
Chapter 2

Sequence Evolution Models

In the previous lectures, we introduced two simple scoring functions for pairwise alignments:

• a similarity function, that assigns a score of M to matches (M > 0), m to mismatches
(m < 0), and g to indels (g < 0) and

• an edit distance, which does not reward matches (M = 0) and assigns a unit cost to
mismatches and gaps (m, g > 0).

These scoring functions allow us to compare two alignments by comparing their scores,
but are less useful for assessing a pairwise alignment in an absolute sense. Given a pair
of aligned sequences with a particular collection of matches, mismatches, and indels, does
the alignment reflect enough similarity to suggest that it is of biological interest? One way
of assessing an alignment in an absolute sense is to determine whether it reflects more
similarity than we would expect by chance. In developing this approach, we must take
into account the divergence of related sequences due to mutation. With that in mind, we
will explore models of sequence evolution and then discuss how they are used to assess
alignments. Sequence evolution models are typically based on Markov chains, so we will
begin with a general introduction to Markov models.

2.1 Finite discrete Markov chains

In various computational biology applications, it is useful to track the stochastic variation
of a random variable. Here are some examples:

1. Time-dependent system: For models of sequence evolving by substitution, the
random variable of interest is the nucleotide (or amino acid) observed at a fixed
position, or site, in the sequence at time t. The goal is to characterize how this
random variable changes over time.
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Chapter 2 Sequence Evolution Models

2. Space-dependent system: It is also useful to consider how the residues in a
sequence change as one moves along the sequence from one site to the next. In this
case, the random variable is the amino acid (or nucleotide) at site i. We are interested
in how the probability of observing a given amino acid at site i depends on the amino
acid observed at site i− 1.

For each of these examples, we can model how the value of the random variable (the
nucleotide or amino acid) changes with respect to an independent variable (time or position),
using a Markov chain with a finite number of states, E1, E2, . . . Es. Each state corresponds
to one of the possible values of the random variable:

• In a nucleic acid sequence, there are four states, each corresponding to the event
of observing one of the four nucleotides at the site of interest, e.g., E1 = A,E2 =
G,E3 = C,E4 = T .

• In a protein sequence, there are 20 states, each of which corresponds to the event of
observing a given amino acid; for example E1 = Ala, E2 = Cys, . . . E20 = Tyr.

In our examples above, the states are defined as follows:

1. In a time-dependent system we say the system is in state Ej at time t.
2. In a spatially varying system, we say the system is in state Ej at site i without

concerning ourselves with time. This is in contrast to the previous example, where
time varies and the position, i, is held fixed.

The probability that a Markov chain is in state Ej at time t is designated ϕj(t)
1.

Consider the example of modelling the evolution of a given nucleotide site over time. In
this example, ϕ1(t) is the probability of observing an A at site i at time t. The vector
ϕ(t) = (ϕ1(t), ϕ2(t), . . . ϕs(t)) describes the state probability distribution over all states at
time t. The initial state probability distribution is given by ϕ(0). Note that Ewens and
Grant2 use π to denote the initial state distribution: π = (ϕ1(0), ϕ2(0), . . . ϕs(0)).

In order to capture the stochastic variation of the system, we must also define the
probability of making a transition from one state to another. The transition probability,
Pjk, is the probability that the chain will be in state Ek at time t+ 1, given that it was in
state Ej at the previous time step, t. In the time-dependent, nucleotide sequence example,
P12 is the probability of an A-to-G substitution at site i.

P is an s× s matrix specifying the probability of making a transition from any state to
any other state. The rows of this matrix sum to one (

∑
k Pjk = 1) since the chain must be

1To simplify the exposition, we will focus on models where time is the independent variable. However,
the framework is more general, and can be used to model variation with respect to other independent
variables, such as the position in a sequence.

2Statistical Methods in Bioinformatics: An Introduction. W. Ewens, G. Grant. Springer 2001.
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2.1 Finite discrete Markov chains

in some state at every time step. The columns do not have to add up to one, since there is
no guarantee that the system will end up in a particular state, k.

The Markov property states that Markov chains are memoryless. In other words, the
probability that the chain is in state Ej at time t+ 1, depends only on the state at time t
and not on the past history of the states visited at times t− 1, t− 2...

In this course, we will focus on discrete, finite, time-homogeneous Markov chains. These
are models with a finite number of states, in which time (or space) is split into discrete steps.
The assumption of discrete steps is quite natural for a spatially varying system, because
sequences of symbols are inherently discrete, but somewhat artificial for the sequence
evolution over time model, since time is continuous. Our models are time-homogeneous,
because the transition matrix does not change over time.

Summary of Markov chain notation

A Markov chain has states E0, E1, . . . Es corresponding to the range of the associated
random variable.

ϕj(t) is the probability that the chain is in state Ej at time t. The vector ϕ(t) =
(ϕ1(t), . . . ϕs(t)) is the state probability distribution at time t.

π = ϕ(0) is the initial state probability distribution.

P is the transition probability matrix. Pjk gives the probability of making a transition
to state Ek at time t+ 1, given that the chain was in state Ej at time t. The
rows of this matrix sum to one:

∑
k Pjk = 1.

The state probability distribution at time t+ 1 is given by ϕ(t+ 1) = ϕ(t) · P . The
probability of being in state Ek at t+ 1 is

ϕk(t+ 1) =
∑
j

ϕj(t)Pjk

The Markov property states that Markov chains are memoryless. The probability
that the chain is in state Ek at time t + 1, depends only on ϕ(t) and is
independent of ϕ(t− 1), ϕ(t− 2), ϕ(t− 3) . . .
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2.1.1 Higher Order Markov Chains

The memoryless requirement that the probability of occupying state Ek at time t + 1
depends only on ϕ(t) can sometimes be relaxed to allow for a more general Markov process.
Markov chains that uphold the memoryless property are often called first order Markov
chains. Higher-order dependencies can also be modelled. For example, consider a case the
nucleotide at site i depends not only on the nucleotide observed at site i− 1 but also the
nucleotide observed at site i− 2. This case can be modeled with a second order Markov
chain because the nucleotide at site i depends on the previous two sites. The transition
matrix P would be of size 16× 4; columns would represent the nucleotide at the site under
consideration and rows would represent all combinations of the two nucleotides preceeding.
More generally, an n-th order Markov chain is a system where the probability of a given
state at time t depends on the previous n sites. The transition matrix P would be of size
sn × s.

2.2 Random walks

To illustrate these concepts, let us consider a simple example: A drunk is staggering about
on a very short railway track with five ties on top of a mesa (a high hill with a flat top
and steep sides.) Here state Ej corresponds to the event that the drunk is standing on the
jth tie, where 0 ≤ j ≤ 4. At each time step, the drunk staggers either to the left or to the
right with equal probability. If the drunk reaches either end of the track (either the 0th

or the 4th tie), he falls off the mesa. This model is called a random walk with absorbing
boundaries, because once the drunk falls off the mesa, he can never get back on the railroad
track. States E0 and E4 are absorbing states. Once the system enters one of these states, it
remains in that state forever, since P00 = P44 = 1. This results in the following transition
probability matrix:

P =



E0 E1 E2 E3 E4

E0 1 0 0 0 0
E1

1
2 0 1

2 0 0
E2 0 1

2 0 1
2 0

E3 0 0 1
2 0 1

2
E4 0 0 0 0 1

 (2.1)

Note that each row sums to one, consistent with the definition of a Markov chain.

The transition matrix of a Markov chain can be represented as a graph, where the nodes
represent states and the edges represent transitions with non-zero probability. For example,
the random walk with absorbing boundaries can be modeled like this:
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2.2 Random walks

Note that the sum of the weights on all outgoing edges from any given state sum to 1, just
as row sums are equal to 1 in the transition matrix.

How does the state probability distribution change over time? If we know the state
probability distribution at time t, the distribution at the next time step is given by:

ϕk(t+ 1) =
∑
j

ϕj(t)Pjk (2.2)

or
ϕ(t+ 1) = ϕ(t)P (2.3)

in matrix notation.
For example, suppose that at time t = 0, the drunk is standing on the middle tie (state

E2); that is, ϕ(0) = (0, 0, 1, 0, 0). To obtain the state probability distribution after one time
step, we apply Equation 2.2:

ϕk(1) =
4∑
j=0

ϕj(0)Pjk.

Thus, the probability of being in state E1 when t = 1 is given by

ϕ1(1) =
4∑
j=0

ϕj(0)Pj1.

= 0 · 0 + 0 · 0 + 1 · 1

2
+ 0 · 0 · 0 · 0

=
1

2
.

Note this is equivalent to multiplying the vector (0, 0, 1, 0, 0) by the second column of the
transition matrix (Equation 2.1).

Since the Markov chain is symmetrical, it is easy to show that ϕ3(1) is also equal to
1/2. (Try it.) It is not possible to reach state E0 or state E4 in a single step from state
E2, so ϕ0(1) = ϕ4(1) = 0. Nor is it possible to remain in state E2 for two consecutive time
steps since P22 = 0, so ϕ2(1) = 0. Since state E2 is the only state with non-zero probability
at time t = 0, we obtain,

ϕ(1) = (0,
1

2
, 0,

1

2
, 0).
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Now that we have the probability distribution at time t = 1, we can calculate the
probability distribution at time t = 2 using the same procedure

ϕk(2) =

4∑
j=0

ϕj(1)Pjk.

The probability of being in state E0 at t = 2 is given by

ϕ0(2) =

4∑
j=0

ϕj(1)Pj0

= 0 · 1 +
1

2
· 1

2
+ 0 · 0 +

1

2
· 0 + 0 · 0

=
1

4
.

Again, because the matrix is symmetrical, ϕ4(2) = ϕ0(2). The probability of being in state
E2 is

ϕ2(2) =

4∑
j=0

ϕj(1)Pj2

= 0 · 0 +
1

2
· 1

2
+ 0 · 0 +

1

2
· 1

2
+ 0 · 0

=
1

2
.

The probabilities of being in state E1 or E3 at time t = 2 are zero, because P11 = 0 and
P33 = 0. The probability distribution vector at time t = 1 is, therefore,

ϕ(2) = (
1

4
, 0,

1

2
, 0,

1

4
). (2.4)

2.2.1 Calculating “n-step” Transition Probabilities

Suppose that we wish to know the state of the system after two time steps. In the previous
section, we used Equation 2.2 to calculate ϕ(1), given ϕ(0), and then we applied Equation 2.2
again to calculate ϕ(2), from ϕ(1). We can approach this from another linear algebra
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perspective by constructing a two-step transition probability matrix in which each time
step corresponds to two time steps in the original Markov chain.

Here, we derive a general expression for ϕ(t + 2) in terms of ϕ(t) and P 2. From
Equation 2.2, we obtain

ϕl(t+ 1) =
s∑
j=0

ϕj(t)Pjl (2.5)

and

ϕk(t+ 2) =
s∑
l=0

ϕl(t+ 1)Plk. (2.6)

Substituting the right hand side of Equation 2.5 for ϕl(t+ 1) in Equation 2.6 yields

ϕk(t+ 2) =

s∑
l=0

 s∑
j=0

ϕj(t)Pjl

Plk.

We can reverse the order of the summations since the terms may be added in any order:

ϕk(t+ 2) =
s∑
j=0

(
s∑
l=0

ϕj(t)Pjl

)
Plk.

Since ϕj(t) does not depend on l, it can be moved out of the summation over l, yielding:

ϕk(t+ 2) =

s∑
j=0

ϕj(t)

(
s∑
l=0

PjlPlk

)
. (2.7)

The term in the inner summation is simply the element in row j and column k of the matrix
obtained by multiplying matrix P by itself. In other words,

P
(2)
jk =

s∑
l=0

PjlPlk,

where P (2) = P × P , so that Equation 2.7 may be rewritten as

ϕk(t+ 2) =

s∑
j=0

ϕj(t)P
(2)
jk .

Matrix P (2) is the transition matrix for moving two time steps over the Markov chain
described by P . In other words, a single time step in P (2) is equivalent to two time steps in
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P . Similarly, the n-step transition probability matrix, P (n), models change after n time
steps such that:

P (n) = P × P..× P︸ ︷︷ ︸ = Pn.

n times

The n-step equivalent of Equation 2.3 is

ϕ(t+ n) = ϕ(t) · P (n).

As an example, let’s apply this approach to our 5-state random walk with absorbing
boundaries. Recall that the transition matrix for the random walk, given in Equation 2.1,
is

P =



E0 E1 E2 E3 E4

E0 1 0 0 0 0
E1

1
2 0 1

2 0 0
E2 0 1

2 0 1
2 0

E3 0 0 1
2 0 1

2
E4 0 0 0 0 1

 (2.8)

Multiplying P times itself yields the two-step transition matrix, P (2):

P (2) =



E0 E1 E2 E3 E4

E0 1 0 0 0 0
E1

1
2

1
4 0 1

4 0
E2

1
4 0 1

2 0 1
4

E3 0 1
4 0 1

4
1
2

E4 0 0 0 0 1

 (2.9)

Try this matrix multiplication to convince yourself that this is correct. The state
probability distribution at t = 2 can be calculated by applying P (2) to ϕ(0):

ϕ(2) = ϕ(0) · P (2)

= (0, 0, 1, 0, 0) · P (2)

= (
1

4
, 0,

1

2
, 0,

1

4
).

Note that this gives the same result as Equation 2.4, which we got by applying the original
Markov chain twice.
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2.2.2 Periodic Markov chains

Let us consider a second example. In order to save the drunk from an early death, we
introduce a random walk with reflecting boundaries. At each step, the drunk moves to the
left or to the right with equal probability. When the drunk reaches one of the boundary
states (E0 or E4), he returns to the adjacent state (E1 or E3) at the next step, with
probability one. This yields the following transition probability matrix:

P =



E0 E1 E2 E3 E4

E0 0 1 0 0 0
E1

1
2 0 1

2 0 0
E2 0 1

2 0 1
2 0

E3 0 0 1
2 0 1

2
E4 0 0 0 1 0

 (2.10)

The random walk with reflecting boundaries can be represented graphically like this:

Again, for any given state, the outgoing edges sum to 1.

Suppose that the drunk starts out on the middle tie at t = 0, as before. That is, the
initial state probability distribution is ϕ(0) = (0, 0, 1, 0, 0). The state distributions for
the first two time steps are the same in this random walk and in the random walk with
absorbing boundaries specified by Equation 2.1. These are

ϕ(1) = (0,
1

2
, 0,

1

2
, 0) (2.11)

ϕ(2) = (
1

4
, 0,

1

2
, 0,

1

4
). (2.12)

This makes sense because the two random walk models differ only in the boundary states,
E0 and E4, and ϕ0(t) = ϕ4(t) = 0 when t = 0 or t = 1. We calculate the state probability
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distribution at t = 3 by multiplying the vector ϕ(2) with the matrix P :

ϕ(3) = ϕ(2) · P

= (
1

4
, 0,

1

2
, 0,

1

4
) · P

= (0,
1

2
, 0,

1

2
, 0). (2.13)

Comparing Equations 2.11 and 2.13 demonstrates that the state probability distribution
at time t = 3 is the same as the distribution at time t = 1. In other words, ϕ(3) = ϕ(1).
Similarly, ϕ(4) = ϕ(2), as can be seen from the following calculation:

ϕ(4) = ϕ(3) · P

= (0,
1

2
, 0,

1

2
, 0) · P

= (
1

4
, 0,

1

2
, 0,

1

4
). (2.14)

From this we can see that the probability state distribution will be (0, 1
2 , 0,

1
2 , 0) at

all odd time steps and (1
4 , 0,

1
2 , 0,

1
4) at all even time steps. Thus, the random walk with

reflecting boundaries is a periodic Markov chain.
A Markov chain is periodic if there is some state that can only be visited, with any

probability greater than 0, in multiples of m time steps, where m > 1. Formally, state j
has period

m = gcd{n > 0 : P
(n)
jj > 0},

where “gcd” is the greatest common divisor. In our example, P
(n)
jj > 0 for n = 2, 4, 6, 8, ...

for all j; therefore, each state has a period of 2, which is the gcd of {2, 4, 6, 8, ...}. If m = 1,
the state is aperiodic. To show that an irreducible Markov chain is aperiodic, it is sufficient
to show one of the following:

1. Any state in the Markov chain is aperiodic.
2. Any state has a self-loop; i.e., Pjj > 0 for some state j.
3. All elements of the n-step transition matrix P (n) are greater than 0 for some positive

integer n.

4. If P
(k)
jj > 0 and P

(l)
jj > 0, then the gcd(k, l) = 1.

We do not require periodic Markov chains for modeling sequence evolution and will only
consider aperiodic Markov chains going forward.

2.2.3 Stationary distributions

A state probability distribution, ϕ∗, that satisfies the equation

ϕ∗ = ϕ∗P (2.15)
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2.2 Random walks

is called a stationary distribution. A key question for a given Markov chain is whether such
a stationary distribution exists. Equation 2.15 is equivalent to a system of s equations with
s unknowns. One way to determine the steady state distribution is to solve that system of
equations. The stationary distribution can also be obtained using matrix algebra, but that
approach is beyond the scope of this course.

The random walk with reflecting boundaries clearly does not have a stationary distri-
bution, because it is periodic. Every state with non-zero probability at time t has zero
probability at time t+ 1 and vice versa. The random walk with absorbing boundaries does
not have a unique stationary distribution; both (1, 0, 0, 0, 0) and (0, 0, 0, 0, 1) are stationary
distributions of the random walk with absorbing boundaries.

For the rest of this course, we will concern ourselves only with aperiodic Markov chains
that do not have absorbing states. In fact, we will make an even stronger assumption and
restrict our consideration to Markov chains in which every state is connected to every other
state via a series of zero or more states. If a finite Markov chain is aperiodic and connected
in this way, it has a unique stationary distribution. We will not attempt to prove this or
even to state the theorem in a rigorous way. For those who are interested, a very nice
treatment can be found in Chapter 15 of Probability Theory and its Applications (Volume
I) by William Feller (John Wiley & Sons).

As an example of a Markov chain with a unique stationary distribution, we introduce
a third random walk model that has neither absorbing, nor reflecting boundaries. In this
model, if the drunk is in one of the boundary states (E0 or E4) at time t, then at time t+ 1
he remains in the boundary state with a probability of 0.5 or returns to the adjacent state
(E1 or E3) with a probability of 0.5. This results in the following state transition matrix:

P =



E0 E1 E2 E3 E4

E0
1
2

1
2 0 0 0

E1
1
2 0 1

2 0 0
E2 0 1

2 0 1
2 0

E3 0 0 1
2 0 1

2
E4 0 0 0 1

2
1
2

 (2.16)

which can be represented graphically like this:
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Yet again, the weights on outgoing edges sum to 1 for every state.

We can determine the stationary state distribution for this random walk model by
substituting this transition matrix into Equation 2.15. The probability of being in state E0

is

ϕ∗0 =

4∑
j=0

ϕ∗jPj0

= ϕ∗0P00 + ϕ∗1P10 + ϕ∗2P20 + ϕ∗3P30 + ϕ∗4P40.

This reduces to

ϕ∗0 =
1

2
ϕ∗0 +

1

2
ϕ∗1, (2.17)

since P20, P30 and P40 are all equal to zero. The other steady state probabilities are derived
similarly, yielding

ϕ∗1 =
1

2
ϕ∗0 +

1

2
ϕ∗2 (2.18)

ϕ∗2 =
1

2
ϕ∗1 +

1

2
ϕ∗3 (2.19)

ϕ∗3 =
1

2
ϕ∗2 +

1

2
ϕ∗4 (2.20)

ϕ∗4 =
1

2
ϕ∗3 +

1

2
ϕ∗4. (2.21)

In addition, the steady state probabilities must sum to 1, since at any point in time, the
drunk must be somewhere. This imposes an additional constraint:

ϕ∗0 + ϕ∗1 + ϕ∗2 + ϕ∗3 + ϕ∗4 = 1. (2.22)

The Markov model specified by Equation 2.16 has a stationary distribution if the above
equations have a solution. By repeated substitution, it is possible to show that Equations
2.17 - 2.21 reduce to ϕ∗0 = ϕ∗1 = ϕ∗2 = ϕ∗3 = ϕ∗4. (Do the algebra to convince yourself that this
is true.) Applying the constraint in Equation 2.22, we see that ϕ∗ = (0.2, 0.2, 0.2, 0.2, 0.2)
is a unique solution to the above equations.

In this example, we found a unique solution to Equation 2.22, demonstrating that
our third random walk has a unique stationary state. Solving Equation 2.15 is a general
approach to finding the stationary distribution. Alternatively, if we know the stationary
state distribution, or have an educated guess, it is sufficient to verify that it indeed
satisfies Equation 2.15. For example, it is easy to verify that (0.2, 0.2, 0.2, 0.2, 0.2) · P =
(0.2, 0.2, 0.2, 0.2, 0.2).
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A stationary distribution of ϕ∗ = (0.2, 0.2, 0.2, 0.2, 0.2) does not mean that we expect to
find 20% of a drunk standing on each railroad tie. Imagine instead that there are an infinite
number of co-existing universes and that in each universe, we have a mesa with a railroad
track with five ties and a drunk. These drunks are lurching back and forth according to the
same Markov model, but they are not synchronized; at any given time point, some of the
drunks will be on the 2nd tie, other drunks will be on the 4th tie, and so on. At steady
state, for every j, 0 ≤ j ≤ 4, 20% of the parallel universes will have a drunk on the jth

railroad tie.

Limiting distributions and stationary distributions

If a Markov chain is finite, irreducible, and aperiodic, then it has a limiting distribution
and the chain will converge to the stationary distribution ϕ∗, independent of the starting
distribution π. Formally

lim
n→∞

P
(n)
jk = ϕ∗k.

In other words, as n→∞ the n-step transition matrix will be

P (n) =



E1 · · · Ej · · · Es
E1 ϕ∗1 · · · ϕ∗j · · · ϕ∗s
...

...
. . .

...
. . .

...
Ei ϕ∗1 · · · ϕ∗j · · · ϕ∗s
...

...
. . .

...
. . .

...
Es ϕ∗1 · · · ϕ∗j · · · ϕ∗s


. (2.23)

2.2.4 Time reversibility

Most sequence substitution models are time reversible. A time reversible model exhibits the
same steady state behavior if we run it backward, instead of forward. This is a convenient
property that makes many calculations simpler. Most, if not all, of the Markov models we
encounter in this course are time reversible. However, when analyzing a data set involving
genomes with very different G+C content, a time reversible model of sequence evolution
may not provide accurate results. It is therefore helpful to understand the concept of time
reversibility and be aware of whether or not the models you are using have this property.

Formally, a Markov chain is time reversible if

ϕ∗jPjk = ϕ∗kPkj

for all states j and k. This criterion is called the detailed balance equation. Earlier, we
introduced parallel universes as a metaphor for the stationary state probability distribution,
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ϕ. This metaphor is also helpful in understanding time reversibility: If a Markov chain
satisfies the detailed balance equation, then the number of universes that are moving from
Ej to Ek is equivalent to the number of universes that are moving from Ek to Ej .

Kolmogorov proposed an alternate criterion for time reversibility that depends only
on the transition probability matrix. Let M be a Markov chain with a unique stationary
distribution and let j1, . . . , jn be a sequence of states (a path of length n) through M.
Then, M is time reversible if and only if

Pj1,j2 Pj2,j3 . . . Pj(n−1),jn Pjn,j1 = Pj1,jn Pjn,j(n−1)
. . . Pj3,j2 Pj2,j1 . (2.24)

Time reversibility and the use of Kolmogorov’s criteria are illustrated by the Markov
model in the figure below. The four transitions associated with a clockwise circuit have

probability p4, while the probability of a counterclockwise circuit is q4. When p = q,
the transition probabilities satisfy Kolmogorov’s criterion; the model is time reversible.
When p 6= q, the probabilities of the clockwise and counterclockwise circuits are not the
same (p4 6= q4). Kolmogorov’s criterion is violated, indicating that the model is not time
reversible.

What is the best way to test time reversibility in practise? Kolmogorov’s criterion
is useful if you have a sequence of states that violates Equation 2.24, providing a direct
demonstration that the model at hand is not time reversible. However, it is less useful
as a general, systematic test of time reversibility. Given a Markov model with a k × k
transition probability matrix, P , you could use the detailed balance equations to test
for time reversibility by checking that ϕ∗jPjk = ϕ∗jPkj for all combinations of j and k.
However, it is more efficient to do all of these tests using a single matrix product. First,
determine the stationary distribution ϕ∗ by solving the system of equations in Equation
2.15. Then, construct an s× s diagonal matrix, D, where the entries on the main diagonal
are ϕ∗1, ϕ

∗
2, . . . , ϕ

∗
s and the off-diagonal elements are zero. The detailed balance equations

hold if and only if D × P is a symmetric matrix. Convince yourself that this is the case.
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