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axis is the joint probability, P (Od, Qb|λ), that the HMM will visit the states on path
Qb and emit sequence Od. In the three-state TM model example, the set of all possible
sequences, O1, O2, O3, . . . corresponds to H, L, HH, HL, LH, LL, HHH, ... and the set
of all possible state paths, Q1, Q2, Q3, . . . corresponds to C, M, E, CC, CM, CE, MC, ....
Note that P (Od, Qb) = 0 for many (Od, Qb) pairs. For example, P (Od, Qb) = 0 when Od

and Qb have different lengths. In our three-state model, P (Od, Qb) = 0 for any state path
that contains C adjacent to E, because aCE = 0.

An HMM emits each sequence Od ∈ Σ∗ with probability P (Od) ≥ 0. Since a sequence
can, potentially, be emitted from more than one state path, in order to obtain the total
probability of a sequence, O, we must sum over the all possible paths:

P (O) =
∑
b

P (O|Qb, λ) · P (Qb) =
∑
b

P (O,Qb|λ).

Fig. 5.6b shows a cartoon representation of P (O,Q) for a single sequence, O5, for the set of
all possible state paths, Q. The area under the curve is equal to P (O), the total probability
of sequence O.

When all possible sequences and all possible paths are considered, the probability
distribution shown in Fig. 5.6a sums to one:∑

d

∑
b

P (Od, Qb|λ) = 1.

5.3 Using HMMs for recognition

In this section, we focus on motif recognition using HMMs. We will discuss parameter
estimation, motif discovery, and modeling using HMMs in future sections. Here, we assume
that we are given an HMM with known parameter values.

Our goal is to use the HMM to answer the various recognition questions, including:

1. What is the probability that a given sequence, O, was generated by the HMM?
Example: Is sequence O a transmembrane protein?

2. Given a sequence, O, what is the true path? Otherwise stated, we wish to assign
labels to an unlabeled sequence.

Example: Identify the cytosolic, transmembrane, and extracellular regions in
sequence O. In this case, we wish to assign the labels E, M, or C to each amino acid
residue in the sequence.

3. What is the probability of being in state Ei when symbol Ot is emitted?
Example: Is a given residue localized to the membrane?
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(a) The joint probability, P (Od, Qb).

(b) P (O5, Qb)

Figure 5.6: (a) The joint probability P (Od, Qb) for every sequence Od and state path Qb. The
volume under this curve is one. (b)The probability of sequence O = O5 for every state path
Q1, Q2, Q3 . . .. This curve corresponds to the intersection of the probability distribution in Fig. 5.6a
and the vertical plane at O = O5 (shown as a blue line in Fig. 5.6a). The area under this curve
is P (O5|λ), the probability of O5. The maximum point on the curve is the most probable path,
Q∗ = argmaxQ P (Q|O, λ).
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Although this is not a focus of this class, we should point out that, since HMMs are
generative models, an HMM can also be used for simulation; for example, to generate
sequences with properties similar to real transmembrane sequences.

5.4 Calculating the total probability of sequence O

In order to answer the first question,

1. What is the probability that a given sequence, O, was generated by the HMM?

we must calculate P (O|λ), the total probability of the sequence given the model. The total
probability is the probability of visiting states in path Q and emitting sequence O, summed
over all possible state paths:

P (O|λ) =
∑
b

P (O|Qb, λ) · P (Qb|λ) =
∑
b

P (O,Qb|λ).

We could calculate this quantity by enumerating all paths, Qb, and calculating P (O,Qb|λ)
for each one, but this brute force approach becomes intractable as the number of states
gets large, since the number of state paths grows as O(NT ). Instead, we use a dynamic
programming algorithm called the Forward algorithm, which recursively calculates the
probability of emitting prefixes of O. At each step, the Forward algorithm calculates the
probability of emitting the first t symbols, O1, O2, . . . Ot, summing over all possible paths
that end in state Ei. We designate this quantity

α(t, i) = P (O1, O2, O3, ...Ot, qt = Ei).

The variable α is an T ×N matrix, where the rows correspond to prefixes of O and the
columns correspond to states. At the tth iteration, the algorithm calculates the entries in
row t of the matrix, based on the entries in row t− 1 and the parameters of the model. The
entries in the final row contain the probability of emitting the entire sequence and ending
in state Ei, for i = 1 to N . The probability of emitting the entire sequence, independent of
the final state, is obtained by the summing the entries in the last row. The algorithm to
calculate α(t, i) for all t ∈ (1, T ) proceeds as follows:
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Algorithm: Forward
Initialization:

α(1, i) = πiei(O1)

Recursion:

α(t, i) =

N∑
j=1

α(t− 1, j) · aji · ei(Ot)

Final:

P (O) =
N∑
i=1

α(T, i)

The computational complexity of the Forward algorithm is O(TN2): There are T ×N
cells in the α matrix and the computational cost of computing each cell is O(N).

In class, we worked an example based on the three-state transmembrane model shown
in Fig. 5.5. A worksheet for this exercise is linked to the class syllabus page. The solution
is also available. I recommend that you try to work through the Forward algorithm before
looking at the solution.

5.5 Decoding

Next, we tackle the second recognition question:

2. Given a sequence O, what is the true path?

Given an unlabeled sequence, our goal is to classify or label each symbol in the sequence by
inferring the state path. This process is called “decoding” because we decode the sequence
of symbols to determine their meaning. HMMs were developed in the field of speech
recognition, where recorded speech is “decoded” into words or phonemes to determine the
meaning of the utterance. In our application, we decode an amino acid sequence to infer
the functional role of each residue. There are two common approaches to decoding: Viterbi
decoding and posterior decoding.

5.5.1 Viterbi decoding

Viterbi decoding is based on the assumption that the most probable path,

Q∗ = argmax
Q

P (Q|O, λ),
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is a good estimation of the sequence of states that generated the observed sequence
O.1 In practice, we maximize the joint probability P (Q,O|λ), rather than the conditional
P (Q|O, λ), but this will still give us the most probable path because the path that maximizes
P (Q,O|λ) also maximizes P (Q|O, λ). To see this, note that

P (Q|O, λ) =
P (Q,O|λ)

P (O|λ)
.

Since P (O|λ) is independent of Q,

argmax
Q

P (Q|O, λ) = argmax
Q

P (Q,O|λ).

As in the case of the Forward algorithm, the brute approach of enumerating all paths
and calculating P (Q|O, λ) for each one is intractable, because the number of state paths
grows as O(NT ). Instead, we calculate argmaxQ P (Q,O|λ) using a dynamic program-
ming algorithm called the Viterbi algorithm. Let δ(t, i) be the probability of emitting
the first t residues via the most probable path that ends in Ei. We calculate δ(t, i) as follows:

Algorithm: Viterbi

Initialization:
δ(1, i) = πi · ei(O1)

Recursion:
δ(t, i) = max

1≤j≤N
δ(t− 1, j) · aji · ei(Ot)

j∗(t, i) = argmax
1≤j≤N

δ(t− 1, j) · aji · ei(Ot)

Final:
P (Q∗, O|λ) = max

1≤j≤N
δ(T, j)

j∗(T ) = argmax
1≤j≤N

δ(T, j).

At each step in the recursion, we save j∗(t, i), the value of j that maximizes δ(t− 1) ·
aji · ei(Ot). These values are used to reconstruct the most probable path. The final state on
the most probable path, q∗T , is the state that maximizes δ(T, j). The rest of the state path
is reconstructed by tracing back through the dynamic programming matrix, a procedure
similar to the traceback in pairwise sequence alignment.

The running time of the Viterbi algorithm is O(TN2). There are TN entries in the
dynamic programming matrix. Each entry requires calculating N terms.

1Note that the most probable path is not the same as the path that maximizes the likelihood of O.
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In class, we used the three-state HMM shown in Fig. 5.5 as an example. As an exercise,
try applying the Viterbi algorithm to determine the most probable path through this model
for the sequence HHH. A worksheet for this exercise is linked to the class syllabus page. The
solution is also available. I recommend that you try to work through the Viterbi algorithm
before looking at the solution.

5.5.2 The probability that state Ei emitted O.

The third question

3. What is the probability of being in state Ei when Ot is emitted?

is a special case of the decoding problem, where the focus is on classifying one specific
residue. The probability of being in state Ei when Ot is emitted is the product of two
probabilities: (1) the total probability of emitting O1 . . . Ot over all paths that end in Ei
and (2) the total probability emitting Ot+1 . . . OT over all paths, given that the model was
in state Ei at time t:

P (qt = Ei, O) = P (O1, O2, O3, ...Ot, qt = Ei) · P (Ot+1, Ot+2, ...OT |qt = Ei). (5.2)

Note that the first term is just α(t, i), as defined in the section on the Forward algo-
rithm. To calculate the second term, we introduce β(t + i), the probability of emitting
Ot+1, Ot+2, ...OT given that Ot was emitted from state Ei:

β(t+ 1, i) = P (Ot+1, Ot+2, ...OT |qt = Ei).

Substituting α and β for the first and second terms in Equation 5.2, we obtain the
following expression for the probability of emitting Ot from state Ei

P (qt = Ei, Ot) = α(t, i) · β(t+ 1, i). (5.3)

The first term, α(t, i), is calculated using the Forward algorithm. The second term,
β(t+1, i), is calculated using an algorithm called the Backward algorithm. Like the Forward
and Viterbi algorithms, the Backward algorithm is a dynamic programming algorithm.
However, the Backward algorithm is different in that we start by calculating the probability
of emitting the last symbol, OT , and then work backwards from OT to Ot+1.

Algorithm: Backward

Initialization:

β(T, i) =
N∑
j=1

aij · ej(OT )
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Recursion:

β(t, i) =

N∑
j=1

aij · ej(Ot) · β(t+ 1, j)

In addition to determining the probability that Ot was emitted from a given state, the
Backward algorithm has several other applications. Although the Forward algorithm is
usually used to calculate the probability of a sequence, O, the Backward algorithm can
also be used for this purpose. To calculate the probability of the entire sequence, we use
the Backward algorithm to calculate β(t, i) recursively, starting with β(2, i). The total
probability of O is given by:

P (O) =
N∑
j=1

πjej(O1)β(2, j).

In motif discovery, both the Forward and the Backward algorithm are needed in order to
learn parameters from unlabeled data using the Baum Welch procedure, which is a form of
Expectation Maximization. The Backward algorithm is also used in another approach to
inferring the true state path, called “Posterior decoding”.

5.5.3 Posterior decoding

Let us revisit the question of estimating the path through an HMM that corresponds to the
true labeling of the data. In Viterbi decoding, the most probable path is considered the best
estimate of the true path. An alternative is to use Q̂, the sequence of most probable states,
as an estimate of the true path. This approach is referred to as posterior decoding because it
is based on the posterior probability of emitting Ot from state i, when the emitted sequence
is known. The most probable state at time t is the state that has the highest probability of
emitting Ot when all possible state paths are considered:

q̂t = argmax
i

P (qt = Ei, Ot)

= argmax
i

P (O1, O2, O3, ...Ot, qt = Ei) · P (Ot+1, Ot+2, ...OT |qt = Ei)

= argmax
i

α(t, i) · β(t+ 1, i).

Note that the most probable state for emitting Ot is independent of the most probable state
for any other symbol in O. In fact, the sequence of most probable states, Q̂ = q̂1, q̂2, . . . q̂T
may not correspond to any legitimate path through the model.

Posterior decoding may give better results than Viterbi decoding in some cases, such as
when suboptimal paths are almost as probable as the most probable path. If there is only
one state path with high probability (e.g., Fig. 5.7a), then it is likely that Q∗ and Q̂ will
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represent the same sequence of states. However, when there are two or more state paths
with high probability (e.g., Fig. 5.7b), each of those paths contributes some information
about the classification of each symbol, Ot. Posterior decoding takes advantage of the
information encoded in all state paths, while Viterbi decoding does not.

(a) (b)

Figure 5.7: (a) The probability distribution of paths for a given sequence of symbols, O1, for
a hypothetical hidden Markov model. In this hypothetical case, the probability of the most
probable path is much greater than the probability of all other paths. (b) The probability
distribution of paths for a given sequence of symbols, O2, for a hypothetical hidden Markov
model. In this hypothetical case, there are several paths with relatively high probability.
One of these is almost as probable as the most probable path

5.6 Summary

We started by introducing three recognition questions:

1. What is the probability that a given sequence, O, was generated by the HMM?
Example: Is sequence O a transmembrane protein?

2. Given a sequence O, what is the true path? Otherwise stated, we wish to assign labels
to an unlabeled sequence.

Example: Identify the cytosolic, transmembrane, and extracellular regions in O.
In this case, we wish to assign the labels E, M, or C to each amino acid residue in the
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sequence.

3. What is the probability of being in state Ei when Ot is emitted?
Example: Is a given residue localized to the membrane?

We then discussed several approaches to answering these questions:

• Calculating P (O|λ) using the Forward or Backward algorithms

• Inferring the state path that emitted O using Viterbi or Posterior decoding

• Inferring the state that emitted Ot using the Forward and Backward algorithms

These tools can be used to answer biological questions in a variety of ways. For example,
one approach to predicting whether O is a transmembrane protein is to calculate P (O|λTM ),
the probability that O was emitted by the transmembrane model. However, the resulting
probability can be difficult to interpret. How big must the probability be to convince us that
O is in fact a transmembrane sequence? To answer the question, it is useful to construct a
model representing a null hypothesis and to calculate P (O|λ0), the probability that O was
emitted by this null model. If the resulting likelihood ratio

P (O|λTM )

P (O|λ0)

is much greater than one, then we can infer that O is a transmembrane sequence.

An alternate approach would be to infer the state path that emitted O using the Viterbi
or posterior decoding. If the resulting path includes membrane states, then we can conclude
that O is a transmembrane sequence. If the entire sequence is labeled with C states or with
E states, then we conclude that it is not.

5.7 Designing HMMs: Motif discovery and modeling

There are three major computational tasks associated with conserved motifs found in multiple
sequences: Discovery, Modeling, and Recognition. In previous sections, we discussed the
recognition problem: Given an HMM, how do we use it to ask questions about patterns in a
new, unlabeled sequence? Here, we consider modeling and discovery. For HMMs, modeling
and discovery are closely coupled. There are two major issues to consider: designing the
HMM topology and estimating the parameters of the model. A fundamental tradeoff drives
HMM design: On the one hand, more complex models, with more parameters, can yield
more accurate and biologically realistic models. On the other hand, as the number of
parameters increases, so does the amount of data needed to estimate parameters without
overfitting.
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