Algorithm: Hill-Climbing

Input:
Sequences t_1, \ldots, t_k of lengths n_1, \ldots, n_k.

Initialization:
\[
z = 1 \quad \# \text{index of special sequence.}
\]
\[
t^* = t_z, n^* = n_z \quad \# t_1 \text{ is the special sequence, initially.}
\]
\[
\text{for } (j = 2 \text{ to } k) \{
\]
\[
\text{index}[j-1] = j \quad \# \text{index of non-special sequences}
\]
\[
o_j = \text{rand}(1, n_j - w) \quad \# \text{Guess starting offsets}
\]
\[
A'[j-1, 1 \cdots w] = t_j[(o_j+1) \cdots (o_j+w)]
\]
\[
\}
\]
Calculate $P[x,i]$, the propensity matrix of A' with pseudocounts

Search for motif:
Repeat
\[
\{
\]
\[
o^* = \text{argmax}_o \{S(t^*, o)\} \quad \# \text{Select starting offset in } t^*
\]
\[
r = \text{rand}(1, k-1) \quad \# \text{Select new special sequence}
\]
\[
A'[r, 1 \cdots w] = t^*[(o^*+1) \cdots (o^*+w)] \quad \# \text{Replace new special with } t^* \text{ in } A'
\]
\[
y = \text{index}[r]; \quad \text{index}[r] = z; \quad z = y \quad \# \text{store ptr to } t^* \text{ in index}
\]
\[
t^* = t_z; \quad n^* = n_z \quad \# \text{initialize new } t^*
\]
\[
\text{Calculate } P[x,i], \text{ the propensity matrix of } A' \text{ with pseudocounts}
\]
\[
S[x,i] = \log_2 P[x,i]
\]
\[
\}
\]
until($P[\cdot, \cdot]$ stops changing)

Obtain A by adding $t^*[(o^*+1) \cdots (o^*+w)]$ to A'
Compute the log odds scoring matrix, S, from A.

Output:
Local multiple sequence alignment A with scoring matrix S.

Algorithm 1: Hill Climbing

The matrices P and S are the propensity and log odds matrices defined in Equations 4.2 and 4.3. Note that A' and P are $(k-1) \times w$ matrices, whereas the output matrices A and S are $k \times w$ matrices. The use of pseudocounts when calculating P and S is recommended to ensure all symbols in the alphabet are represented.
Chapter 4 Modeling motifs: Position Specific Scoring Matrices

Algorithm: Gibbs Sampler
Input:
Sequences t_1, \ldots, t_k of lengths n_1, \ldots, n_k.

Initialization:
$z = 1$ # index of special sequence.
$t^*, n^* = n_z$ # t_1 is the special sequence, initially.
for ($j = 2$ to k) {
 index$[j-1] = j$ # index of non-special sequences
 $o_j = rand(1, n_j - w)$ # Guess starting offsets
 $A'[j-1, 1 \cdots w] = t_j[(o_j+1) \cdots (o_j+w)]$
}

Calculate $P[x,i]$, the propensity matrix of A' with pseudocounts

Search for motif:
Repeat
{
 for ($o = 0$ to (n^*-w))

 pdf$[o] = \frac{\prod_{j=1}^{w} P[t^*[o+j], j]}{\sum_{i=0}^{n^*-w} \prod_{j=1}^{w} P[t^*[i+j], j]}$

 With probability pdf$[o]$, $o^* = o$ # Select starting offset in t^*
 $r = rand(1, k-1)$ # Select new special sequence
 $A'[r, 1 \cdots w] = t^*[(o^*+1) \cdots (o^*+w)]$ # Replace new special with t^* in A'
 $y = index[r]$; $index[r] = z$; $z = y$ # store ptr to t^* in index
 $t^* = t_z$; $n^* = n_z$ # initialize new t^*
 Calculate $P[x,i]$, the propensity matrix of A' with pseudocounts
}
until($P[\cdot, \cdot]$ stops changing)

Obtain A by adding $t^*[(o^*+1) \cdots (o^*+w)]$ to A'
Compute the log odds scoring matrix, S, from A.

Output:
Local multiple sequence alignment A with scoring matrix S.

Algorithm 2: Gibbs Sampler