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Introduction

With the introduction in 1970 of protein alignment

algorithms [1], a need was created for matrices of

amino acid substitution scores. Over time, many differ-

ent rationales were advanced for constructing such

matrices [2–8], based on a variety of considerations,

such as the genetic code and amino acid physico-chem-

ical properties. However, for many years the ‘log-odds’

matrices [4] derived from the PAM model of protein

evolution [3] gained the widest use. These matrices

were generally employed as well, unaltered, with the

local alignment methods introduced in the 1980s [9],

which largely supplanted the earlier global alignment

algorithms.

The statistical theory of ungapped local alignment

scores described in the early 1990s [10,11] demonstra-

ted that all local alignment matrices are implicitly of

the log-odds form, and are optimized for the recogni-

tion of alignments characterized by certain amino acid

pair ‘target frequencies’ [12]. It could then be recog-

nized that what had given the PAM matrices an edge

was their explicit and purposeful, rather than implicit,

specification of target frequencies. Accordingly, the
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Almost all protein database search methods use amino acid substitution

matrices for scoring, optimizing, and assessing the statistical significance of

sequence alignments. Much care and effort has therefore gone into con-

structing substitution matrices, and the quality of search results can depend

strongly upon the choice of the proper matrix. A long-standing problem

has been the comparison of sequences with biased amino acid composi-

tions, for which standard substitution matrices are not optimal. To address

this problem, we have recently developed a general procedure for trans-

forming a standard matrix into one appropriate for the comparison of two

sequences with arbitrary, and possibly differing compositions. Such adjus-

ted matrices yield, on average, improved alignments and alignment scores

when applied to the comparison of proteins with markedly biased composi-

tions. Here we review the application of compositionally adjusted matri-

ces and consider whether they may also be applied fruitfully to general

purpose protein sequence database searches, in which related sequence

pairs do not necessarily have strong compositional biases. Although it is

not advisable to apply compositional adjustment indiscriminately, we des-

cribe several simple criteria under which invoking such adjustment is on

average beneficial. In a typical database search, at least one of these criteria

is satisfied by over half the related sequence pairs. Compositional substitu-

tion matrix adjustment is now available in NCBI’s protein–protein version

of BLAST.

Abbreviations

ROC, receiver-operator characteristic; SCOP, structural classification of proteins.
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subsequently described BLOSUM matrices [13]

retained the log-odds formalism for constructing sub-

stitution scores, and replaced only the PAM model for

estimating target frequencies. This has been true as

well of other approaches to constructing substitution

matrices [14–17].

The sensitivity of a protein database search can

depend strongly on the choice of a substitution matrix

[18,19]. The BLOSUM and other commonly used mat-

rices, constructed from particular sets of related pro-

teins, are tailored to target frequencies in the context

of implied standard ‘background’ amino acid composi-

tions. When used to compare proteins with markedly

nonstandard compositions, these matrices have new

target frequencies which are incompatible with the new

compositional context, implying nonoptimal perform-

ance [20].

Proteins with nonstandard compositions are far

from rare. They may arise in specialized (e.g. hydro-

phobic or cysteine-rich) protein families, or wholesale

in organisms with AT- or GC-rich genomes [21,22].

For the analysis of such proteins, we have previously

described a rationale and an efficient algorithm,

improved here, for transforming a standard matrix

into one appropriate for any specified nonstandard

compositional context [20,23]. This procedure is fully

applicable to the comparison of proteins with differing

compositions, in that case yielding asymmetric substi-

tution matrices. On average, when used to compare

proteins with markedly biased compositions, the adjus-

ted matrices yield alignments that are in better agree-

ment with structural evidence and that have higher

scores [20].

An important factor in the effectiveness of protein

database programs is the evolutionary distance for

which the substitution matrix employed is tailored.

This is conveniently measured by the matrix’s relative

entropy [12,24]. When adjusting a standard matrix for

compositional bias, one may simultaneously control its

relative entropy [20,23], and we here discuss various

rationales for doing so. Among the relative entropy

strategies we consider, the best on average is to fix the

relative entropy of adjusted matrices at a standard

value.

Finally, we study the effectiveness of compositional

adjustment in the context of general purpose protein

database searches, in which there is no expectation of

pervasive strong compositional biases. Although it is

not advisable to employ compositional adjustment uni-

versally, we describe several simple criteria for invok-

ing such adjustment, which predict its utility for a

majority of pairwise comparisons of related proteins.

Compositional score matrix adjustment has been

added as an option to NCBI’s protein-query, protein-

database blast program [25,26].

Statistical underpinnings

For ungapped local alignments, a statistical theory

of substitution matrices has been developed, which

assumes a random protein model in which the 20

amino acids appear independently with background

probabilities, ~p [10,11]. A substitution matrix should

have a negative expected score, and can then always

be written in the form

sij ¼
1

k
ln

qij

pipj

� �
ð1Þ

where the implicit qij are positive target frequencies

that sum to 1, and the positive parameter k provides a

natural scale for the matrix. This matrix is optimal for

distinguishing from chance those local alignments

whose aligned amino acid pairs appear with frequen-

cies characterized by q. In practice, Eqn (1) is widely

used to construct log-odds matrices after estimating

target and background frequencies directly from care-

fully curated sets of ‘true’ biological alignments. The

target frequencies are generally estimated as symmet-

ric, with qij ¼ qji, and the background frequencies are

then generally chosen to be consistent with the target

frequencies, with pi ¼ Sjqij.
Because different evolutionary distances imply differ-

ent target frequencies, sets of substitution matrices,

such as the PAM [3,4] and BLOSUM [13] series, have

been optimized for differing degrees of evolutionary

divergence. The relative entropy of a matrix [12],

defined as H ¼
P
ij

qij ln
qij
pipj

� �
, with the unit of nats, is a

convenient parameter for characterizing the evolution-

ary distance to which the matrix corresponds; the

higher H, the lesser the degree of evolutionary diver-

gence.

Compositionally adjusted matrices

Generalizing to the comparison of sequences with

possibly unequal background compositions ~P and ~P0, it

is reasonable to assume that the target frequencies, Q,

best characterizing true alignments will be consistent

with these background frequencies, so that

X
j

Qij ¼ Pi ;
X
i

Qij ¼ P0
j ð2Þ:

We call a substitution matrix ‘valid’ in the context of

the background frequencies ~P and ~P0 if its implicit

target frequencies satisfy Eqn (2). Except for certain

Compositionally adjusted substitution matrices S. F. Altschul et al.
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degenerate cases unimportant in practice, a substitu-

tion matrix can be valid in only a unique context

[20,23]. This implies that it is not ideal to use a substi-

tution matrix derived from standard target and back-

ground frequencies in a nonstandard context, but

leaves open the question of how to construct an appro-

priate matrix.

For the comparison of proteins with biased composi-

tions, it is possible to replicate the PAM or BLOSUM

procedure by constructing special sets of true align-

ments for such proteins, as has been described for

hydrophobic and transmembrane proteins [27,28].

From such alignment sets, target and background

frequencies may be extracted. Problems with this

approach are that it is laborious, that each new context

requires a new curatorial effort, and that it is difficult

to apply consistently to the comparison of proteins

with differing amino acid biases. Accordingly, we have

proposed a rationale for automatically transforming

any standard matrix, constructed using Eqn (1) with a

unique valid q, into a matrix valid in a nonstandard

context, specified by new background frequencies ~P and
~P0 [20]. In short, we propose finding new target frequen-

cies Q that minimize the Kullback–Liebler distance

from the standard q, i.e.,
P
ij

Qij ln
Qij

qij

� �
, but subject to

the consistency constraints of Eqn (2). In addition, one

may wish to constrain the relative entropy of the new

substitution matrix to equal some constant H:

X
ij

Qij ln
Qij

PiP
0
j

 !
¼ H ð3Þ:

Previously we have described a Newtonian procedure

for this purpose [23]. Here, we have implemented a

modified procedure, with improved speed and stability,

which we detail below.

Controlling relative entropy

If one adjusts a substitution matrix for compositional

bias, why might one wish to constrain its relative

entropy, and how should one do so? We will study this

question by analyzing the performance of four modes

of substitution matrix construction (Table 1). For

these evaluations, we use the 143 homologous sequence

pairs with validated alignments described in [20], which

we call the ‘biaspair143’ data set; these pairs were cho-

sen specially for evaluating substitution matrix compo-

sitional adjustment and include various compositional

biases.

Mode A is simply the standard BLOSUM-62 sub-

stitution matrix while modes B–D are versions of

BLOSUM-62 compositionally adjusted for each

sequence pair (Table 1). In mode B, the relative

entropy of the matrix is left unconstrained. In mode C,

the relative entropy is constrained to equal a constant,

here chosen as 0.44 nats. Finally, in mode D, the relat-

ive entropy is constrained to equal that of the standard

BLOSUM-62 matrix in the context of the two

sequences being compared. The rationale for constrain-

ing relative entropy, as in modes C and D, is elabor-

ated below. Note that for mode A, ‘composition-based

statistics’ are used to rescale the matrix, as described

in [29], so that it has the same ungapped scale param-

eter k as the matrices calculated by modes B–D.

Therefore, the bit scores and E-values for alignments

computed by all four modes are accurate and compar-

able. Note also that modes B–D use pseudocounts for

defining ~P and ~P0, as described in [20].

For the comparison of any particular pair of related

sequences, it is best to use a matrix whose relative

entropy reflects the sequences’ degree of evolutionary

divergence [12,24]. However, a database search gener-

ally entails comparing a query sequence to related

sequences diverged to varying extents. If a single mat-

rix is to be employed, it is best to use one focused

on alignments near the limits of detectability. The

BLOSUM-62 matrix [13], whose standard rounded

version has a relative entropy of 0.44 nats, has been

found to be among the most effective [18,19]. Matrices

with much larger relative entropies are tuned to align-

ments so strong that, using most reasonable scoring

systems, they will probably be found in any case; those

with much smaller relative entropies are tuned to

alignments so weak they will likely be missed in any

case.

When BLOSUM-62 is compositionally adjusted for

a given pair of sequences, there is no guarantee that its

relative entropy will remain near 0.44 nats. If the relat-

ive entropy decreases, then it is fortunate if the

sequences compared are very distantly related, but

unfortunate if they are closely related. However, there

is no theoretical reason or empirical evidence that,

when unconstrained, the relative entropy of a matrix

compositionally adjusted for two related sequences will

tend to reflect their evolutionary divergence. Therefore,

Table 1. Modes of compositional substitution matrix adjustment.

Mode Description

A The standard matrix with no compositional adjustment

B Relative entropy left unconstrained

C Relative entropy constrained to equal a constant value

D Relative entropy constrained to equal that of the

standard matrix in the compositional context of the

two sequences being compared

S. F. Altschul et al. Compositionally adjusted substitution matrices
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it would seem best on average for the adjusted matrix

to retain a relative entropy near 0.44 nats. This is the

rationale for employing mode C of compositional

adjustment.

Because relative entropy is a key element in the

effectiveness of substitution matrices, it can be a con-

founding factor when trying to establish whether com-

positional adjustment is of value per se. Specifically,

when in [20] we compared the performance of the

standard BLOSUM-62 matrix to that of composition-

ally adjusted versions of BLOSUM-62, we faced the

possible objection that any observed improvement was

due not to the compositional adjustment itself, but

rather to incidental changes in relative entropy. This

criticism could be leveled at either mode B or C,

because when the standard BLOSUM-62 is used in a

nonstandard compositional context, its implicit relative

entropy changes as well. Mode D was designed to deal

with this issue. For any particular pair of sequences,

with attendant amino acid compositions, BLOSUM-62

will have a particular and calculable implicit set of tar-

get frequencies, and therefore a particular and calcu-

lable implicit relative entropy H. By constraining the

relative entropy of the compositionally adjusted matrix

to this H, one removes relative entropy as a confound-

ing factor when comparing the standard to a composi-

tionally adjusted BLOSUM-62.

In [20] we used mode D for all compositional adjust-

ments, and were therefore able to show that such

adjustment is fruitful per se. However, once this has

been established, there is little argument in favor of

mode D, relative to modes B or C, as a general

approach to sequence comparison. To study this issue

more fully, we use modes A–D to analyze the bias-

pair143 data set of related sequence pairs; a summary

of the results is presented in Table 2. Composition-

based statistics [29] and compositional matrix adjust-

ment yield accurate E-values, as shown by the

essentially identical score distributions of unrelated

sequence pairs for modes A–D [20]. Therefore, it is

valid to compare score adjustment strategies using

normalized bit scores [24].

For the biaspair143 data set, the mean bit score of

modes B and C exceeds that of mode A by approxi-

mately 3 bits, whereas mode D yields an average

improvement of only about 2 bits. When considered

on a case by case basis, and ignoring the magnitude

of score changes, it is true that mode D improves on

mode A most consistently. This can be understood

by recognizing that the relative entropy change impli-

cit in mode A may on occasion be fortuitous. When

this is so, it may be a deciding factor in favor of

mode A vis-à-vis either modes B or C, but it will

not help vis-à-vis mode D. Nevertheless, when one

confines attention to only substantial E-value chan-

ges, of greater than a factor of 10, i.e., score changes

greater than 3.3 bits, the case by case advantage of

mode D is vitiated. We therefore prefer modes B and C

to mode D.

Mode B is simpler than mode C both conceptually

and algorithmically, and may be preferred in some

contexts. However, Table 2 suggests that mode C (with

H ¼ 0.44 nats) has a slight advantage to mode B by

the criteria of mean bit score, and case by case

improvement vis-à-vis mode A. For this reason, as well

as for the theoretical considerations presented above,

we will base our further study of compositional adjust-

ment in this minireview on mode C.

Search program evaluation protocol

Most of the biaspair143 comparisons include at least

one sequence known to have considerable composi-

tional bias [20]. However, the comparisons that arise

in general purpose protein database similarity

searches are likely on average to have much less

bias. Accordingly, to evaluate the utility of composi-

tional adjustment for such searches, we employ two

distinct data sets constructed previously. The first is

the expert-curated ‘aravind103’ data set [29], consist-

ing of 103 query sequences, and associated true pos-

itive lists from a nonredundant version of the yeast

(Saccharomyces cerevisiae) proteome. The second is

the ‘astral40’ data set [30,31], based upon the struc-

tural classification of proteins (SCOP) [32,33] struc-

ture-based protein classification. Only those 3586

astral40 sequences related to at least one other

sequence in the set were included as queries; all 4013

astral40 sequences served as the associated test data-

base.

For assessing the accuracy of database search meth-

ods, the truncated receiver-operator characteristic for

n false positives (ROCn) [34] has become a popular

measure. Here, we compare all queries to their associ-

ated test databases, and then calculate ROCn curves

Table 2. Performance of substitution matrices on the related

sequence pairs of the biaspair143 data set.

Mode

Mean bit

Score

Percent of cases

improved vis-à-vis

mode A

Percent of cases

with E-value improved ⁄
worsened by a factor > 10

A 59.8

B 62.7 81 40 ⁄ 2.1
C 62.9 86 41 ⁄ 2.1
D 61.9 88 26 ⁄ 1.4

Compositionally adjusted substitution matrices S. F. Altschul et al.
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and scores for the pooled results, ordered by E-value

[29]. Our application of composition-based statistics to

database searching requires some parameter tuning, so

we use the smaller aravind103 set for development,

and the astral40 set for evaluation.

Although the compositional adjustment of a substi-

tution matrix can be accomplished in a small fraction

of a second, comprehensive protein sequence databases

now have hundreds of thousands of sequences. It

would slow down a search program unduly if such an

adjustment needed to be performed for each one.

Accordingly, and in keeping with the heuristic nature

of blast and related programs, we adjust substitution

matrices only as a final step. Specifically, blast is exe-

cuted using a standard matrix, and only alignments

with a preliminary E-value lower than a certain thresh-

old, here set to 100, are passed on to a second step. In

this step, the score matrix is adjusted, the query and

database sequences are realigned, and a final E-value

is calculated. This heuristic approach rarely alters

which matching sequences appear in the output, but it

saves execution time. The same approach and much of

the same code is used in blast when it calculates com-

position-based statistics [29]. Note that composition-

based statistics are applied only if the E-value of the

initial alignment would not improve, but compositional

score matrix adjustment may decrease, as well as

increase, the E-value. Therefore, score matrix adjust-

ment must be invoked for alignments that initially

appear far from significant.

Criteria for invoking compositional
adjustment

When comparing standard BLOSUM-62 (mode A) to

compositionally adjusted BLOSUM-62 (mode C) on

the aravind103 data set, our initial results were

unpromising.

However, we find that several simple sequence prop-

erties, suggested by theoretical considerations, tend to

characterize those sequence pairs that profit from score

adjustment. Experiment yields three specific criteria

for invoking compositional adjustment:

Length ratio

For related proteins of very different lengths, the lon-

ger may tend to contain domains, missing from the

shorter, sufficient to render compositional adjustment

unreliable.

We find that compositional adjustment is on average

preferred if the length ratio of the longer to the shorter

sequence is less than 3.0.

Compositional distance

If the amino acid compositions of two sequences are

very similar, this may reflect a common organismal or

protein family bias. An appropriate, recently developed

distance metric [35] for two probability distributions ~r

and~s is given by

D2ð~r;~sÞ ¼ 1

2

X
i

ri ln
2ri

ri þ si
þ si ln

2si
ri þ si

� �
ð4Þ:

Using this measure, we find that compositional adjust-

ment is on average preferred for two sequences if their

compositions~r and~s have a distance D less than 0.16.

Compositional angle

A common compositional bias in two sequences may

be reflected in similar compositional drift vis-à-vis a

standard protein composition ~p. Given the metric of

Eqn (4), we can use the law of cosines to calculate the

angle h formed by the vectors from ~p to ~r and from ~p

to~s:

h ¼ cos�1 D
2ð~p;~rÞ þ D2ð~p;~sÞ � D2ð~r;~sÞ

2Dð~p;~rÞDð~p;~sÞ ð5Þ:

We find that compositional adjustment is on average

preferred for two sequences whose compositions make

an angle with the standard composition of less than

70�. Note that in the 19-dimensional amino acid com-

position space, random departures from the standard

composition are likely to be nearly perpendicular, so

that 70� in fact represents a strong correlation. Angles

substantially larger than 90� may be due to unrelated

domains, and so do not, on average, favor composi-

tional adjustment.

The criteria we have described favoring composi-

tional adjustment are by no means independent.

However, there is both a theoretical and an empirical

basis for employing each criterion individually, and

we therefore invoke compositional adjustment for

sequence pairs that pass any of the three. We call this

procedure ‘conditional adjustment’. In practice, for

the data sets we studied, the single criterion most

likely to trigger compositional adjustment is that of

length ratio. For related sequence pairs from the ara-

vind103 data set, � 69% pass the conditional adjust-

ment test, and for related but nonidentical pairs from

the astral40 data set, � 98% do. To a large extent,

the much greater percentage for astral40 is due to the

‘processed’ nature of SCOP [32,33]: because this data-

base contains single domains rather than complete

proteins, related sequence pairs tend to be similar in

S. F. Altschul et al. Compositionally adjusted substitution matrices
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length. Note that in generating Table 2, we applied

compositional adjustment universally rather than

conditionally, because the biaspair143 data set was

constructed from organisms with known substantial

compositional biases.

In Fig. 1A,B, we show ROCn curves for blast

applied to the aravind103 and the astral40 data sets.

For each data set, curves are shown for BLOSUM-62

(BL62) and for conditionally compositionally adjusted

BLOSUM-62 (CA-BL62). For aravind103, the ROC100

score is 0.521 ± 0.005 for BL62 and 0.530 ± 0.003

for CA-BL62, where standard errors are calculated as

described in [29]. For astral40, the ROC10 000 score is

0.1148 ± 0.0001 for BL62 and 0.1214 ± 0.0001 for

CA-BL62. The different numbers of false positives

allowed for pooled search results reflect the relative

sizes of the test sets. For the astral40 test set, the dif-

ference in ROCn scores between CA-BL62 and BL62 is

statistically significant. The greater effectiveness of

compositional adjustment in the astral40 context is

probably partly due to the processed nature of SCOP,

discussed above.

Examination of Fig. 1 suggests that for a given

number of true positives, the conditional use of com-

positional score matrix adjustment reduces the number

of false positives by � 50%; this corresponds to an

average increase of about 1 bit in the score of true but

marginally significant alignments. The performance of

compositional adjustment in this test, while positive, is

weaker than that described in Table 2. This is due to

the intentional selection, for the biaspair143 test set, of

sequence pairs for which compositional adjustment is

particularly suited.

Implementation

We have added compositional substitution matrix

adjustment as an option to NCBI’s protein-query,

protein-database blast program, named blastpgp,

available at http://www.ncbi.nlm.nih.gov/BLAST/. By

default, the program performs no compositional

adjustment, but the user may choose to invoke adjust-

ment either universally or conditionally, i.e., for just

those sequence pairs that pass one of the three criteria

described above. (When conditional adjustment is cho-

sen and the three criteria fail for a specific match, com-

position-based statistics [29] are applied to scale the

matrix for that match.) In either case, substitution

matrices are actually adjusted only for those sequence

pairs whose initial (nonadjusted) E-values are no more

than 10 times the E-value specified for reporting a

result. Also, the relative entropy of the adjusted matrix

is always constrained to equal the relative entropy of
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Fig. 1. ROCn curves for the aravind103 and astral40 data sets using

standard BLOSUM-62 and conditionally compositionally adjusted

BLOSUM-62. The BLAST program [25,26,29] was used to compare

the test query sets to the test databases, with database sequences

filtered of low-complexity segments using the SEG program [36] with

parameters (10, 1.8, 2.1). Search results were pooled and ranked by

E-value, and ROCn curves [29,34] were obtained by plotting true

positives vs. false positives for increasing E-values. For each test

set, local alignment scores [9] were calculated using BLOSUM-62

substitution scores [13] and affine gap costs [40,41]. Composition-

based statistics [29] were employed in order to obtain accurate

E-values. Specifically, for sufficiently high-scoring alignments, the

BLOSUM-62 substitution scores were scaled to have an ungapped

k [10] of 0.006352 in the context of the two sequences being com-

pared, and were used in conjunction with scores of )550 ) 50 k for

a gap of length k. Gapped statistical parameters have been estima-

ted for this scoring system using random simulation [42], and sca-

ling arguments [26,29]. Also, for each test set, a second run was

performed with conditionally compositionally adjusted BLOSUM-62

substitution scores, constrained to have a relative entropy of

0.44 nats in the context of the two sequences being compared

(mode C). (A) The aravind103 test set was compared to a yeast pro-

tein sequence database that had been edited to remove extra cop-

ies of highly similar sequences [29]. (B) A subset of 3586 sequences

from the astral40 data set [30,31] was used as queries against ast-

ral40; all self-comparisons were excluded.

Compositionally adjusted substitution matrices S. F. Altschul et al.
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the standard matrix specified, in its implicit composi-

tional context. For the standard BLOSUM-62 matrix,

this is 0.44 nats (mode C of Table 1).

Previously, we had described a multidimensional

Newtonian method for calculating compositionally

adjusted matrices [23]. However, we have implemented

a modified procedure, to achieve greater stability and

speed, especially in the worst case. Rather than expres-

sing the target frequencies sought in terms of Lagrange

multipliers, and then solving for the multipliers [23],

we instead use the Newtonian method to solve for the

target frequencies and Lagrange multipliers simulta-

neously. A test of the new procedure on 1 000 000

pairs of compositions derived from real proteins

showed that it takes an average of seven iterations to

converge, with 15 iterations the maximum number

observed. The new procedure is summarized in the

Appendix.

Using a single 3.2 GHz Xeon processor (within a

four processor Pentium 4 PC, with 4GB of RAM), we

found that a single compositional adjustment of a

standard substitution matrix required on average

slightly over one millisecond. In the context of a single

blast search, hundreds of adjustments may need to be

performed, depending upon the number of alignments

found with sufficiently low initial E-value. Also, some

adjustments may add additional overhead in the form

of an extra pairwise local alignment. Using the ara-

vind103 data set as representative queries, we executed

blast on the machine described above to search a fro-

zen nonredundant protein sequence database, with

1 242 768 sequences and 395 571 179 total amino acids.

From three runs, the median aggregate execution time

was: 1107 s for blast using mode A, 1164 s for condi-

tionally invoked compositional score adjustment, and

1179 s for universally invoked compositional score

adjustment. In other words, even invoking composi-

tional adjustment universally, the new method on aver-

age adds well under 10% to blast’s running time.

Conclusion

Compositional score matrix adjustment was originally

developed for the comparison of sequences with

strongly biased compositions, and in this context it

may be useful to apply it universally. Here, we have

shown that compositional adjustment is useful also in

the context of general purpose protein database simi-

larity searches. We have described several simple

criteria under which invoking adjustment is recommen-

ded, and shown that adding compositional adjustment

to the blast database search program yields improved

retrieval results at a nominal cost in execution time.

Future work includes the extension of compositional

adjustment to position-specific database search pro-

grams such as psi-blast [26], and the investigation of

whether compositional adjustment permits lighter use

of low-complexity filtering procedures such as the pro-

gram seg [36].
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29 Schäffer AA, Aravind L, Madden TL, Shavirin S,

Spouge JL, Wolf YI, Koonin EV & Altschul SF (2001)

Improving the accuracy of PSI-BLAST protein database

searches with composition-based statistics and other

refinements. Nucleic Acids Res 29, 2994–3005.

30 Chandonia JM, Walker NS, Lo Conte L, Koehl P,

Levitt M & Brenner SE (2002) ASTRAL compendium

enhancements. Nucleic Acids Res 30, 260–263.

31 Green RE & Brenner SE (2002) Bootstrapping and nor-

malization for enhanced evaluations of pairwise

sequence comparison. Proc IEEE 90, 1834–1847.

32 Murzin AG, Brenner SE, Hubbard T & Chothia C

(1995) SCOP: a structural classification of proteins data-

base for the investigation of sequences and structures.

J Mol Biol 247, 536–540.

33 Brenner SE, Chothia C & Hubbard TJ (1998) Assessing

sequence comparison methods with reliable structurally

identified distant evolutionary relationships. Proc Natl

Acad Sci USA 95, 6073–6078.

34 Gribskov M & Robinson NL (1996) Use of receiver

operating characteristic (ROC) analysis to evaluate

sequence matching. Comput Chem 20, 25–33.

35 Endres DM & Schindelin JE (2003) A new metric for

probability distributions. IEEE Trans Info Theo 49,

1858–1860.

36 Wootton JC & Federhen S (1993) Statistics of local

complexity in amino acid sequences and sequence data-

bases. Comput Chem 17, 149–163.

37 Fourer R, Gay DM & Kernighan BW (2002) AMPL: a

Modeling Language for Mathematical Programming, 2nd

edn. Duxbury Press, Pacific Grove, CA.

38 Golub GH & Van Loan CF (1996) Matrix Computa-

tions, Johns Hopkins University Press, Baltimore, MD.

39 Nocedal J & Wright S (1999) Numerical Optimization.

Springer, New York, NY.

40 Gotoh O (1982) An improved algorithm for matching

biological sequences. J Mol Biol 162, 705–708.

41 Altschul SF & Erickson BW (1986) Optimal sequence

alignment using affine gap costs. Bull Math Biol 48,

603–616.

42 Altschul SF, Bundschuh R, Olsen R & Hwa T (2001)

The estimation of statistical parameters for local

alignment score distributions. Nucleic Acids Res 29,

351–361.

Appendix

Our problem is to find a set of target frequencies Q

that minimizes the Kullback–Leibler distance from a

standard q, while remaining consistent with a specified

pair of background compositions ~P and ~P0. In addi-

tion, we seek to constrain the relative entropy H of the

resulting substitution matrix. We use Newton’s method

to solve a nonlinear system of equations. This system

is composed of 39 linearly independent consistency

constraints of Eqn (2), the constraint of Eqn (3) that

fixes the relative entropy, and a set of 400 equations

specifying that the gradient of the Lagrangian function

is zero [23]. This yields a set of 440 equations in 440

variables.

Newton’s method involves solving a linear system at

each iteration to generate a new iterate. It is desirable
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to reduce the size of the linear system, but this goal

should be balanced by the goal of reducing the total

number of iterates calculated [37]. In general, New-

ton’s method behaves well on functions that are well-

approximated by their derivatives. The relative entropy

constraint (3) and the Kullback–Leibler distance both

involve terms of the form xlnx which are well-approxi-

mated by their derivatives for most positive x, but are

singular at x ¼ 0. Reducing the size of the system [23]

in the presence of the constraint of Eqn (3) results in

the introduction of exponential terms that have singu-

larities and are poorly approximated by their deriva-

tives. Therefore, to reduce the number of iterates

required, we propose to solve the 440 equation system

directly.

Fortunately, the matrix of the system of linear equa-

tions contains few nonzero elements, and these elements

occur in a regular pattern. The matrix has the form

D AT

A 0

� �

where D is positive definite and diagonal, A is rectan-

gular, and AT is the transpose of A. One may use

block-elimination [38] to transform the matrix of the

problem to the form

D AT

0 �AD�1AT

� �
:

Systems with this matrix may be solved by factoring

AD)1AT, a 40 · 40 symmetric positive-definite matrix.

It takes roughly half as many operations to factor

AD)1AT as it does to factor the matrix described in

[23]. The cost of applying the block-reductions and sol-

ving using the block reduced system is less than the

cost of evaluating the functions and derivatives in [23],

so the optimization method requires less time per iter-

ation.

The only modification to Newton’s method required

for this problem is explicitly enforcing the positivity

of the variables qij. To obtain a positive iterate, we

decrease the magnitude of the displacement suggested

by Newton’s method whenever necessary [39]. With

this modification, the optimization algorithm is robust

and efficient in practice.
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