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Running experiments on physical robotic systems typically requires significant

resources (personnel, time, and money), restricting the number that can be

run during training. Additionally, these systems typically operate over a range
of external conditions and can be highly non-linear. We focus on the problem

of learning a globally optimal policy to adapt controllers for such systems

based on the value of these external conditions in order to maximize expected
performance. We propose two novel myopic search methods for this problem,

and present results comparing these algorithms with various other approaches.

Finally, we use these methods to train both simulated and physical snake robots
to automatically adapt to changing terrain.

Many robotic systems are effectively a “black-box” — there is no known

analytic process model or expression for performance, and it is infeasible to

sample the control space densely enough to obtain such a model. In partic-

ular, we focus on systems for which evaluation of a single control parameter

may take significant effort. Careful experiment selection is therefore neces-

sary in order to minimize the number of evaluations required for selection

of globally optimal control parameters.

Furthermore, during typical operation of such systems, the environment

can change significantly. For example, a locomoting snake robot may move

over gently up-sloped terrain, traverse a slightly bumpy horizontal area,

and move downhill through many large obstacles. Consider a parameter-

ized controller which can be tuned for each of these environments; an ex-

ample of such a controller would be a set of gait parameters which close

the loop on actuator position at a low level. Obviously, the same set of gait

parameters would not be optimal method in each environment; rather one

would expect the parameters for best locomotive performance to vary based

on the environment. In this work, we seek to develop experiment selection
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Fig. 1: We are interested in problems for which the optimal control parameter changes

significantly depending on the environmental conditions. Here we show a system objective

function for a toy problem with 1-D environment and control spaces; the policy is shown
below the function and the policy score is projected to the left. An optimal adaptive

policy is illustrated in (a), presenting the best control parameter for every environment
parameter. The constant policy shown in (b) results in a significantly lower overall score.

methods which enable intelligent generation of control policies which adapt

to changes in the environment by selecting the best controller parameters

given a particular environment (Fig. 1). This control policy then acts to

close the loop at a high level (typically a relatively slow timescale), chang-

ing the parameters of the low-level (typically fast timescale) controller as

significant changes in the environment are detected.

Related Work

A key idea in this work is the use of a surrogate to represent a function

which is expensive to evaluate, and basing search methods on this cheap

model. These ideas have been extensively explored in the global optimiza-

tion community to minimize the number of evaluations required to globally

maximize expensive functions.1 Often these methods rely on stochastic pro-

cesses to create a surrogate function;2–4 following this lead we use Gaussian

processes5 as a function approximation method that generates an estimate

of expected experiment output along with a measure of confidence in that

estimate.

In these cases where function evaluations are costly (hours to days),

careful sample choice is extremely important in order to best use the exper-

imental budget. A number of heuristics and statistical methods have been

derived to use information from the surrogate function to best choose sam-

ple locations (Jones1 provides a survey of many existing methods). These

metrics include the upper confidence bound of the predicted function,6,7
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the probability of improvement,8,9 and the expected improvement.10,11 In

particular, expected improvement has been shown to effectively trade off

exploration and exploitation without requiring algorithm parameters to be

carefully tuned. However, existing expensive global optimization methods

are not directly applicable to the addition of environment parameters.

Perhaps the most closely related work is that of contextual bandits,12

an extension of the multi-armed bandit literature. The choice of which arm

to pull (analogously, which experiment to run) in the contextual setting

is informed by a context (the environment parameter in our work). The

contextual bandit work presents a framework for learning an adaptive arm-

selection policy, but assumes an online setting where the context is given

to the algorithm; the algorithm must then minimize continuous regret over

a series of experiments. In our work, we are interested in efficient training

of a controller in an offline setting, where we can set the context (environ-

ment parameters) as well as the arm (control parameters); here we wish to

minimize absolute expected regret over all contexts. Note that this learned

controller could then be used later in an online setting.

Problem Definition

This work aims to find a control policy that optimally adapts to external

variables, while minimizing the number of experiments done to perform the

optimization. In order to formalize this problem, we define several terms

and then more precisely state the goal of this work.

Definition 1 (Control Parameter). The control parameter space Xc is

a compact subset of Rmc . Each xc ∈ Xc represents a particular value of

the system of interest that can be fully specified during normal operation.

Some examples of control parameters include the value of a set of gains in a

PID controller, the relative concentration of two reactants in an industrial

process, or the prescribed dosage of a drug during drug development.

Definition 2 (Environment Parameter). The environment parameter

space Xe is a compact subset of Rme . This space contrasts with the control

space in that values xe ∈ Xe cannot be controlled under normal real-world

operation, but can be specified in laboratory trials. Furthermore, the value

of xe can be measured during normal operation. Therefore, these param-

eters represent continuous valued external factors of the system, such as

terrain steepness for a locomoting system, wind strength and direction for

a UAV, particulate size in an industrial process, or disease strain during

drug development.
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Definition 3 (System Output). The system output, denoted as f: Xe×
Xc → R, is a continuous, real-valued function of the environment and con-

trol parameters. This function represents the performance of the system,

given some environmental conditions and some specified control parameter.

Example system outputs include the speed of a locomoting system over a

terrain, the efficiency of a mechanical process, or the turbulance of a wing

design calculated from a wind tunnel or computational fluid dynamics ex-

periment. For the methods we propose here, we assume that sampling this

system output is time intensive or computationally expensive, and therefore

there is a limit to the number of times this function can be evaluated.

Definition 4 (Control Policy). The control policy defined in this work

is a mapping γ : Xe → Xc (not necessarily surjective), such that γ(xe)

represents the control parameter set by γ in reaction to sensing environment

parameter xe.

The policy score,

S(γ) =

∫
Xe

ω(xe)f(xe, γ(xe)) dxe, (1)

represents the expected performance of a policy for a given environment

distribtion ω : Xe → R.

The optimal policy γ∗ is defined as argmaxS(γ). In Fig. 1, γ∗ is shown

projected onto the control-environment plane, and S(γ∗) is visualized on

the system output-environment plane. Note that γ∗ is independent of ω, be-

cause γ̂∗(xe) can be independently determined for each xe ∈ Xe. Although

the weighting function can make a significant difference during experiment

selection and policy comparison, the optimal policy is unaffected by the

relative importance of different environments.

The goal is to find the highest scoring policy γ after a number of system

output evaluations. In other words, the quantity of interest is not a single

point, but a mapping from environment to control parameters. We break

this problem into the subproblems of policy generation and experiment se-

lection:

(1) Policy Generation: Given the results of n system output evaluations,

choose the best estimate for γ∗.

(2) Experiment Selection: Choose the sequence of points X =

{x1, x2, . . . xn}, xi ∈ Xe × Xc, where the choice of xk+1 is informed

by {f(xi) |i ≤ k}, which maximizes the score of the policy produced

by the chosen policy generation algorithm.
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Proposed Methods

One of the difficulties in solving these problems lies in the fact that the

true objective function we wish to maximize is S, but as this involves an

integral over the expensive f it is impossible to calculate for any γ, let alone

optimize via standard optimization techniques. By using Gaussian process

regression to find a surrogate f̂ for f , we obtain the probability density

function px(y) of the predictive distribution at each x ∈ Xe × Xc. These

distributions allow us to calculate statistically meaningful quantities for a

potential sample, such as the approximate expected improvement over the

current predicted optimal policy’s score if that experiment were run.

Policy Generation

For the policy generation problem, we can use f̂ to select the policy which

maximizes our best prediction of the score. In low dimensions, γ̂∗ can be

estimated via a dense sampling of the (relatively) cheap surrogate f̂ ; in

higher dimensions one might perform global optimization (e.g., with a sim-

ulated annealing or genetic algorithm) on a chosen policy parameterization,

using f̂ to cheaply evaluate policies. As this work mainly focuses on exper-

iment selection methods, we assume a policy generation method based on

maximization of (1) via dense sampling (replacing f with f̂).

Experiment Selection

Standard local and global optimization methods directly applied to opti-

mizing system output perform poorly. This is because these methods are

not optimizing the true objective; rather they focus on improving knowledge

in environments with high system output results, and ignore environments

with low system output results. This causes the resulting policy to be very

weak in “difficult” environments (ones with low system output results),

lowering the overall score. However, we have included results from the pop-

ular global search algorithm EGO11 for comparison. At each iteration, this

algorithm selects the parameters for the next experiment as those which

maximize the expected improvement over the best previous experiment.

Our first proposed algorithm for experiment selection adapts the idea

of expected improvement to the explicit separation of Xe and Xc. Instead

of measuring improvement over the best evaluation of f so far, we consider

the improvement over the maximum predicted value of f for the same

environment as the test point. This gives the unbiased expected improvement

(UEI) of a point xt = (xte, x
t
c):
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UEI(xt) = ω(xte)

∫ ∞
y∗
xt
e

(y−y∗xt
e
)ptx(y) dy, where y∗xt

e
= max

xc∈Xc

(f̂(xc, x
t
e)) (2)

UEI reduces the bias of standard expected improvement towards good

environments. However, UEI only considers improvement of the policy score

at one environment. To measure true expected improvement of the policy

score from sampling a point xt, the expectation must be computed over the

predictive distribution ptx(y), where each potential y involves regression of

a new surrogate f̂y conditioned on the addition of this potential sampled

value. This second proposed method is termed the expected policy score

improvement, or EPSI:

EPSI(xt) =

∫ ∞
−∞

ptx(y)

∫
Xe

ω(xe) max
(
f̂y(xe, γ

∗
y(xe))− f̂(xe, γ

∗(xe)), 0
)
dxe dy

(3)

Using this method generates a more complete estimate of the effect of

sampling a point on the policy score. Of course, computing a large numeric

integral can also take significantly more time, and the quality of the solution

can vary based on the resolution of the integral.

Experimental Results and Concluding Remarks

We evaluated the performance of the two proposed algorithms on analytic

test functions as well as on simulated and physical snake robots. The three

test functions of varying complexity were created specifically so that a static

control policy would not be effective over the entire space.

To measure the score of a particular algorithm, we non-deterministically

generate an initial set of k points through guaranteed-coverage sampling

method, such as a latin hypercube,13 and then sequentially select n − k

more points, evaluating the system output after each choice. The predicted

f̂ is used after each evaluation to generate a policy, which is scored via a nu-

meric integral on system output. This entire process was repeated 10 times

for each algorithm, the results averaged, and standard errors calculated to

provide a rigorous comparison of methods. The algorithms were written

in MATLAB, and used the open-source Gaussian Processes for Machine

Learning package provided by Rasmussen and Williams.14

A summary of these results is shown in Fig. 2; more thorough com-

parisons15 are omitted for brevity. Standard global optimization methods

initially have good performance, but the policy score tends to stagnate
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Fig. 2: (Left): One of the three analytic test functions used for algorithm comparison.
(Right): Scores of policies learned for this test function (average over 10 trials); the

dotted black line represents the best possible policy score for that function. Policies were
generated and scored after each new experiment (x-axis represents experiment number).
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Fig. 3: (Top): Experimental setup; system performance in a measure of locomotive
energy efficiency for a snake robot crawling through a crevice (simulated robottests)

and climbing up an incline (physical robot tests). (Bottom): Performance of policies

generated from points selected randomly versus using EPSI for the robot tests.

quickly because these methods are optimizing f rather than S. Random

point selection also performs suboptimally, showing that it is important to

carefully select experiments. UEI and EPSI both perform a better global

search; the latter outperforms the former only slightly, indicating that UEI

provides a simpler and quicker method which produces similar results.

As such a complete analysis could not be run on physical systems due

to the expensive nature of system output evaluation and the inability to
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compute a true policy score, we instead set up a range of environmental

conditions in a “test course”, and then used the above algorithms to gen-

erate policies which were scored on this test course. These policies map

environment parameters (slope and crevise width) into a 2-D gait param-

eter control space.16 The EPSI algorithm was compared to random point

selection; the results are shown in Fig. 3.

Although demonstrated here on snake robots, this framework is appli-

cable to a rich set of problems both within and outside the field of robotics.

We have described two approaches for experiment selection, proposed a

simple policy generation method, and demonstrated the efficacy of these

algorithms on analytic test functions and a physical snake robot. Future

work involves application to other systems, restricted environment selec-

tion during training, and derivation of theoretical performance bounds.
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