is the volume in objective space
which is Pareto-dominated by at least one point in the Pareto
set. A reference point in objective space must be selected to
define the lower bounds of this volume; this point should be
chosen given prior knowledge of or an educated guess about
the minimum possible value of the objective functions (e.g.,
the net displacement of a gait must always be greater than
or equal to 0).

The concept of the hypervolume indicator is illustrated for
a two-dimensional objective space in Figure 1(a). This mea-
sure has desirable properties; for example it is not affected
when a dominated point is added to a set of solutions, and the
addition of a non-dominated point always increases a set’s
hypervolume. Given a method to compute the hypervolume
HYV of a solution set, improvement can be defined as

I(y*) =HV(Y Uy*) — HV(Y). (6)

Although a simple closed-form solution has been derived
for El in the single objective case, E[I(y*)] is not straightfor-
ward when the improvement is measured in terms of hyper-
volume; evaluating this for a given test point requires either
a multidimensional numerical integral, or the development of
an analytic form for this expectation. Fortunately, Emmerich
et al. have provided the outline of a method to compute
this quantity in closed form [2]. Because we are working in
objective space, this metric considers the joint improvement
in all objectives simultaneously, trading off the benefits of
sampling a point which might improve one or the other.

Using hypervolume as the indicator of solution set quality
and finding an efficient computation of its expectation allows
us to use machinery from the single objective case for
optimization with multiple objectives. Our multi-objective
optimization algorithm using the expected improvement in
hypervolume (EIHV) metric can be summarized in a form
parallel to that of surrogate-based single objective algo-
rithms:

1) Sample the objectives at a set of initial points

2) Fit a surrogate to the sampled points for each objective
function

3) Select the next sample location by selecting the sample
with the largest EIHV value

4) Repeat steps 2-3 until convergence

C. Limitations and Implementation Details

When implementing surrogate-function based algorithms,
a number of issues can arise. Most importantly, these meth-
ods rely on the function regression method to provide a rea-
sonable estimate of the objective and the uncertainty of that
estimate. We use Gaussian processes (GPs) as this regression
method, which can lead to a number of pitfalls. From our
experience, we have a number of recommendations. First, the
use of an existing package, such as the GPML MATLAB
library [31], can greatly reduce initial time and effort of
implementation. Next, when fitting a surface, it is important
to carefully tune the hyperparameters that describe the GP to
obtain a realistic and non-trivial fit. As recommended by [6],
we find hyperparameters that maximize the log likelihood of
the data. This is done via a large number of line search
optimizations in the hyperparameter space (using the GPML
package’s minimize function) from hundreds of random
seed points, including the best hyperparameter value found
in a previous fit.

To further improve the fit and reduce necessary manual
involvement with the fitting process, we choose to run this
hyperparameter selection process over a number of different
sets of covariance functions for the GP (effectively model
selection over a number of different function forms for
regression). By using the log likelihood of the data as a
selection metric, this allows the complexity of the model to
match the complexity of the data. Initially, simple covariance
functions are chosen; as the number of data points collected



increases, the complexity typically grows to match the trends
shown by the data.

In addition to obtaining a quality surrogate function fit, it
is important to ensure the global maximum is found when
optimizing the experiment selection metric. This function
is often highly irregular and strongly peaked. Taking the
logarithm can ensure a more numerically stable optimization.
Also, we advise many random restarts of your favorite built-
in optimization algorithm to ensure that the space is well
covered. As this optimization determines the quality of the
point selected, it is important to spend time on this step, both
during implementation as well as when running the code to
select experiments.

Finally, the effectiveness of these methods is restricted to
fairly low-dimensional spaces. The authors usually work with
parameter spaces from 2-8 dimensions, but have had success
up to 20 depending on the objective function complexity.
The limitations are driven by the ease and robustness of
fitting a GP in higher dimensions and the reliability of the
optimization of the selection metric in those spaces.

IV. TEST RESULTS

The primary motivation for the careful experiment selec-
tion methods described herein is the expensive nature of test-
ing the performance of physical robotic systems. Therefore to
justify the selection of one algorithm to use for optimization
of a physical system, we ran a more extensive comparison
on two simple analytic functions. This also allowed us to
test algorithm implementations, and ensure they functioned
as expected.

Many of the multi-objective test functions in the litera-
ture are particularly designed to confound existing multi-
objective evolutionary algorithms (MOEAs), and therefore
involve large high-dimensional parameter spaces with many
separated Pareto set regions. The low dimensional analogues,
when they exist, are trivial surfaces that do not provide for
a reasonable evaluation of the optimization algorithms we
were considering.

Instead, we chose to use a region of the Branin test
function, a common benchmark for global single objective
optimization from the Dixon-Szego test problem set [32]. We
chose different regions of the Branin function for each objec-
tive, and found that the resulting surfaces exhibit qualitative
similar properties to those observed for the performance of
our robots. These regions, shown in Figure 3, are defined
by the following equations, where B is the original Branin
function and all inputs are between 0 and 10 inclusive:

i(x) = B(z,1)/10, (7
16 B(3,2)/10, (®)
f2(xy,2) = B(zx1,2+ 0.525)/20 )
f2(x1,20) = B(0.4x1,5+0.125)/10 (10)

In addition to the optimization method described in §III-B,
we have chosen a simple popular state of the art optimiza-
tion method for expensive multi-objective problems called

ParEGO [20]. This algorithm takes the approach of, at each
iteration, generating a single aggregate objective function.
It then reverts to a single-objective experiment selection
method (the expected improvement based algorithm EGO,
described in §III-A) to choose the next sample. Finally, we
also use random experiment selection to provide a baseline
from which to measure the importance of any careful exper-
iment selection.

For the simple one-dimensional test function, we ran
each algorithm 20 times, each time independently selecting
40 locations at which to sequentially sample the objective
functions. The repeated trials are necessary because initial
sample location selection is random. For the two-dimensional
test function, each algorithm was run 20 times, with 20
sampling locations selected each time.

The resulting algorithm performance is shown in Figure 4.
In each case, both ParEGO and the expected improvement
in hypervolume were shown to significantly outperform
random experiment selection, demonstrating the potential
savings when optimizing on expensive systems. The use of
EIHV also outperformed ParEGO for either tested setting of
ParEGO’s s-value (10 and 1000), showing an algorithm with
no tuning parameters and good performance. Due to these
empirical results, we chose to use EIHV when optimizing
multiple objectives on the physical snake robot.

V. ROBOT RESULTS

After the validation of EIHV in the previous experiments,
we used this method to generate a set of Pareto optimal
solutions for competing objectives of head stability and
speed. In order to do so, we first needed to define our
cost functions and the parameter space over which we are
optimizing.

The speed objective definition is straightforward — after
running the snake for 10 seconds with the gait parameters as
specified by the optimizer, we measured the net displacement
of the center of mass. The head stability objective was more
complicated. To obviate the need for a motion capture lab, we
combined several tools that only relied on sensor data from
on-board the robot. Intuitively, we wished to capture how
much the camera image changed for an operator. Moreover,
since the resulting image from a translating camera is less
disorienting than a rotating camera, we chose to focus on the
latter motion.

We choose a point p at a distance [ of 18 inches nor-
mal to the center of the camera lens plane as the desired
focal point. Using a Kalman filter based sensor-fusion state
estimation technique [33], we estimated the motion of this
point throughout the gait. However, because we are primarily
concerned with orientation, we use a shape-stable body
frame termed the virtual chassis [34], consider only the
orientation component of the virtual chassis’ state estimate,
and define the point p to be in the world frame assuming the
virtual chassis is fixed in position but free rotate in all three
dimensions.

More formally, let the 4x4 homogeneous transform of the
estimated orientation of the virtual chassis at the timestep ¢
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be defined by R(#)"“. Then the position of the head frame in
the virtual chassis frame at ¢ is given by the transform matrix
T(t)}, (where the 0 indicates the Oth snake module). The
ray from the head camera module to p is of length [ in the
z direction, so let pg = [0,0,7,1]7 be the location of p in
the head module frame. Given these variables, we can define
p in the fixed-position, free-rotation virtual chassis “world”
frame at time ¢ as

p(t) = R(t)VT (1)} cpo. (11)

To transform this focal point location into the stability
cost, the minimum bounding box for this swept area is
calculated. First, the vertical sweep is

V = max (p,(t)) — min (p.(¢)),

(12)
0<t<T 0<t<T

where p,(t) is the z component of p(t), and T is the total
number of timestamps. The horizontal sweep first requires
calculation of the total angular sweep from the origin to
all p(t) projected onto the 2 — y plane. This should be the

smallest angle for which the interior cone (from the origin)
can contain all p(¢). This angle is Hy, and is given in radians.
The horizontal sweep is calculated as

d(t) = \/pa(t)? +py(t)?, (13)
d(t)
H = Hy ) = (14)

0<t<T

where p,(t) and p, () are similarly the « and y components
of p(t), and d(t) is the distance from the origin of p(¢)
projected into the x — y plane. Finally, the total cost —
representing a bounding box of the swept position of the
focal point — is given by V x H. In practice we negate
this value because our optimization methods maximize rather
than minimize.

As we are primarily concerned with speed and head
stability, we chose to optimize parameters of an augmented
gait model that would add more position control of the
head module while still keeping a low-dimensional parameter
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of all experimental evaluations during the optimization.

space. We take the basic form of the gait model in Equa-
tion (1), restrict it to the sidewinding parameter space as
defined in [1], and add an additional offset ¢ for the head
module:

Oé(l, t) = Bodd + Aodd Sin(9 +0+ d))

We then optimize over the amplitude and ¢, with a fixed
ratio between A,qq and Acyer,.

Finally, when running tests on physical systems, the non-
deterministic nature can cause instability in many optimiza-
tion methods. Although using a GP that can explicitly model
this noise allows many surrogate function based optimizers
to perform well in the presence of noise, we make two
adjustments. First, we run each trial 5 times, averaging the

15)

results for each objective and removing outliers. Second,
when determining the Pareto set for the purpose of the
calculation of EIHV, we use the surrogate’s estimate of the
objective values for each sampled point. This improves the
stability by ensuring that an artificially high sampled value
will not too strongly discourage nearby samples.

The process and results of these optimization trials can
be seen in Figures 5 and 6, respectively. The optimizer has
sampled points which span the trade-off between both objec-
tives, and in particular has found relatively fast motions that
have improved head stability. The three montages of robot
motion shown in Figures 6(a), 6(b) and 6(c) show how this
multi-objective optimization approach generates a range of
solutions, whereas the typical approach of aggregating these



objectives would only have found one of these solutions.

VI. CONCLUSIONS AND FUTURE WORK

Multi-objective optimization is often a reasonable alter-
native to creating a single aggregate objective in the case
of competing system performance objectives. This is a case
which comes up frequently in robotics as well as many
other fields such as design, decision theory, and economics.
Instead, a Pareto optimal set should be found, which con-
tains all solutions which are not dominated, or completely
outperformed, by another solution. The generation of Pareto
optimal solutions sets is especially difficult when sampling
the performance of a system is expensive, but once accom-
plished these solutions can be selected from to provide real-
time trade-offs between objectives.

In this paper, we have created and tested a MOO approach
based on maximization of the expected improvement in
hypervolume of the Pareto set. We have compared this to a
leading MOO algorithm, ParEGO, on multiple test functions.
Finally, we have applied the former algorithm to a practical
application, the task of finding snake robot gait parameters
for fast and head-stable sidewinding. This application re-
quired care to reduce the effect of noisy evaluations on the
optimization performance as well as the creation of a head-
stability cost function from recent state-estimation techniques
for the robot.

Future work involves testing these methods with higher
dimensional parameter spaces and use of these methods on
other robotic systems. In addition, the explicit handling of
noisy objective evaluations and guarantees of convergence to
a dense covering of the full Pareto optimal solution set are
open problems. Both of these should be addressed in order
to give potential adopters more confidence in the results of
these methods.
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